Embodiments generally relate to medication delivery. More particularly, embodiments relate to reducing hold-up volume for drug delivery systems.
An on-body delivery system (OBDS) is often used to deliver drug dosages to a user. Many OBDSs use cartridges to hold a liquid drug that is expelled from the cartridge when a portion of the liquid drug is desired to be delivered to the user. Many conventional OBDSs and associated cartridges are not capable of delivering all of the stored liquid drug to the user. Specifically, relatively significant amounts of the liquid drug can remain inside of the pre-filled cartridge when the OBDS completes full delivery. The undelivered amount of the liquid drug is wasted and for expensive drugs can increase costs to various parties, including the user. Accordingly, there is a need for an OBDS, drug delivery system and/or device, and/or cartridge having reduced amounts of a liquid drug remaining after delivery to reduce waste and reduce costs to various parties, including the user.
This disclosure presents various systems, components, and methods related to a drug delivery system and/or device. Each of the systems, components, and methods disclosed herein provides one or more advantages over conventional systems, components, and methods.
Various embodiments provide drug delivery systems with reduced hold-up volumes. The drug delivery systems include a cartridge configured to hold a liquid drug. A cartridge stopper is positioned in a first portion of the cartridge having a first diameter and forms a first seal for the liquid drug. A needle guide component is positioned within the cartridge stopper. A needle is positioned within a central opening of the needle guide. A plunger is positioned in a second portion of the cartridge having a second diameter, with the second diameter larger than the first diameter. The plunger forms a second seal for the liquid drug. The plunger includes a fluid path pocket facing and aligned with the central opening of the needle guide component. The needle pierces the cartridge stopper to be coupled to the liquid drug. The plunger is driven toward the cartridge stopper to expel the liquid drug from the cartridge through the needle. An end of the needle can be positioned within the fluid path pocket when the plunger is pushed against the cartridge stopper, ensuring that only a small volume of the liquid drug remains in the cartridge (e.g., within a portion of the fluid path pocket) when delivery of the liquid drug is completed. As a result, a reduced amount of the liquid drug remains within the cartridge when delivery is complete.
To expel the liquid drug 104 from the cartridge 102, the plunger 106 can be moved in a direction 110 toward the needle 108. In doing so, the plunger 106 can force a portion of the liquid drug 104 through the needle 108 and out of the cartridge 102. As the plunger 106 moves closer to the needle 108, more of the liquid drug 104 can be expelled from the cartridge 102.
Hold-up volume can represent the amount of space that can be occupied by a liquid drug that cannot be expelled and can include the volume of liquid drug that cannot be expelled. As shown in
Since a portion of the stored liquid drug 104 may be trapped inside of the drug delivery system 100 (or at least not delivered to the user), then the amount of liquid drug 104 used to fill the cartridge 102 may be greater than the amount of liquid drug 104 that corresponds to the dose of the user. As explained above, this “over-filling” of the liquid drug 104 for the user can add costs to the drug delivery system 100. In addition to this problem, air can be introduced into the drug delivery system 100 during typical filling processes associated with a pre-filled device such as the cartridge 102 and/or the drug delivery system 100. The introduced air is typically addressed in a number of ways. For example, the air may be purged out, which can add complexity and cost to the drug delivery system and/or burden on the user. Alternatively, the air can be delivered to the user. Lastly, the air can be trapped within the drug delivery device 100.
Since a body-worn device (e.g., an OBDS) is multi-oriented, depending on where and how it is attached to the user's body, air will move within the container that stores a liquid drug (e.g., within the cartridge 102 holding the liquid drug 104). In some instances, when air is trapped within the body-worn device and the outlet of the body-worn device is facing down, gravity may cause the heavier liquid drug out of the device prior to the air. In other instances, when air is trapped within the body-worn device and the outlet of the body-worn device is facing up, the air may be delivered first and a portion of the liquid drug may trapped within the device as part of the hold-up volume. Because of these various orientations of the body-worn device and their impact on whether air or liquid drug will be delivered to the patient, embodiments as described herein improve dose accuracy by reducing hold-up volume.
Dose accuracy can be affected when the ratio of hold-up volume to fill volume exceeds approximately 3-5%, with the dose accuracy being further negatively affected as this ration increases. For example, if a dose within 5% of 1 mL of a drug is desired using a device having a hold-up volume of 0.2 mL, then the desired dose accuracy is not possible. Accordingly, in addition to reducing wastes, it is desired to reduce hold-up volumes to achieve desired dosing accuracies and/or to achieve industry standard dose accuracy requirements.
As shown in
The cartridge 202 can generally be cylindrically-shaped with a diameter of the main body component 204 being substantially constant and larger than a diameter of the top component 208. The neck component 206 can have a variable diameter that transitions from a diameter corresponding to the diameter of the main body component 204 to the diameter of the top component 208. The variable diameter portion of the neck component 206 can be considered a transitional portion of the cartridge 202 where the wider main body component 204 transitions to the narrower top component 208.
The top component 208 can be sealed by a septum 210 and a crimp 212. The septum 210 can be positioned adjacent to and/or over the top component 208 (e.g., over an opening in the top component 208). The crimp 212 can be positioned around the septum 210 and the top component 208 to tightly fit the septum 210 against the top component 208. The septum 210 can comprise any suitable material such as, for example, metal or plastic, or any combination thereof. The crimp 212 can comprise any suitable material such as, for example, metal or plastic, or any combination thereof. The septum 210 and the crimp 212 can form at least one seal of the cartridge 202.
A second seal of the cartridge 202 can be formed by a plunger 214. The plunger 214 can comprise any suitable material such as, for example, plastic or rubber. The plunger 214 can be positioned within the main body component 204. The plunger 214 can be positioned into the main body component 204 through an opening 216 of the cartridge 202.
A drug 218 can be stored or held in the cartridge 202. The drug 218 can be a liquid drug. The drug 218 can be any therapeutic agent and/or medicine. The drug 218 can be stored within the main body component 204. The plunger 214 can be positioned to retain or seal the liquid drug 218 within the cartridge 202.
As further shown in
A second side 226 of the cartridge stopper 220 can be shaped to fit within the transition region of the neck component 206. The second side 226 can face the top component 208 of the cartridge 202. In various embodiments, the second side 226 can be shaped to taper from a relatively wider diameter (e.g., a diameter of the main body component 204) to a relatively narrower diameter (e.g., a diameter of the narrowest portion of the neck component 206). The cartridge stopper 220 can also form a seal for the liquid drug 218 as shown in
As shown in
The drug delivery system 200 can further include a needle insertion guide 228. The needle insertion guide 228 can be generally cylindrically-shaped and can be positioned within the top component 208 and the neck component 206. The needle insertion component 228 can comprise any suitable material such as, for example, metal, stainless steel, plastic, or a polymer, or any combination thereof.
The needle insertion guide 228 can include an opening or hole 230. The opening 230 can extend along an entire length of the needle insertion guide 228. The opening 230 can provide an area for a needle 232 to be guided through the top component 208 and the neck component 206. To reach the liquid drug 218, the needle 232 can be inserted through the crimp 212 and the septum 210 and into the opening 230 of the needle insertion guide 228. The needle 232 can then be inserted further into the cartridge 202 by subsequently piercing the cartridge stopper 220. Lastly, an end of the needle 232 can be inserted so as to be positioned within the fluid path pocket 224.
When the needle 232 is inserted with an end positioned within the fluid path pocket 224, the plunger 214 can be used to expel the liquid drug 218 from the cartridge 202. For example, the plunger 214 can be moved in a direction 234 toward the cartridge stopper 222. In doing so, the liquid drug 218 can be forced out of the cartridge 202 through the needle 232. The plunger 214 can be advanced in the direction 234 until the plunger 214 is adjacent to the first side 222 of the cartridge stopper 220. By maintaining the end of the needle 232 within the fluid path pocket 224, the plunger 214 can be pressed up against the first side 222 without damaging the needle 232 or disturbing the positioning of the needle 232.
As shown in
In various embodiments, the main body component 204 of the cartridge 202 can have a first diameter that is substantially constant across an entire length of the main body component 204. Further, the top component 208 and the neck component 206 of the cartridge 202 can have a smaller, second diameter. The neck component 206 can further include a region that transitions from the smaller or narrower region or portion of the cartridge 202 of the second diameter to the larger or wider region or portion of the cartridge 202 of the first diameter. In various embodiments, the top component 208 and the neck component 206 can together be considered to be a necked area or the neck component 206 of the cartridge 202—which transitions from the larger, first diameter to the smaller, second diameter.
As shown in
The drug delivery system 200 can be sterilized prior to use and being provided to a user in a variety of manners. In various embodiments, the drug delivery system 200 can be sterilized with the needle 232 inserted between the septum 210 and the cartridge stopper 220 (e.g., as depicted in
As shown in
As shown in
The plunger 504 can be positioned within the main body component 204. The plunger 504 can include a fluid path pocket 514. The fluid path pocket 514 can comprise a hole or opening that extends partially into the plunger 504 from a first side or surface 516 of the plunger 504. The fluid path pocket 514 can be round or cylindrical in shape and can be centered about the plunger 504 (e.g., about a central axis of the plunger 504). The plunger 504 can form a second seal for the liquid drug 218 for containment within the cartridge 202. The plunger 504 can be generally cylindrical-shaped and can be formed of any suitable material such as, for example, a plastic or rubber.
The needle insertion guide 506 can be positioned into the plunger 504 from a second side or surface 518 of the plunger 504. In this way, the plunger 504 can provide stability for the needle insertion guide 506. The needle insertion guide 506 can include an opening or hole 520 that extends through the needle insertion guide 506. The opening 520 can be aligned with the fluid path pocket 514 and can provide a guide for stabilizing and orienting the needle 510. Specifically, the needle insertion guide 506 can ensure that an end of the needle 510 can be positioned within the fluid path pocket 514 when the needle 510 is moved further in the direction 234. The needle insertion guide 506 can comprise any suitable material such as, for example, metal, stainless steel, plastic, or a polymer, or any combination thereof.
The optional secondary needle seal 508 can be positioned in the main body component 204 between the plunger 504 and needle insertion guide 506 and an end of the cartridge 202. The optional secondary needle seal 508 can comprise any suitable materials such as, for example, rubber, plastic, or a polymer, or any combination thereof. The optional secondary needle seal 508 can provide a seal for the needle 510 for sterilization.
Once the end of the needle 510 is positioned within the fluid path pocket 514, the plunger 504 (and the needle insertion guide 506 and the needle 506) can be moved in the direction 234. As the plunger 504 is moved towards the cartridge stopper 502, the liquid drug 218 can be expelled out of the cartridge 202 through the needle 510. The drug delivery system 500 enables the liquid drug 218 to be expelled out of an opposite end of the cartridge 202 as compared to the end of the cartridge 202 from which the liquid drug 218 is expelled by the drug delivery system 200.
As described above, the fluid path pocket 514 can be positioned within a center of the plunger 504. The fluid path pocket 514 can have any cross-sectional shape such as, for example, circular or rectangular. The fluid path pocket 514 can have a depth 522—that is, the fluid path pocket 514 can extend a distance 522 into the plunger 504 from the first surface 516 of the plunger 504.
The needle insertion guide 506 can include a base component 524 and an extension component 526. The base component 524 can extend into the plunger 504 by a first distance 528 and the extension component 526 can extend into the plunger 504 by an additional second distance 530 beyond the first distance 528. The base component 524 can be substantially flush with the second surface 518 of the plunger 506.
In various embodiments, the needle insertion guide 506 can be arranged and/or shaped in different manners. For example, the needle insertion guide 506 can be positioned adjacent to the second surface 518 of the plunger 502 rather than being inserted into a portion of the plunger 504. In such embodiments, the needle insertion guide 506 may be substantially cylindrical having a substantially uniform thickness.
The drug delivery system 500 can be sterilized prior to use and being provided to a user in a variety of manners. In various embodiments, the drug delivery system 500 can be sterilized with the needle 510 positioned within the needle insertion guide 506 but not coupled to the liquid drug 218. In such embodiments, the optional secondary needle seal 508 can be used to maintain sterility of the needle 510 from the end positioned in the needle insertion guide 506 to the portion of the needle 510 adjacent the optional secondary needle seal 508. In various embodiments, the drug delivery system 500 can be sterilized with the needle 510 partially inserted into the plunger 504 (e.g., with the end of the needle 510 positioned in the plunger 504 prior to reaching the fluid path pocket 514). In various embodiments, the drug delivery system 500 can be sterilized with the needle 510 inserted into the fluid path pocket 514 and coupled to the liquid drug 518. In such embodiments, a needle seal at the opposite end of the needle can be used to seal the needle path.
The drug delivery system 500, by incorporating rear piercing of the plunger 504, can reduce the overall size of the drug delivery system 500 by obviating the need for delivery mechanisms positioned near a front end of the cartridge 202 (e.g., near the top component 208). In various embodiments, the drug delivery system 500, as depicted in
As shown in
The drug delivery system 700 can further include a needle insertion guide component 704. The needle insertion guide component 704 can be positioned within the cartridge stopper 702. In various embodiments, the cartridge stopper 702 can have an opening (e.g., a partially hollow center portion or cavity) that allows the needle insertion guide component 704 to be positioned into the cartridge stopper 702 to be tightly sealed and retained therein. The needle insertion guide component 704 can be formed of any suitable material such as, for example, metal, stainless steel, rubber, plastic, or a polymer, or any combination thereof. The needle insertion guide component 704 can be cylindrically-shaped and can be positioned entirely within the cartridge stopper 702.
A needle 706 can be positioned with the needle insertion guide component 704. The needle insertion guide component 704 can include an opening or hole 708 that extends the length of the needle insertion guide component 704. The needle 706 can be positioned within the opening 708. The opening 708 can provide a guide for the needle 706. The opening 708 can have a first conical portion (positioned closer to the top component 208) and a cylindrical portion (positioned closer to the main body component 204) as shown in
The drug delivery system 700 can further include a plunger 720. The plunger 720 can be formed of any suitable material such as, for example, plastic or rubber. The plunger 720 can form another seal for the liquid drug 218. The liquid drug 218 can be accessed by the needle 706. Specifically, the needle 706 can be moved to pierce the cartridge stopper 702 to access the liquid drug 218. After piercing the cartridge stopper 702 to access the liquid drug 218, an end of the needle 706 can be positioned within the neck component 206 in fluid communication with the liquid drug 218.
As shown, the plunger 720 can have a first side or surface 712 and a second side or surface 714. The first side 712 can be substantially planar or flat and can face the opening 216 of the cartridge 202. The second side 714 can have a surface 716 that extends at an angle from a side of the plunger 720. The side of the plunger 720 can include one or more seal features and can be substantially cylindrical in shape. The surface 716 can extend from the side of the plunger 720 at an angle to a fluid path pocket area or component 718. The second surface 714 of the plunger 720 can be shaped to approximately match a shape of the neck component 206—in particular, a transition region of the neck component 206.
The fluid path pocket 718 can be a hole or opening that extends into the plunger 720 (e.g., partially into the plunger 720 from the second side 714) by a distance or depth 710. The fluid path pocket 718 can have any shape such as, for example, circular or square. The fluid path pocket 718 can have a decreasing diameter moving in a direction from the second side 714 to the first side 712. The fluid path pocket 718 can be positioned about a center of the plunger 720 (e.g., along a central axis of the plunger 720).
The fluid path pocket 718 can be aligned with the opening 708 of the needle insertion guide component 704. In this way, when the needle 706 pierces through the cartridge stopper 702 and is coupled to the liquid drug 218, an end of the needle 706 will align with the fluid path pocket 718. This enables the plunger 720 to be pushed into the transition area of the neck component 206 without damaging the needle 706 or its position, as the end of the needle 706 is secured within the fluid path pocket 718 and does not contact the plunger 720. Precise positioning of the end of the needle 706 can be controlled by a number of manners including, for example, a shape of the needle 706—for example, by including a bend or turn in the needle 706 to limit how far the needle 706 can extend into the cartridge 202.
To expel the liquid drug 218 from the cartridge 202, the plunger 720 can be advanced in the direction 234 toward the cartridge stopper 702. As the plunger 720 is advanced, the liquid drug 218 can be forced out of the cartridge 202 through the needle 706.
As shown in
In various embodiments, the cartridge stopper 702 can be considered as including a central opening or cavity for accepting the needle guide component 704. The needle guide component 704 can be tightly pressed or fitted into the cavity of the cartridge stopper 702, so that the cartridge stopper 702 is tightly positioned around the needle guide component 704 and against the cartridge 202 to form a seal for the liquid drug 218.
The cartridge stopper 702 can be considered to be disposed or positioned within a first region or portion of the cartridge 202. This first region or portion of the cartridge 202 can have a first diameter. In contrast, the plunger 720 can be considered to be positioned within a second region or portion of the cartridge 202. This second region or portion of the cartridge 202 can have a second diameter, with the second diameter being larger than the first diameter. The cartridge 202 can further include a region or portion where the cartridge 202 transitions from the first diameter to the second diameter. As shown in
In various embodiments, as further described herein, the opening 708 of the needle guide component 704 can be aligned with the fluid path pocket 718. In various embodiments, the opening 708 can be aligned with a center of the fluid path pocket 718. In various embodiments, the opening 718 and the fluid path pocket 718 can be aligned and/or centered about a same central axis of either component and/or the cartridge 202.
A sterile zone 802 represents a sterile area of the drug delivery system 700. The needle 706, as shown, can be stored prior to activation of the drug delivery system 700 within the sterile zone 802. The drug delivery system 700 can be sterilized after the needle 706 is inserted into the position as shown in
As further shown in
The cartridge stopper 702 can include a first portion 808 (positioned adjacent to the septum 210) and a second portion 810 (positioned adjacent to the liquid drug 218). During storage and/or prior to activation of the drug delivery system 700, the needle 706 can be positioned as shown in
Once the needle 706 is advanced into the cartridge 202 as shown in
A hold-up volume 1002 is shown in
The drug delivery system 700 provides further advantages in that the drug delivery system 700 provides a reduced amount of surface area from the cartridge stopper 702 and the plunger 720 that may contact the liquid drug 218 (e.g., in comparison to the other drug delivery systems described herein that have larger combined surface areas in contact with the liquid drug 218 due to the increased surface area of the cartridge stoppers used therein). In various embodiments, the cartridge stopper 702 and the plunger 720 can be formed from an elastomer. Leachable and extractable levels of a drug can result when a liquid drug is in contact with an elastomer, which can adversely affect the drug and/or adversely affect drug stability. Accordingly, the reduced surface area of the cartridge stopper 702 and the plunger 720 (e.g., combined or in total) provided by the drug delivery system 700 can improve stability of the liquid drug 218.
Any of the individual drug delivery systems described herein (e.g., drug delivery systems 200, 400, 500, and 700) and/or any features thereof can be combined with any other drug delivery system and/or feature thereof.
The following examples pertain to additional further embodiments:
Example 1 is a drug delivery system comprising a cartridge configured to hold a liquid drug, a cartridge stopper positioned in a first portion of the cartridge having a first diameter, a needle guide component positioned within the cartridge stopper, a needle positioned within a central opening of the needle guide, and a plunger positioned in a second portion of the cartridge having a second diameter, the second diameter larger than the first diameter, the plunger having a fluid path pocket facing and aligned with the central opening of the needle guide component.
Example 2 is an extension of example 1 or any other example disclosed herein, wherein the cartridge is an International Organization for Standardization (ISO) cartridge.
Example 3 is an extension of example 1 or any other example disclosed herein, wherein the cartridge stopper is formed from plastic or rubber
Example 4 is an extension of example 1 or any other example disclosed herein, wherein the cartridge stopper is cylindrically-shaped.
Example 5 is an extension of example 4 or any other example disclosed herein, wherein the cartridge stopper has a diameter approximately matching the first diameter, the cartridge stopper configured to form a seal for the liquid drug.
Example 6 is an extension of example 5 or any other example disclosed herein, wherein the cartridge stopper includes a central cavity configured to retain the needle guide component.
Example 7 is an extension of example 6 or any other example disclosed herein, wherein the needle guide component is formed from metal, plastic, or rubber.
Example 8 is an extension of example 7 or any other example disclosed herein, wherein the needle guide component is configured to be fitted within the central cavity of the cartridge stopper.
Example 9 is an extension of example 8 or any other example disclosed herein, wherein the central opening of the needle guide component includes a conical portion and a cylindrical portion.
Example 10 is an extension of example 9 or any other example disclosed herein, wherein the cylindrical portion is positioned closer to the plunger.
Example 11 is an extension of example 10 or any other example disclosed herein, wherein the central opening of the needle guide component is aligned with a central axis of the needle guide component.
Example 12 is an extension of example 11 or any other example disclosed herein, wherein the central opening of the needle guide component is aligned with a center of the fluid path pocket.
Example 13 is an extension of example 1 or any other example disclosed herein, wherein the plunger includes a first surface facing the cartridge stopper and a second surface facing an opening of the cartridge, the second surface containing the fluid path pocket, and the plunger forming a seal for the liquid drug.
Example 14 is an extension of example 13 or any other example disclosed herein, wherein the second surface is substantially planar.
Example 15 is an extension of example 13 or any other example disclosed herein, wherein the plunger has a diameter approximately matching the second diameter.
Example 16 is an extension of example 13 or any other example disclosed herein, wherein the fluid path pocket is cylindrically-shaped.
Example 17 is an extension of example 13 or any other example disclosed herein, wherein the fluid path pocket has a depth that extends into the plunger from the second surface.
Example 18 is an extension of example 17 or any other example disclosed herein, wherein the fluid path pocket comprises a decreasing diameter along the depth of the fluid path pocket.
Example 19 is an extension of example 17 or any other example disclosed herein, wherein the first surface is angled from a side of the plunger toward the fluid path pocket.
Example 20 is an extension of example 19 or any other example disclosed herein, wherein the first surface is shaped to approximately match a transition region of the cartridge, the transition region of the cartridge having a variable diameter that transitions from the first diameter to the second diameter.
Example 21 is an extension of example 13 or any other example disclosed herein, wherein the needle is configured to pierce the cartridge stopper to be coupled to the liquid drug.
Example 22 is an extension of example 21 or any other example disclosed herein, wherein the plunger is configured to be driven toward the cartridge stopper to expel the liquid drug out of the cartridge through the needle.
Example 23 is an extension of example 22 or any other example disclosed herein, wherein an end of the needle is configured to be positioned within the fluid path pocket of the plunger when the plunger expels substantially all of the liquid drug from the cartridge.
Example 24 is an extension of example 22 or any other example disclosed herein, wherein an end of the needle is configured to be positioned within the fluid path pocket of the plunger when the first surface of the plunger is pressed against the cartridge stopper.
Example 25 is an extension of example 24 or any other example disclosed herein, wherein the end of the needle is not in contact with the plunger.
Example 26 is an extension of example 1 or any other example disclosed herein, wherein the needle guide component is formed from a metal.
Certain embodiments of the present invention were described above. It is, however, expressly noted that the present invention is not limited to those embodiments, but rather the intention is that additions and modifications to what was expressly described herein are also included within the scope of the invention. Moreover, it is to be understood that the features of the various embodiments described herein were not mutually exclusive and can exist in various combinations and permutations, even if such combinations or permutations were not made express herein, without departing from the spirit and scope of the invention. In fact, variations, modifications, and other implementations of what was described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention. As such, the invention is not to be defined only by the preceding illustrative description.
This application claims the benefit of U.S. Provisional Application No. 62/448,222, filed Jan. 19, 2017, U.S. Provisional Application No. 62/453,065, filed Feb. 1, 2017, and U.S. Provisional Application No. 62/549,488, filed Aug. 24, 2017, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1441508 | Marius et al. | Jan 1923 | A |
3885662 | Schaefer | May 1975 | A |
3946732 | Hurscham | Mar 1976 | A |
4108177 | Pistor | Aug 1978 | A |
4268150 | Chen | May 1981 | A |
4313439 | Babb et al. | Feb 1982 | A |
4424720 | Bucchianeri | Jan 1984 | A |
4435173 | Siposs et al. | Mar 1984 | A |
4498843 | Schneider et al. | Feb 1985 | A |
4507115 | Kambara et al. | Mar 1985 | A |
4551134 | Slavik et al. | Nov 1985 | A |
4562751 | Nason et al. | Jan 1986 | A |
4585439 | Michel | Apr 1986 | A |
4601707 | Albisser et al. | Jul 1986 | A |
4634427 | Hannula et al. | Jan 1987 | A |
4678408 | Nason et al. | Jul 1987 | A |
4684368 | Kenyon | Aug 1987 | A |
4755169 | Sarnoff et al. | Jul 1988 | A |
4846797 | Howson et al. | Jul 1989 | A |
4898579 | Groshong et al. | Feb 1990 | A |
4944659 | Labbe et al. | Jul 1990 | A |
4969874 | Michel et al. | Nov 1990 | A |
5007458 | Marcus et al. | Apr 1991 | A |
5062841 | Siegel | Nov 1991 | A |
5205819 | Ross et al. | Apr 1993 | A |
5213483 | Flaherty et al. | May 1993 | A |
5261882 | Sealfon | Nov 1993 | A |
5281202 | Weber et al. | Jan 1994 | A |
5346476 | Elson | Sep 1994 | A |
5364342 | Beuchat et al. | Nov 1994 | A |
5433710 | VanAntwerp et al. | Jul 1995 | A |
5582593 | Hultman | Dec 1996 | A |
5637095 | Nason et al. | Jun 1997 | A |
5665070 | McPhee | Sep 1997 | A |
5713875 | Tanner, II | Feb 1998 | A |
5747350 | Sattler | May 1998 | A |
5748827 | Holl et al. | May 1998 | A |
5776103 | Kriesel et al. | Jul 1998 | A |
5779676 | Kriesel et al. | Jul 1998 | A |
5785688 | Joshi et al. | Jul 1998 | A |
5797881 | Gadot | Aug 1998 | A |
5800397 | Wilson et al. | Sep 1998 | A |
5807075 | Jacobsen et al. | Sep 1998 | A |
5839467 | Saaski et al. | Nov 1998 | A |
5891097 | Saito et al. | Apr 1999 | A |
5897530 | Jackson | Apr 1999 | A |
5906597 | McPhee | May 1999 | A |
5911716 | Rake et al. | Jun 1999 | A |
5919167 | Mulhauser et al. | Jul 1999 | A |
5957890 | Mann et al. | Sep 1999 | A |
5961492 | Kriesel et al. | Oct 1999 | A |
6019747 | McPhee | Feb 2000 | A |
6174300 | Kriesel et al. | Jan 2001 | B1 |
6190359 | Heruth | Feb 2001 | B1 |
6200293 | Kriesel et al. | Mar 2001 | B1 |
6363609 | Pickren | Apr 2002 | B1 |
6375638 | Nason et al. | Apr 2002 | B2 |
6474219 | Klitmose et al. | Nov 2002 | B2 |
6485461 | Mason et al. | Nov 2002 | B1 |
6485462 | Kriesel | Nov 2002 | B1 |
6488652 | Weijand et al. | Dec 2002 | B1 |
6520936 | Mann | Feb 2003 | B1 |
6527744 | Kriesel et al. | Mar 2003 | B1 |
6537249 | Kriesel et al. | Mar 2003 | B2 |
6569115 | Barker et al. | May 2003 | B1 |
6595956 | Gross et al. | Jul 2003 | B1 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6723072 | Flaherty et al. | Apr 2004 | B2 |
6883778 | Newton et al. | Apr 2005 | B1 |
7144384 | Gorman et al. | Dec 2006 | B2 |
7160272 | Eyal et al. | Jan 2007 | B1 |
7914499 | Gonnelli et al. | Mar 2011 | B2 |
8382703 | Abdelaal | Feb 2013 | B1 |
8939935 | O'Connor et al. | Jan 2015 | B2 |
9180244 | Anderson et al. | Nov 2015 | B2 |
9192716 | Jugl et al. | Nov 2015 | B2 |
9402950 | Dilanni et al. | Aug 2016 | B2 |
20010056258 | Evans | Dec 2001 | A1 |
20020173769 | Gray et al. | Nov 2002 | A1 |
20030040715 | D'Antonio et al. | Feb 2003 | A1 |
20040064088 | Gorman et al. | Apr 2004 | A1 |
20040068224 | Couvillon et al. | Apr 2004 | A1 |
20040069044 | Lavi et al. | Apr 2004 | A1 |
20050020980 | Inoue et al. | Jan 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050238507 | Dilanni et al. | Oct 2005 | A1 |
20060041229 | Garibotto et al. | Feb 2006 | A1 |
20060079765 | Neer et al. | Apr 2006 | A1 |
20060173439 | Thorne et al. | Aug 2006 | A1 |
20060178633 | Garibotto et al. | Aug 2006 | A1 |
20080114304 | Nalesso et al. | May 2008 | A1 |
20080172028 | Blomquist | Jul 2008 | A1 |
20090024083 | Kriesel et al. | Jan 2009 | A1 |
20100036326 | Matusch | Feb 2010 | A1 |
20100241066 | Hansen et al. | Sep 2010 | A1 |
20110144586 | Michaud et al. | Jun 2011 | A1 |
20130006213 | Arnitz et al. | Jan 2013 | A1 |
20130245545 | Arnold et al. | Sep 2013 | A1 |
20130267932 | Franke et al. | Oct 2013 | A1 |
20140018730 | Muller-Pathle | Jan 2014 | A1 |
20140142508 | Dilanni et al. | May 2014 | A1 |
20140148784 | Anderson et al. | May 2014 | A1 |
20140171901 | Langsdorf et al. | Jun 2014 | A1 |
20150041498 | Kakiuchi et al. | Feb 2015 | A1 |
20150202386 | Brady et al. | Jul 2015 | A1 |
20150290389 | Nessel | Oct 2015 | A1 |
20150297825 | Focht et al. | Oct 2015 | A1 |
20170021096 | Cole et al. | Jan 2017 | A1 |
20170021137 | Cole | Jan 2017 | A1 |
20170239415 | Hwang et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
606281 | Oct 1960 | CA |
4200595 | Jul 1993 | DE |
0867196 | Sep 1998 | EP |
1177802 | Feb 2002 | EP |
2468338 | Jun 2012 | EP |
2703024 | Mar 2014 | EP |
2096275 | Feb 1972 | FR |
2455269 | Nov 1980 | FR |
357139 | Sep 1931 | GB |
810488 | Mar 1959 | GB |
2549750 | Nov 2017 | GB |
46017 | Nov 1977 | IL |
H08238324 | Sep 1996 | JP |
1019126 | Apr 2003 | NL |
8101658 | Jun 1981 | WO |
8606796 | Nov 1986 | WO |
9855073 | Dec 1998 | WO |
9910040 | Mar 1999 | WO |
9910049 | Mar 1999 | WO |
9962576 | Dec 1999 | WO |
200178812 | Oct 2001 | WO |
200226282 | Apr 2002 | WO |
2002076535 | Oct 2002 | WO |
2003097133 | Nov 2003 | WO |
2004056412 | Jul 2004 | WO |
2007066152 | Jun 2007 | WO |
2009039203 | Mar 2009 | WO |
2010139793 | Dec 2010 | WO |
2011033823 | Mar 2011 | WO |
2011075042 | Jun 2011 | WO |
2012073032 | Jun 2012 | WO |
2013050535 | Apr 2013 | WO |
2013137893 | Sep 2013 | WO |
2014149357 | Sep 2014 | WO |
2015032772 | Mar 2015 | WO |
2015081337 | Jun 2015 | WO |
2015117854 | Aug 2015 | WO |
2015167201 | Nov 2015 | WO |
2015177082 | Nov 2015 | WO |
2017187177 | Nov 2017 | WO |
Entry |
---|
Lind, et al.,“Linear Motion Miniature Actuators.” Paper presented at the 2nd Tampere International Conference on Machine Automation, Tampere, Finland (Sep. 1998), 2 pages. |
Author unknown, “The Animas R-1000 Insulin Pump—Animas Corporation intends to exit the insulin pump business and discontinue the manufacturing and sale of Animas® Vibe® and OneTouch Ping® insulin pumps.” [online], Dec. 1999 [retrieved on Oct. 16, 2018]. Retrieved from the Internet URL: http://www.animaspatientsupport.com/. |
Author unknown, CeramTec “Discover the Electro Ceramic Products CeramTec acquired from Morgan Advanced Materials” [online], Mar. 1, 2001 [retrieved on Oct. 17, 2018]. Retrieved from the Internet URL: http://www.morgantechnicalceramics.com/, 2 pages. |
Vaughan, M.E., “The Design, Fabrication, and Modeling of a Piezoelectric Linear Motor.” Master's thesis, Virginia Polytechnic Institute and State University, VA. (2001). |
Galante, et al., “Design, Modeling, and Performance of a High Force Piezoelectric Inchworm Motor,” Journal of Intelligent Material Systems and Structures, vol. 10, 962-972 (1999). |
International Search Report and Written Opinion for application No. PCT/US2017/034811, dated Oct. 18, 2017, 15 pages. |
International Search Report and Written Opinion for application No. PCT/US17/46508 dated Jan. 17, 2018, 14 pages. |
International Search Report and Written Opinion for application No. PCT/US17/46777, dated Dec. 13, 2017 14 pages. |
International Search Report and Written Opinion for application No. PCT/US17/46737, dated Dec. 14, 2017 11 pages. |
International Search Report and Written Opinion for application No. PCT/US17/55054, dated Jan. 25, 2018 13 pages. |
International Search Report and Written Opinion for application No. PCT/US2017/34814, dated Oct. 11, 2017, 16 pages. |
International Search Report and Written Opinion for application No. PCT/US18/45155, dated Oct. 15, 2018, 15 pages. |
International Search Report and Written Opinion for PCT/US2018/014351, dated Jun. 4, 2018, 11 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/035756, dated Jul. 31, 2019, 10 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US18/45155, dated Feb. 13, 2020, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20180200444 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62448222 | Jan 2017 | US | |
62453065 | Feb 2017 | US | |
62549488 | Aug 2017 | US |