Not applicable.
Not applicable.
1. Field of the Invention
The present invention relates to fire suppression systems. More specifically, the invention is a system that detects removal of a cartridge or canister from a fire suppression system and is operative to prevent the door of an enclosure from closing for so long as the cartridge is removed and the fire suppression system inoperative, and provides a visible, audible or electrical indication of the removal of the cartridge.
2. Description of the Related Art
Fire suppression systems are common in commercial environments. Such systems are typically situated proximal to the most probable ignition sources, such as stoves, friers, grills, and the like, in restaurant environments.
Active fire protection devices typically fall within one of two groups: single vessel stored-pressure systems and cartridge-operated systems. In single vessel stored-pressure systems, an expellant is stored in the same vessel as the firefighting agent itself. For example, the typical wall-mounted fire extinguisher is a single-vessel stored-pressure system that incorporates either pressurized nitrogen or pressurized air in the same vessel as the expellant (e.g., dry chemical, dry powder, water and foam, etc.).
Cartridge operating systems, however, are most likely to be installed in commercial and industrial areas because they are simpler and faster to recharge compared to stored-pressure systems. These types of systems may or may not include a single vessel that includes both the expellant and the firefighting agent. In some systems, opening the cartridge simply actuates the opening of a separate stored-pressure vessel, while in other systems the pressure may be contained within the cartridge itself.
Despite the simplicity and quick recharge of cartridge-operated systems, it can still be expensive to maintain, perhaps costing hundreds of dollars for a certified technician to visit the facility and perform maintenance services, such as recharging the system. As a result, persons who might be working around the fire suppression systems (e.g., cleaning crew) are often tempted to remove, and sometimes do remove, the cartridge from the system to prevent accidental discharge and the subsequent costly recharge service call. In addition, the cartridge typically must be removed during each regular inspection of the system, leaving open the possibility that the inspecting technician may fail to reinstall the cartridge prior to conclusion of the inspection, and thus leave the system inoperative.
In one 2010 restaurant fire, for example, the fire suppression system never activated. After the fire was extinguished, the cartridge was found unconnected to the system and sitting in the bottom of the enclosure housing the suppression system controls. While unconfirmed, those familiar with the situation suspected that someone had removed the cartridge to prevent accidental discharge and then forgot to reconnect the cartridge. The restaurant owners sued everyone, including the fire inspection business that last inspected the system. Unfortunately, there was no independent mechanism in place to confirm that the cartridge was properly installed at the conclusion of the most-recent inspection of the system.
The present invention is a cartridge monitoring system for use with existing fire suppression systems. When the cartridge is removed, the door to the system enclosure is mechanically prevented from closing to provide a visual indicator that a cartridge is not installed in the system and therefore the system is inoperable. In addition, the system provides a visual, audible, or electrical signal to indicate the cartridge is not installed.
The system includes a fixture positioned in the interior space of an enclosure in a fixed position relative to the regulator assembly; a hinge member positioned in the interior space and defining an axis of rotation; an elongate member fixed to the hinge member at a rotation point, a free end, and an arm portion between the free end and the rotation point, with the elongate member being rotatable about the axis of rotation between a first position and a second position to define a partial shell of rotation relative to the hinge member. In the first position, the free end of the elongate member is within the interior space. In the second position, the free end of the elongate member is outside of the interior space.
The cartridge 22 is threaded to an actuator 42, which is in communication with a regulator 44. A spring 46 is in tension and connected to one end of a break line 48 that runs outside of the enclosure 26 and is attached to one or more remotely-located fusable links (not shown). In the event of a fire, the ambient heat causes one or more fusable links attached to the break line 48 to separate, allowing the spring 46 to trigger a release mechanism 49 that punctures the cartridge 22. Puncturing the cartridge 22 allows the pressure communication from the cartridge 22 through the actuator 42 into the agent tank 24 through a first tubing section 50. The increased pressure within the agent tank 24 forces extinguishing agent into a second tubing section 52 that runs to the exterior of the enclosure 26 and to one or more discharge nozzles (not shown) proximal to targeted areas most likely to be under ignition.
The connection between the cartridge 22 and actuator 42 is facilitated by a square U-shaped suspension bracket 54 having front and back walls extending at the perimeter of a bottom plate at right angles. Front and back walls have aligned front and back guide slots 56 formed therethrough and positioned to engage with mounting bolts 58 fixed to the actuator 42. A slot 60 is formed in the bottom wall of the suspension bracket 54 and has a width smaller than the threads of the cartridge 22 and larger than the neck 62 of the cartridge 22. The bolts 58 are positioned through the front guide slots 56 and engage with aligned bolt holes (not shown) in the actuator 42 to suspend the bracket 54 therefrom. In this cartridge-uninstalled position, the cartridge 22 may be move horizontally into the slot 60 and supported at the threads by the suspension bracket 54. As the cartridge 22 is threaded into the actuator 42 to a cartridge-installed position shown in
An elongate member 74 having a first free end 76 is rotatably connected to the third sidewall 72 with a hinge member 78 having an axis of rotation 80 that intersects the enclosure sidewalls 36, 38 (see
A torsion spring 90 is connected to the suspension bracket 64 and the elongate member 74 to urge the elongate member 74 in a first rotational direction RD 1 about the axis of rotation 80. Rotation in the first rotational direction RD 1 is limited by a stopping member 92 that is fixed to the third sidewall 72 of the suspension bracket 64. The stopping member 92 extends horizontally away from the third sidewall 72 and intersects the second partial shell of revolution.
Although the preferred embodiment includes a torsion spring 90, other embodiments contemplate relying only on gravitation force by positioning the elongate member 74 in less than a vertical orientation with the center of mass of the elongate member 74 closer to the opening 28 than the axis of rotation of the hinge member 92.
The first and second partial shells of revolution change position relative to the actuator as the suspension bracket 64 is moved to and between the cartridge-uninstalled and cartridge-installed positions. When the suspension bracket 64 is in the cartridge-uninstalled position (shown in
Rotation of the elongate member 74 occurs with respect to a first fixture 94 that has a horizontal base plate 96. A back wall 98 extends perpendicularly at one end of the base plate 96. The fixture 94 includes a top plate 100 that is parallel to the base plate 96, and a structural member in the form of a retaining lip 102 that extends from the front of the top plate 100 to define an arm-retaining volume 104. A square U-shaped mounting plate 106 is connected to a side of the base plate 96, back wall 98, and top plate 100. The mounting plate 106 is fixed to the release mechanism with fasteners 108.
A relay 110 is mounted to the base plate 96 with a fasteners 112 and nuts 114 positioned through the relay body 116. The relay 110 includes three contacts 118—common, positive, and negative—and an actuator arm 120 that extends from the relay body 116 and is moveable between actuated and non-actuated positions. The contacts 118 may be wired to indicating circuitry located remotely.
Referring to
Referring to
A hinge mount 154 extends upward from and is fixed to the bridge portion 148 of the plate fixture 142. A hinge member 158 extending therebetween and having an axis of rotation 160.
An elongate member 162 is fixed to the hinge member 158 at a rotation point and may rotate relative to the plate fixture 142. A torsion spring 168 is fixed to the hinge mount 154 and the elongate member 162 to urge the elongate member 162 in a first rotational direction RD1.
The elongate member 162 comprises a first free end 170 and an arm portion 172 between the first free end 170 and the rotation point. Two hinge walls 156 are attached to the elongate member 162 to receive the hinge member 158. The elongate member 162 also comprises a second free end 174 and a base portion 176 extending between the second free end 174 and the rotation point 166. The arm portion 172 and the base portion 176 are in a perpendicular relationship. The length of the base portion 176 is less than the length of the arm portion 172. Rotation of the elongate member 162 about the axis of rotation 160 in one rotational direction (opposite RD1) is limited by contact of the base portion 176 with the first portion 144 of the plate fixture 142.
A relay 178 with contacts 179 is mounted to the second portion 146 of the plate fixture 142. The relay 178 includes an actuator arm 180 that extends from one side of the relay body 182 toward the member. When the elongate arm 162 is in the first relative position and the base portion 176 is in contact with the plate fixture 142, the actuator arm 180 is in a normal state and the relay 178 is not actuated. When the elongate member 162 is not in contact with the actuator arm 180 (as shown in
The first portion 144 of the plate fixture 146 is positioned between the enclosure bottom wall 193 and the cartridge 22. The base portion 176 of the elongate arm 162 is positioned between the first portion 144 and the cartridge 22. With the cartridge 22 in its normally installed position being threaded into the actuating valve 200 inhibits rotational movement of the elongate member 162. In this position, the arm portion 172 of the elongate member 162 extends away from the rim 194, and is positioned completely within the enclosure interior space 197. In this position, the arm portion 172 of the elongate member 162 contacts the actuator arm 180 to actuate the relay 182 to its normal normally-open state.
The present invention is described in terms of a preferred embodiment in which specific embodiments of the system are described. Those skilled in the art will recognize that alternative embodiments of such embodiments can be used in carrying out the present invention. Other aspects and advantages of the present invention may be obtained from a study of this disclosure and the drawings, along with the appended claims.