This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2018-178556 filed Sep. 25, 2018.
The present disclosure relates to a cartridge support unit.
As a method of replenishing a developing device with new toner, toner cartridge is used. The toner cartridge is easily handled and allows the developing device to be easily replenished with the toner while suppressing dispersion of the toner to a region around the toner cartridge. When the toner cartridge is mounted and a toner cartridge body is rotated, a transport exit formed in the toner cartridge body is moved out from a retracting portion into which the transport exit has been retracted and which has closed the transport exit. The transport exit is then moved onto a transport entrance of a toner transport mechanism, which transports the toner to the developing device, so as to align the transport entrance and the transport exit with each other. Furthermore, this transport entrance of the toner transport mechanism is provided with a shutter that opens/closes the transport entrance. This shutter is closed when the toner cartridge is not mounted. When the toner cartridge is mounted, an engagement portion provided in the toner cartridge body is engaged with an engagement receiving portion provided in the shutter. When the toner cartridge body is rotated in this state, the shutter is opened (for example, Japanese Unexamined Patent Application Publication No. 2005-37673).
Aspects of non-limiting embodiments of the present disclosure relate to providing of a device with which a shutter that opens/closes a transport entrance of a toner transport mechanism is not easily opened.
Aspects of certain non-limiting embodiments of the present disclosure address the above advantages and/or other advantages not described above. However, aspects of the non-limiting embodiments are not required to address the advantages described above, and aspects of the non-limiting embodiments of the present disclosure may not address advantages described above.
According to an aspect of the present disclosure, there is provided a cartridge support unit including a housing, a toner cartridge, a guide member, a shutter body, and at least one snap fit portion. The housing has an opening. The toner cartridge has a cylindrical shape, has an outer circumferential surface, and is removably mounted in the housing. The guide member has portions and is provided at such a position in the housing that the opening is interposed between the portions of the guide member. The shutter body slides against the guide member from a closed position where the shutter body covers the opening to an open position where the shutter body exposes the opening. The at least one snap fit portion extends from the shutter body and has a protrusion. The protrusion is pushed by the outer circumferential surface of the toner cartridge so as to release a lock state at the closed position.
Exemplary embodiment of the present disclosure will be described in detail based on the following figures, wherein:
The image forming apparatus 10 is able to form color images with toner of magenta M, yellow Y, black K, and cyan C. Hereinafter, when distinctive description is made for a particular color, K, Y, M, or C is suffixed to a reference sign (for example, “developing device 20Y” and the like).
In the image forming apparatus 10, for example, the following elements are disposed in positional relationships as illustrated in
Generally, printing of a full-color image is performed by the image forming apparatus 10 as follows. First, in the photoconductor drum unit 12, the four photoconductor drums 11 are uniformly charged by charging rollers (not illustrated), and then, laser beams Bm corresponding to the colors Y, M, K, C are separately radiated to the respective surfaces of the charged photoconductor drums 11 by the light exposure unit 16. Thus, the photoconductor drums 11 are exposed to and scanned by the respective laser beams Bm traveling through gaps in the developing unit 18. As a result, electrostatic latent images of the colors corresponding to input information are formed on the respective photoconductor drums 11.
Next, the electrostatic latent images on the photoconductor drums 11 are developed by the developing devices 20 of the developing unit 18 for the respective colors. Thus, toner images of the Y, M, K, C colors are formed.
Next, the toner images of the colors formed on the respective photoconductor drums 11 are electrostatically transferred to the first intermediate transfer drums 21, 22 through first transfer. Specifically, the magenta and yellow toner images formed on the photoconductor drums 11M and 11Y are sequentially transferred in this order to the first intermediate transfer drum 21 so as to be superposed on each other, and the cyan and black toner images formed on the photoconductor drums 11C and 11K are sequentially transferred in this order to the first intermediate transfer drum 22 so as to be superposed on each other. Thus, a multi-toner image including the magenta and yellow toner images is formed on the first intermediate transfer drum 21. Also, a multi-toner image including the cyan and black toner images is formed on the first intermediate transfer drum 22.
Next, the superposed toner images respectively formed on the first intermediate transfer drums 21, 22 are electrostatically transferred to the second intermediate transfer drum 23 through second transfer. Thus, the toner images on the first intermediate transfer drum 21 (M and Y from the bottom) and the toner images on the first intermediate transfer drum 22 (C and K from the bottom) are respectively transferred to the second intermediate transfer drum 23 in this order so as to form a multi-toner image in which the Y, M, K, C toner images are superposed in this order from below.
Meanwhile, corresponding to such formation of the toner images, the recording sheet P is fed from the sheet feed unit 32 toward the transfer roller 50 at predetermined timing by the recording sheet transport mechanism 34. The recording sheet P fed to the transfer roller 50 is held by the transfer roller 50 and the second intermediate transfer drum 23, and the multi-toner image on the second intermediate transfer drum 23 is electrostatically transferred to the recording sheet P.
Next, the recording sheet P onto which the multi-toner image has been transferred is fed to the fixing unit 40. The recording sheet P passes through a fixing nip between a heating roller 42 and a pressure roller 44 of the fixing unit 40 so as to be subjected to fixing processing through application of heat and pressure to the recording sheet P. Then, the recording sheet P is output to the sheet receiving portion 46.
Through performing the series of types of image forming processing as described above, a full-color image is formed on a single recording sheet P. A set of hardware elements used to perform the above described image forming processing are collectively referred to as an image forming section.
The developing devices 20 are, according to need, replenished by the respective toner transport mechanisms 72 with the toner from the respective toner cartridges 70Y, M, K, C containing the toner of the four colors. The toner cartridges 70 are removably mounted on the cartridge support units 74. When any of the toner cartridges 70 runs out of the toner, this toner cartridge 70 is able to be replaced with a new toner cartridge 70.
Grooves 103 are provided in side portions 102 on both sides of the guide member 100. The grooves 103 allow side portions of the shutter body 110 to be inserted thereinto and slide therealong. The grooves 103 each have a U shape as seen from the front in the direction in which the shutter body 110 is moved.
As illustrated in
According to the present exemplary embodiment, “downstream” is in the direction in which the shutter body 110 is moved from the closed position illustrated in
Recesses 105 are formed in downstream portions of the side portions 102 of the guide member 100. Two snap fit portions 111 are provided upstream of the shutter body 110. The snap fit portions 111 extend toward the upstream side from both the side portions of the shutter body 110. The snap fit portions 111 are integral with the shutter body 110. Protrusions 112 are provided at distal end portions of the snap fit portions 111. As illustrated in
A downstream portion of the shutter body 110 is positioned between two snap fit portions 111 in the direction intersecting the direction in which the shutter body 110 is moved. The downstream portion has an opening 113 and a projecting portion 114. The structures of these will be described later.
The sealing member 101 attached to the guide member 100 does not entirely extend to a region corresponding to the rear surface of the shutter body 110 at the closed position. The sealing member 101 does not extend to regions corresponding to the rear surfaces of the entire snap fit portions 111 or at least the distal end portions of the snap fit portions 111 of the shutter body 110. The surface of the guide member 100 is exposed in the regions where the sealing member 101 is not attached.
As illustrated in
As illustrated in
Even when the protrusion 112 of the snap fit portion 111 is pushed in, the shutter body 110 is not pushed in. The snap fit portion 111 is displaced independently of the shutter body 110 in the direction toward the center of rotation of the toner cartridge 70. Thus, it is sufficient that the rib 108 be provided on a path along which the snap fit portion 111 is moved downstream. It is not required that the rib 108 be provided over the entirety of the movement path of the shutter body 110.
The projecting portion 77 (exemplifying a “second projection”) causes the shutter body 110 at the open position to move the closed position. When the toner cartridge 70 is mounted on the cartridge support unit 74, the projecting portion 77 enters the opening 113 of the shutter body 110. When the toner cartridge 70 is rotated upstream from the open position, the projecting portion 77 is brought into contact with a side in an upstream portion of the opening 113 of the shutter body 110. This produces a force to move the shutter body 110 upstream.
As described above, the toner cartridge 70 has two projecting portions 76 and 77 according to the present exemplary embodiment. The shutter body 110 is moved downstream by engaging the projecting portion 76 with the shutter body 110. The shutter body 110 is moved upstream by engaging the projecting portion 77 with the shutter body 110.
It is also possible to cause the shutter body 110 to move upstream and downstream with a single projecting portion of the toner cartridge 70. For example, as illustrated in FIG. 5 of Japanese Unexamined Patent Application Publication No. 2005-37673 described above, an engagement rib 162 that is a projection provided in a toner cartridge body 80 is inserted into an engagement receiving portion 182 provided on a downstream end portion of a shutter 180. The engagement rib 162 is engaged with the engagement receiving portion 182 when the toner cartridge body 80 is rotated downstream and the toner cartridge body 80 is rotated upstream. Thus, the shutter 180 is opened and closed with the engagement rib 162 that is a single projection.
However, with the structure of Japanese Unexamined Patent Application Publication No. 2005-37673 described above, the engagement rib is inserted in an ensured manner into the engagement receiving portion when the toner cartridge is mounted. This reduces a range of the directions in which the toner cartridge is caused to approach the shutter. To increase this range of directions, it is required to increase the length of the engagement receiving portion in the direction in which the shutter is moved. This may increase a space to be allocated for a shutter mechanism.
In contrast, according to the present exemplary embodiment, it is not required to provide a member such as an engagement receiving portion into which the projecting portion of the toner cartridge 70 is inserted at an upstream or downstream end of the shutter body 110. According to the present exemplary embodiment, the shutter body 110 is able to be moved downstream by contact of the projecting portion 76 with the upstream end of the shutter body 110. Furthermore, the shutter body 110 is able to be moved upstream by contact of the projecting portion 77 with the side in the upstream portion of the opening 113 of the shutter body 110.
Referring back to
In the state illustrated in
From the above description, in the state illustrated in
The sectional shape of the groove 103 of the guide member 100 along which the shutter body 110 slides is an arcuate shape along the outer circumferential surface 75 of the toner cartridge 70. Accordingly, the shutter body 110 also has an arcuate sectional shape and is moved in the groove 103 of the guide member 100 along an arcuate locus as indicated by the locus L2. The snap fit portion 111 having the protrusion 112 also has an arcuate sectional shape. However, the snap fit portion 111 is moved beyond the arrow M range and moved out of the groove 103 when being moved to the open position. The protrusion 112 provided on the snap fit portion 111 is, when being moved downstream from the groove 103, moved along the locus L1 escaped from the outer circumferential surface 75 of the toner cartridge 70 compared to the arcuate locus L2.
During the movement toward the downstream side, since the protrusion 112 is pushed in, a force in the direction escaping from the toner cartridge 70 is applied to the snap fit portion 111 of the shutter body 110 so as to deform the snap fit portion 111. However, as the snap fit portion 111 is moved downstream, the snap fit portion 111 is moved out of the groove 103. Thus, the locus of the movement is along the locus L1 escaping from the outer circumferential surface 75 of the toner cartridge 70. This may suppress the deformation. After the shutter body 110 has been moved to the shutter open position, the protrusion 112 continues to be disposed at the position A. This may reduce the force applied to the snap fit portion 111, and accordingly, suppress the deformation when the toner cartridge 70 is mounted.
Although the protrusion 112 is pushed in by the toner cartridge 70, the protrusion 112 having been pushed in is positioned so as not to be brought into contact with the rib 108 illustrated in
As described above, while the shutter body 110 is being moved downstream, the protrusion 112 is being moved in the locus along the locus L1 illustrated in
When the escaping amount of the shutter body 110 becomes excessively large, ease of contact between the projecting portion 77 of the toner cartridge 70 and the projecting portion 114 of the shutter body 110 is reduced when moving the shutter body 110 to the closed position. This may lead to the case where the shutter body 110 is not set at the closed position.
In order to address this, the rib 107 is provided behind the shutter body 110 according to the present exemplary embodiment. When the escaping amount of the shutter body 110 is large, the rib 107 is brought into contact with the rear surface of the shutter body 110 so as to suppress an increase in escaping amount. The rib 107 is not provided on the rear surface of the snap fit portion 111. Thus, the rib 107 does not affect the escaping amount of the protrusion 112.
The gap between the shutter body 110 and the rib 107 in the radial direction of the toner cartridge 70 is made to be smaller than the amount of engagement between the projecting portion 77 of the toner cartridge 70 and the projecting portion 114 of the shutter body 110 in the radial direction.
Referring to
With the projecting portion 106, when the toner cartridge 70 is mounted and set at the open position, the shutter body 110 is not necessarily moved out even in the case where the shutter body 110 is pulled downstream by the user.
Variations
The above-described exemplary embodiment is able to be varied in different manners. The variations are described as follows. The above-described exemplary embodiment and the variations described below may be appropriately combined.
1. According to the above-described exemplary embodiment, two snap fit portions 111 are provided in the shutter body 110. However, it may be sufficient that a single snap fit portion 111 be provided as long as the lock state is sufficiently maintained when the toner cartridge 70 is removed.
2. According to the above-described exemplary embodiment, the shutter body 110 has the opening 113. However, engagement with the projecting portion 77 is sufficiently provided, the shutter body 110 may have a recess that does not penetrate through the shutter body 110 instead of the opening 113, or the size of the opening may be reduced.
3. According to the above-described exemplary embodiment, the shutter body 110 has the opening 113. However, the amount of engagement between the projecting portion 114 and the projecting portion 77 of the toner cartridge 70 is sufficient, the opening 113 is not required. Furthermore, a portion between two snap fit portions 111 where the opening 113 is formed is not necessarily provided as long as problems with the strength or the movement for opening/closing do not arise.
The foregoing description of the exemplary embodiment of the present disclosure has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiment was chosen and described in order to best explain the principles of the disclosure and its practical applications, thereby enabling others skilled in the art to understand the disclosure for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the disclosure be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2018-178556 | Sep 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7738818 | Murakami | Jun 2010 | B2 |
Number | Date | Country |
---|---|---|
2005-37673 | Feb 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20200096905 A1 | Mar 2020 | US |