The present invention relates to a cartridge in which a liquid is held internally, a liquid ejecting apparatus provided with the cartridge, and a remaining liquid amount detection method for the cartridge.
Liquid ejection apparatuses include image recording apparatuses such as ink jet printers and ink jet plotters. Recently, such liquid ejecting apparatuses are being applied to various manufacturing apparatuses, exploiting the ability to cause tiny amounts of liquid to land accurately at specific positions. For example, application is being made to display manufacturing apparatuses for manufacturing color filters such as liquid crystal displays, electrode forming apparatuses for forming electrodes for organic electroluminescence (EL) displays, field emission displays (FED), and the like, and chip manufacturing apparatuses for manufacturing biochips (biochemical devices). A liquid ejecting head of an image recording apparatus ejects liquid ink, and a liquid ejecting head of a display manufacturing apparatus ejects solutions of respective red (R), green (G), and blue (B) colorants. A liquid ejecting head of an electrode forming apparatus ejects liquid electrode material, and a liquid ejecting head of a chip manufacturing apparatus ejects a solution of bioorganic material.
The liquid supplied to such liquid ejecting heads is held inside cartridges configured so as to be detachable with respect to the liquid ejecting apparatus. Moreover, the liquid is supplied from the cartridges to the liquid ejecting head according to the amount of liquid ejected from the liquid ejecting head, namely, according to a liquid consumption amount. Moreover, liquid ejecting apparatuses are being developed that, for example, predict a remaining liquid amount inside a cartridge and give a notification prompting a user to replace the cartridge when the remaining liquid amount has fallen below a specific value. One method for predicting the remaining liquid amount inside a cartridge is to compute a consumption amount by multiplying the weight of an ejected liquid droplet by the number of liquid droplets ejected, and then computing a remaining liquid amount based on the consumption amount. In addition, JP-A-2004-299342 describes a method to detect the viscosity of liquid inside a liquid ejecting head and to compute a remaining liquid amount inside a cartridge using a table expressing relationships between liquid droplet consumption amounts and liquid droplet viscosity.
Note that in methods such as those described above, it is necessary to provide a way of detecting the viscosity, such as a sensor, to detect the viscosity of the liquid inside the liquid ejecting head. This gives rise to not only an increase in the complexity of the liquid ejecting apparatus, but also an increase in the size of the liquid ejecting apparatus. Moreover, in cases in which manufacturing variation or the like results in variation in the initial viscosity of the liquid held in a cartridge, the relationship between the liquid droplet consumption amount and liquid droplet viscosity shifts; thus, the remaining liquid amount inside the cartridge cannot be accurately computed.
An advantage of some aspects of the invention is to provide a cartridge, a liquid ejecting apparatus, and a remaining liquid amount detection method capable of computing a remaining liquid amount more accurately and with a simple configuration.
A first aspect of the invention is a cartridge holding a liquid to be supplied to a liquid ejecting apparatus. The cartridge includes a storage section configured to store liquid information relating to the liquid held in the cartridge. The cartridge is detachable with respect to the liquid ejecting apparatus. The liquid information includes initial viscosity information relating to an initial viscosity of the liquid in a state prior to the cartridge being mounted to the liquid ejecting apparatus.
According to this configuration, even if variation arises in the initial viscosity of the liquid held in the cartridge due to manufacturing variation or the like, the initial viscosity information of the liquid inside the cartridge can be read, enabling the liquid consumption amount to be corrected based on the initial viscosity information. This thereby enables a more accurate liquid consumption amount to be obtained, thus enabling more accurate computation of the remaining liquid amount.
A second aspect of the invention is a liquid ejecting apparatus including a cartridge, a liquid ejecting head, and a control circuit. The cartridge is the cartridge according to the above configuration. The liquid ejecting head includes a pressure chamber to which the liquid is supplied and includes a nozzle in communication with the pressure chamber. The liquid ejecting head is configured to eject the liquid from the nozzle toward a landing target. The control circuit is configured to control ejection of the liquid by the liquid ejecting head based on image information for an image to be formed on the landing target. The control circuit is configured to correct a unit ejection amount corresponding to a single droplet of liquid ejected from the nozzle in a case in which a viscosity of the liquid is a predetermined reference viscosity, the correction being based on the initial viscosity information acquired from the storage section, compute a consumption amount of liquid that has been ejected from the nozzle based on the corrected unit ejection amount and the image information, and predict a remaining liquid amount inside the cartridge based on the consumption amount.
This configuration enables more accurate computation of the remaining liquid amount. Moreover, since there is no need to provide a way of detecting the viscosity, such as a sensor, the liquid ejecting apparatus has a simple configuration.
In the above configuration, configuration may preferably be made wherein a correction amount for the unit ejection amount in cases in which the initial viscosity information is information indicating a lower viscosity than the reference viscosity is greater than a correction amount for the unit ejection amount in cases in which the initial viscosity information is information indicating a higher viscosity than the reference viscosity.
This configuration enables even more accurate computation of the remaining liquid amount.
In any of the above configurations, configuration may preferably be made wherein the image information includes information relating to the size of a dot to be formed on the landing target, and the unit ejection amount is corrected based on the information relating to the size of the dot.
This configuration enables even more accurate computation of the remaining liquid amount.
In any of the above configurations, configuration may preferably be made wherein the liquid ejecting apparatus operates in a high frequency mode in which an ejection frequency of liquid ejected from the nozzle is relatively high and a low frequency mode in which an ejection frequency of liquid ejected from the nozzle is relatively low, and a correction amount for the unit ejection amount in cases in which the high frequency mode has been selected is greater than a correction amount for the unit ejection amount in cases in which the low frequency mode has been selected.
This configuration enables even more accurate computation of the remaining liquid amount, even in cases in which the ejection frequency of the liquid changes.
In any of the above configurations, configuration may preferably be made wherein the liquid ejecting apparatus includes plural of the cartridges according to the above configuration, and a different type of liquid is held inside each of the cartridges. Moreover, for each of the cartridges, the control circuit is configured to correct a unit ejection amount corresponding to a single droplet of liquid ejected from the nozzle in a case in which a viscosity of the liquid is a predetermined reference viscosity, the correction being based on the initial viscosity information acquired from the storage section, compute a consumption amount of liquid that has been ejected from the nozzle based on the corrected unit ejection amount and the image information, and predict a remaining liquid amount inside the cartridge based on the consumption amount.
This configuration enables more accurate computation of the remaining liquid amount for each of the cartridges.
In any of the above configurations, configuration may preferably be made wherein the liquid ejecting apparatus includes plural cartridges, a different type of liquid being held inside each of the cartridges, and the cartridge according to the above configuration is employed for at least a black cartridge holding a black liquid from out of the plural cartridges. Moreover, the control circuit is configured to correct a unit ejection amount corresponding to a single droplet of black liquid ejected from the nozzle in communication with the black cartridge in a case in which a viscosity of the black liquid held in the black cartridge is a predetermined reference viscosity, the correction being based on the initial viscosity information for the liquid inside the black cartridge acquired from the storage section, compute a consumption amount of black liquid that has been ejected from the nozzle based on the corrected unit ejection amount and the image information, and predict a remaining liquid amount inside the black cartridge based on the consumption amount.
This configuration enables more accurate computation of the remaining liquid amount for at least the black cartridge.
In any of the above configurations, configuration may preferably be made wherein the liquid ejecting apparatus includes plural cartridges, and the cartridge according to the above configuration is employed for at least a high capacity cartridge having the largest capacity of a liquid holding section from out of the plural cartridges. Moreover, the control circuit is configured to correct a unit ejection amount corresponding to a single droplet of liquid ejected from the nozzle in communication with the high capacity cartridge in a case in which a viscosity of the liquid held in the high capacity cartridge is a predetermined reference viscosity, the correction being based on the initial viscosity information for the liquid inside the high capacity cartridge acquired from the storage section, compute a consumption amount of the liquid that has been ejected from the nozzle based on the corrected unit ejection amount and the image information, and predict a remaining liquid amount inside the high capacity cartridge based on the consumption amount.
This configuration enables more accurate computation of the remaining liquid amount for at least the high capacity cartridge.
A third aspect of the invention is a liquid ejecting apparatus including the cartridge according to the above configuration, and a display device that displays the initial viscosity information.
This configuration enables a user to ascertain the initial viscosity information of the liquid inside the cartridge.
A fourth aspect of the invention is a remaining liquid amount detection method for a cartridge of a liquid ejecting apparatus, the liquid ejecting apparatus including the cartridge, a liquid ejecting head, and a control circuit. The cartridge includes a storage section configured to store liquid information relating to a liquid held in the cartridge. The liquid ejecting head includes a pressure chamber to which the liquid is supplied and includes a nozzle in communication with the pressure chamber, and the liquid ejecting head is configured to eject the liquid from the nozzle toward a landing target. The control circuit is configured to control ejection of the liquid by the liquid ejecting head based on image information for an image to be formed on the landing target. The remaining liquid amount detection method includes correcting a unit ejection amount corresponding to a single droplet of liquid ejected from the nozzle in a case in which a viscosity of the liquid is a predetermined reference viscosity, the correction being based on initial viscosity information acquired from the storage section, the initial viscosity information being included in the liquid information and relating to an initial viscosity of the liquid in a state prior to the cartridge being mounted to the liquid ejecting apparatus. The remaining liquid amount detection method further includes computing a consumption amount of liquid that has been ejected from the nozzle based on the corrected unit ejection amount and the image information, and predicting a remaining liquid amount inside the cartridge based on the consumption amount.
This method enables more accurate computation of the remaining liquid amount.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Explanation follows regarding an embodiment of the invention, with reference to the accompanying drawings. Note that in the embodiment described below, although various limitations are given with respect to particularly suitable specific examples of the invention, the scope of the invention is not limited thereby unless specifically indicated to be so in the following explanation. Moreover, in the following, an ink jet recording apparatus (a “printer” hereafter) is explained as an example of a liquid ejecting apparatus of the invention.
Inside the printer 1, a home position, this being a standby position of the recording head 2, is set at a position separated from the platen 5 on one main scanning direction side of the printer 1 (on the right side in
Next, explanation follows regarding the electrical configuration of the printer 1. As illustrated in
The control circuit 13 controls each unit according to the program stored in the body-side storage section 14. Moreover, in the present embodiment, the control circuit 13 generates ejection data indicating at what timing ink is to be ejected from which nozzle 35 of the recording head 2 during a recording operation, based on print data including, for example, image information for an image to be formed on the recording medium, sent from the external device 45. This ejection data is transmitted to a head control circuit 16 of the recording head 2. Moreover, a timing pulse PTS is generated using an encoder pulse output from a linear encoder 19. The control circuit 13 is synchronized with the timing pulse PTS, and also controls the forwarding of print data, the generation of drive signals by the drive signal generation section 15, and the like. The control circuit 13 generates timing signals such as latch signals LAT based on the timing pulse PTS, and outputs these timing signals to the head control circuit 16 of the recording head 2. The head control circuit 16 selectively applies a drive pulse contained in the drive signals to piezoelectric elements 32 (see
The control circuit 13 also functions as an ink consumption amount computation unit (discharge counter), and computes an ink consumption amount for the ink cartridges 10 of each color, in accordance with the ejection (discharge) of ink droplets from the recording head 2. Namely, for each ink cartridge 10, the control circuit 13 counts the number of times ink droplets are ejected (the number of times drive pulses have been supplied to the piezoelectric elements 32) based on the image information, and computes the amount of ink consumed (referred to hereafter as the ink consumption amount) for each color of ink by multiplying the discharge count value by an ink droplet discharge amount (weight) that is ejected in a single ejection operation. Note that a feature of the printer 1 of the present embodiment is that the printer 1 corrects a design-reference ink droplet discharge amount ejected in a single ejection operation (referred to hereafter as the unit ejection amount) based on initial viscosity information stored in a cartridge-side storage section 49 in each ink cartridge 10. This point will be described in detail later. The ink consumption amount is stored in the body-side storage section 14. When the ink consumption amount has exceeded a predetermined threshold value, namely, when the remaining ink amount of an ink cartridge 10 has become low, the control circuit 13 for example uses a display device 27 to notify a user that the remaining ink amount in the ink cartridge 10 is running low. The ink consumption amount information computed by the control circuit 13 is also output to the external device 45 using the I/F section 12. A display section of the external device 45, for example, performs display relating to the ink level in each of the ink cartridges 10 based on the ink consumption amount received from the printer 1 side. This enables a user to ascertain replacement timings of the ink cartridges 10 with ease.
As illustrated in
Next, explanation follows regarding configuration of the recording head 2.
Plural of the head units 20 are attached to a bottom face side of the holder 21. In the present embodiment, four of the head units 20, corresponding to the four colored ink cartridges 10, are provided side-by-side along the main scanning direction in a state with their length directions aligned with a direction orthogonal to the main scanning direction. Each head unit 20 is adhered and fixed to the fixing plate 22 in a state in which the head units 20 are positioned with respect to one another. The fixing plate 22 is a metal plate member formed from stainless steel (SUS) or the like, and protects lower faces and side faces of the head units 20. The fixing plate 22 is formed with four openings 23 corresponding to the respective head units 20 so as to expose nozzle plates 30 (namely, the nozzle faces 34) of the respective head units 20. Accordingly, the nozzles 35 of each of the head units 20 fixed to the holder 21 are exposed through the respective openings 23. Note that the number of head units 20 attached to the recording head 2 is not limited to four; it is sufficient that at least one head unit 20 be provided.
As illustrated in
The flow path substrate 31 is formed with plural pressure chambers 37, corresponding to the respective nozzles 35, partitioned from one another by plural dividing walls. A common liquid chamber 38 is formed at an outer side of each row of the pressure chambers 37 in the flow path substrate 31 in order to supply ink to the respective pressure chambers 37. The common liquid chambers 38 are in communication with the respective pressure chambers 37 through ink supply ports 42 having a smaller flow path area than the common liquid chambers 38. Ink inlet paths 39, formed in the head case 33 on the opposite side of the respective common liquid chambers 38 to the nozzle plate 30, are in communication with the respective common liquid chambers 38. Ink from the ink cartridge 10 side is thus introduced to the common liquid chambers 38 through the respective ink inlet paths 39 in the head case 33.
Moreover, the piezoelectric elements 32 (one type of an actuator) are formed on an upper face of the flow path substrate 31, on the opposite side to the nozzle plate 30 side of the flow path substrate 31. An elastic diaphragm 40 is interposed between the piezoelectric elements 32 and the flow path substrate 31. Each piezoelectric element 32 is, for example, configured by a lower electrode film made of metal, a piezoelectric body layer configured from lead zirconate titanate, and a upper electrode film made of metal (none of which are illustrated in the drawings), layered in sequence. The piezoelectric elements 32 are what are referred to as flexural mode piezoelectric elements, and are formed so as to cover upper portions of the respective pressure chambers 37. In each of the head units 20 of the present embodiment, two rows of the piezoelectric elements are disposed alongside each other, corresponding to the two nozzle rows. The two rows of the piezoelectric elements are disposed such that the piezoelectric elements 32 are in a state mutually offset with respect to one another as viewed along the nozzle row direction. Each piezoelectric element 32 undergoes deformation as a result of being applied with drive signals from the printer controller 11 via a wiring member 41, for example a flexible cable. This causes pressure fluctuations on the ink inside the pressure chambers 37 corresponding to the respective piezoelectric elements 32. The pressure fluctuations on the ink are controlled so as to eject ink toward the recording medium from the nozzles 35 in communication with the respective pressure chambers 37.
Next, explanation follows regarding the ink cartridges 10 that supply ink to the recording head 2 described above.
The circuit substrate 50 includes a connection terminal 51 that is connected to a non-illustrated terminal on the carriage 3 side. The circuit substrate 50 is attached to the case 46 in a state exposing the connection terminal 51. Namely, the connection terminal 51 is connected to the terminal on the carriage 3 side by mounting the ink cartridge 10 to the printer 1. The control circuit 13 of the printer 1 and the circuit substrate 50 are thereby electrically connected together. The cartridge-side storage section 49 provided to the circuit substrate 50 is stored with ink information (one type of liquid information of the invention) relating to the ink held in the ink chamber 47. For example, the ink color, the ink filling date, an identification number of the ink cartridge 10, and the like, are stored in the cartridge-side storage section 49 as the ink information. Initial viscosity information, relating to an initial viscosity of the ink in an initial state prior to mounting the ink cartridge 10 in the printer 1 (namely, a viscosity of the ink measured at a reference temperature at the time of manufacture of the ink cartridge 10), is also stored in the cartridge-side storage section 49 as the ink information. Note that the initial viscosity information may, for example, be an initial viscosity value of the ink taken as-is, or may be an index indicating whether the viscosity is higher or lower than a predetermined reference viscosity (a proportion with respect to a predetermined reference viscosity (design value)). In addition, information may be stored to indicate that the initial viscosity is “reference” in cases in which the initial viscosity is within a particular range (for example within ±2% of a reference viscosity), this being a tolerance range, that the initial viscosity is “high” in cases in which the viscosity is higher than the tolerance range, or that the initial viscosity is “low” in cases in which the viscosity is lower than the tolerance range.
Such initial viscosity information is transmitted to the control circuit 13 and is referred to when computing the ink consumption amount. The initial viscosity information is also output to the display device 27 or the display section of the external device 45. For example,
Next, explanation follows regarding a remaining ink amount detection method performed by the control circuit 13 for the ink inside the ink cartridges 10. First, the control circuit 13 acquires, from the body-side storage section 14, the unit ejection amount (also referred to as the ink droplet discharge amount) ejected from a nozzle 35 in a single ejection operation in a case in which the ink viscosity is the predetermined reference viscosity. Namely, the unit ejection amount corresponding to a single ink droplet ejected from the nozzle 35 is acquired. Note that changing a drive frequency results in a change in the unit ejection amount (ink droplet discharge amount) (see the graph in
More specifically, information relating to the size of dots to be formed on the recording medium is acquired from the image information for the image to be formed on the recording medium. This is used to determine the drive frequency (namely, the ejection frequency at which ink is ejected from the nozzles 35). For example, a mode in which ink droplet ejection from a nozzle 35 is performed once in order to form a small dot on the recording medium has a comparatively low drive frequency. A mode in which ink droplet ejection from a nozzle 35 is performed twice in order to form a medium-sized dot on the recording medium has a higher drive frequency than the small dot formation mode. A mode in which ink droplet ejection from a nozzle 35 is performed four times in order to form a large dot on the recording medium has an even higher drive frequency than the medium-sized dot formation mode. Namely, the mode that forms a large dot corresponds to a high frequency mode in which the drive frequency is relatively high, the mode that forms a small dot corresponds to a low frequency mode in which the drive frequency is relatively low, and the mode that forms a medium-sized dot corresponds to a reference mode having an intermediate drive frequency. In short, in the present embodiment, unit ejection amounts for the ink at the reference viscosity are stored in the body-side storage section 14 respectively for the large dot formation mode, the medium-sized dot formation mode, and the small dot formation mode. The unit ejection amount is acquired from the body-side storage section 14 according to the size of a dot to be formed. Note that unit ejection amount correction values corresponding to the drive frequency modes (or dot sizes) may be stored in the body-side storage section 14, and unit ejection amounts corresponding to the drive frequency (or dot size to be formed) may be derived by correcting a predetermined unit ejection amount for a reference drive frequency and reference viscosity based on the correction values.
Note that the unit ejection amount also changes as a result of changes to the ink viscosity. Explanation follows regarding this point, with reference to the graphs illustrated in
As illustrated in the graph of
Moreover, as illustrated in the graph of
Since the ink droplet discharge amount (unit ejection amount) changes according to the ink viscosity, and the actual ink droplet discharge amount diverges from the reference viscosity design ink droplet discharge amount, the unit ejection amount obtained as described above is corrected based on the initial viscosity information acquired from the cartridge-side storage section 49. For example, correction coefficients corresponding to the initial viscosity information are pre-stored in a table in the body-side storage section 14, and a correction coefficient corresponding to the initial viscosity information is acquired from the table. The unit ejection amount is then corrected using the acquired correction coefficient. Detailed explanation follows regarding a correction method using such a correction coefficient table, with reference to the example of the correction coefficient table illustrated in
In cases in which the initial viscosity information is data indicating a higher viscosity than the reference viscosity (“high” in the table of
Note that as described above, since there is a trend for the amount of divergence of the ink droplet discharge amount (namely, the absolute value of the difference from the ink droplet discharge amount at the reference viscosity) to increase as drive frequency increases (see
On the other hand, in cases in which the initial viscosity information is data indicating a lower viscosity than the reference viscosity (“low” in the table of
Note that similarly to in cases in which the initial viscosity information is a high viscosity, it is desirable to set the table such that the absolute values of the correction coefficients become greater as the dot formation size increases. In other words, in cases in which the large dot formation mode (high frequency mode) is selected, it is desirable that the correction amount (namely, the absolute value of the correction coefficient) for the unit ejection amount be greater than in cases in which the small dot formation mode (low frequency mode) is selected. In the example illustrated in
Moreover, as described above, since there is a trend for the amount of divergence of the ink droplet discharge amount to be greater when the ink viscosity is on the lower side of the reference viscosity than when the ink viscosity is on the higher side of the reference viscosity (see
As described above, the corrected unit ejection amount is stored in the body-side storage section 14. The control circuit 13 then computes a consumption amount of ink ejected from each nozzle 35 (ink consumption amount) based on the corrected unit ejection amount and the image information. Specifically, the ink consumption amount is computed by multiplying the corrected unit ejection amount by the number of ink droplet ejection times, obtained using the image information. The ink consumption amounts are stored in the body-side storage section 14 and totaled. The control circuit 13 then predicts the remaining ink amount inside the ink cartridge 10 based on the totaled value. The remaining ink amount is predicted in this manner for each ink cartridge 10. Moreover, the remaining ink amount in each ink cartridge 10 is, for example, displayed on the display device 27 or the like in response to user commands or the like. In addition, when the remaining ink amount of an ink cartridge 10 is running low, for example, the user is notified using the display device 27 or the like. Note that the remaining ink amount obtained may be stored in the cartridge-side storage section 49 of the corresponding ink cartridge 10.
In this manner, the unit ejection amount is corrected based on the initial viscosity information, and the ink consumption amount is derived based on the corrected unit ejection amount, thereby enabling a more accurate ink consumption amount to be obtained. The remaining ink amount inside each ink cartridge 10 can be more accurately ascertained as a result. Namely, the remaining ink amount can be more accurately computed due to correcting the unit ejection amount based on the initial viscosity information, and then predicting the remaining ink amount inside the ink cartridge 10 based on the corrected unit ejection amount. The configuration of the printer 1 is simplified since there is no need to provide a way of detecting the viscosity, such as a sensor. Moreover, in cases in which the initial viscosity information is information indicating a lower viscosity than the reference viscosity, the unit ejection amount correction amount is greater than in cases in which the initial viscosity information is information indicating a higher viscosity than the reference viscosity, thereby enabling even more accurate computation of the remaining ink amount. Moreover, the correction coefficient is also changed according to information relating to the dot size (namely, drive frequency). In other words, the unit ejection amount is corrected based on information relating to the dot size. This thereby enables even more accurate computation of the remaining ink amount. Namely, more accurate computation of the remaining ink amount is possible even in cases in which the drive frequency is changed according to the dot size. In cases in which a relatively high drive frequency mode (high frequency mode) is selected, the unit ejection amount correction amount is greater than in cases in which a relatively low drive frequency mode (low frequency mode) is selected, thereby enabling even more accurate computation of the remaining ink amount. Moreover, since the remaining ink amount is predicted for each ink cartridge 10, the remaining ink amount can be more accurately computed for each cartridge.
Note that in the embodiment described above, the unit ejection amount is derived according to the drive frequency (frequency mode), and the unit ejection amount is corrected based on the initial viscosity information acquired from the cartridge-side storage section 49. However, there is no limitation thereto. The unit ejection amount may be set to a uniform value regardless of the drive frequency, and an amount of divergence arising when the drive frequency is changed may be included in the correction coefficient for correcting the unit ejection amount. Explanation follows regarding a detection method for the remaining ink amount inside the ink cartridge 10 using such a correction coefficient, with reference to another example of a correction coefficient table, illustrated in
First, the control circuit 13 acquires, from the body-side storage section 14, a unit ejection amount (design value) for a case in which ink viscosity is a predetermined reference viscosity and ink is ejected at a predetermined reference drive frequency (for example, a case in which the medium-sized dot formation mode (reference mode) is selected). The unit ejection amount is corrected based on the initial viscosity information acquired from the cartridge-side storage section 49. Namely, the correction coefficient corresponding to the initial viscosity information is acquired from the correction coefficient table illustrated in
For example, the correction coefficient is 0% in a case in which the drive frequency has the same value as the reference drive frequency (for example a case in which the reference mode is selected), and the initial viscosity information acquired from the cartridge-side storage section 49 is data indicating an initial viscosity the same as the reference viscosity or within the tolerance range (referred to hereafter as the “reference viscosity”) (when both the initial viscosity and the drive frequency are “reference” in the table of
Moreover, in cases in which the initial viscosity information is data indicating a higher viscosity than the reference viscosity (a “high” initial viscosity in the table of
Moreover, in cases in which the initial viscosity information is data indicating a lower viscosity than the reference viscosity (a “low” initial viscosity in the table of
The selected correction coefficient is then multiplied by the unit ejection amount, and the value thus obtained is added to the unit ejection amount (in cases in which the correction coefficient is a negative value, the absolute value of the correction coefficient is subtracted from the unit ejection amount) to correct the unit ejection amount. The control circuit 13 computes the ink consumption amount by multiplying the corrected unit ejection amount by the number of ink droplet ejection times obtained using the image information. The ink consumption amounts are stored in the body-side storage section 14 and totaled. The control circuit 13 then predicts the remaining ink amount inside the ink cartridge 10 based on the totaled value.
Note that as described above, since there is a trend for the amount of divergence (namely, the absolute value of the difference from the ink droplet discharge amount at the reference viscosity) of the ink droplet discharge amount (the unit ejection amount) to increase as drive frequency increases (see
Moreover, as described above, since there is a trend for the amount of divergence of the ink droplet discharge amount to become greater when the ink viscosity is on the lower side of the reference viscosity than when the ink viscosity is on the higher side of the reference viscosity (see
In this manner, since the correction coefficients used to correct the unit ejection amount consider the amount of divergence when the drive frequency has been changed, the unit ejection amount prior to correction is a uniform value irrespective of the drive frequency, thus rendering a process to compute the unit ejection amount unnecessary. Computation of the ink consumption amount is simplified as a result. Moreover, in the correction coefficient table illustrated in
Note that in the embodiment described above, the unit ejection amount is corrected by referencing the correction coefficient table stored in the cartridge-side storage section 49 in order to acquire the correction coefficient corresponding to the drive frequency (dot size) and the initial viscosity. However, there is no limitation thereto. For example, a formula for deriving the unit ejection amount may be pre-stored in the body-side storage section, and the drive frequency (dot size) and the initial viscosity information may be applied to this formula in order to derive the unit ejection amount. In addition, the correction coefficient table in the example described above is a 3×3 table in which drive frequency (dot size) and initial viscosity are each classified into three categories (ranges). However, there is no limitation thereto. A correction coefficient table may be provided in which the drive frequency (dot size) and initial viscosity are each classified into smaller categories.
Moreover, in the embodiment described above, the remaining ink amount prediction is performed for each ink cartridge 10. However, there is no limitation thereto. It is desirable that remaining ink amount prediction be performed for at least the ink cartridge holding black (K) ink (the black ink cartridge). This enables more accurate computation of the remaining ink amount (remaining black ink amount) for at least the ink cartridge corresponding to black (K) ink, which is consumed at the fastest rate. Moreover, in cases in which plural ink cartridges have differing ink holding capacities, it is desirable that remaining ink amount prediction be performed for at least the ink cartridge with the largest capacity (highest capacity cartridge). This thereby enables more accurate remaining ink amount computation for at least the ink cartridge with the largest capacity.
Moreover, since ink viscosity changes with temperature, namely, since the unit ejection amount also changes depending on the temperature of the ink inside the recording head 2, configuration may be made in which the ink consumption amount is also corrected for temperature. For example, a temperature measuring unit may be provided inside the recording head 2, and the unit ejection amount corrected based on the initial viscosity information may be further corrected based on a temperature measured by the temperature measuring unit. For example, a method in which a correction coefficient table such as in the examples illustrated in
In the foregoing explanation, the ink jet recording apparatus 1 is given as an example of a liquid ejecting apparatus. However, the invention may also be applied to other liquid ejecting apparatuses. For example, the invention can be applied to a liquid ejecting apparatus provided with colorant ejecting head employed in the manufacture of color filters for liquid crystal displays or the like; a liquid ejecting apparatus provided with an electrode material ejecting head employed to form electrodes of organic electroluminescence (EL) displays, field emission displays (FEDs), or the like; a liquid ejecting apparatus provided with bioorganic matter ejecting heads employed in the manufacture of biochips (biochemical elements); and the like. In colorant ejecting heads for display manufacturing apparatuses, solutions of R (red), G (green), and B (blue) colorants are each ejected as a type of liquid. In electrode material ejecting heads for electrode forming apparatuses, a liquid electrode material is ejected as one type of liquid, and in bioorganic matter ejecting heads for chip manufacturing apparatuses, a bioorganic matter solution is ejected as one type of liquid.
The entire disclosure of Japanese Patent Application No. 2016-177364, filed Sep. 12, 2016 is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2016-177364 | Sep 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20020140748 | Kanaya et al. | Oct 2002 | A1 |
20030071862 | Tsukada | Apr 2003 | A1 |
20150251468 | Sugahara | Sep 2015 | A1 |
20160243843 | Akiyama | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2000-218817 | Aug 2000 | JP |
2004-299342 | Oct 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20180072068 A1 | Mar 2018 | US |