The present application claims foreign priority based on Japanese Patent Application No. 2014-006196, filed Jan. 16, 2014, the contents of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a continuous type ink jet recording apparatus which adjusts the viscosity of an ink liquid using a solvent supplied from a solvent cartridge, and more specifically to an ink jet recording apparatus having a function of detecting the emptiness of the solvent cartridge.
2. Description of Related Art
An ink jet recording apparatus is used for printing characters or graphics on the surface of a workpiece (JP 2007-190724 A). The ink jet recording apparatus is generally called “ink jet printer”. The ink jet printer includes a head which is placed above a manufacturing line and a controller body which supplies ink to the head. The ink jet printer charges an ink liquid and forms the ink liquid into droplets, and deflects the ink droplets to thereby perform printing on the surface of a workpiece.
In the ink jet recording apparatus disclosed in JP 2007-190724 A, the ink liquid is continuously supplied to the head even when ink droplets are not printed on a workpiece and the supplied ink liquid is collected through a gutter as an ink receiver. That is, the ink jet recording apparatus disclosed in JP 2007-190724 A is a continuous type ink jet printer.
As a method for replenishing an ink jet recording apparatus with an ink or solvent, there are employed many methods in which a reserve tank is installed in an ink jet recording apparatus (JP 2007-190724 A). However, in the methods in which a reserve tank is installed in an ink jet recording apparatus, filling the reserve tank with ink may cause contamination of the surroundings of the reserve tank. In view of such a circumstance, an ink jet recording apparatus that employs a cartridge system using a cartridge which can be attached to and detached from the ink jet recording apparatus has come to be available (JP 2011-500353 W).
When the cartridge system is employed, there may be employed a system which maintains the internal pressure of a cartridge at atmospheric pressure when sucking out a liquid inside the cartridge by a pump, or a negative pressure system which sucks out a liquid from a cartridge in a sealed state. JP 2011-500353 W employs the latter system, that is, the system which sucks out a liquid from a cartridge in a sealed state. In the negative pressure system, the internal pressure of the cartridge becomes a negative pressure by sucking out the liquid from the cartridge.
When the cartridge system is employed, it is necessary to detect that a cartridge mounted therein has become empty in order to perform accurate cartridge replacement. In order to achieve this object, an ink jet printer disclosed in JP 2011-500353 W includes a pump which is placed inside a main body thereof, that is, a pump for sucking out a liquid inside a cartridge. A pressure sensor which is placed on a tube path between the pump and the cartridge detects whether the cartridge has become empty.
According to the description in JP 2011-500353 W, when the volume of the cartridge becomes almost zero, the pressure in the tube path rapidly decreases. It is possible to confirm that the cartridge has become empty using this phenomenon.
When employing, for example, the method disclosed in JP 2011-500353 W, that is, the method which measures the pressure in the tube path which communicates with the cartridge as means for confirming the emptiness of the cartridge, the pressure in the tube path and the remaining amount in the cartridge therefore do not necessarily correspond to each other because the method is an indirect method. A container for storing liquid, the container constituting the cartridge, is crushed by suction performed by the pump and the volume thereof is reduced (volume reduction). The degree of crushability has an individual difference between containers more or less. Further, the pressure in the tube path changes depending on the individual difference. This fact shows that although the method of JP 2011-500353 W is effective to confirm that the cartridge has become almost empty, it is virtually not possible to more accurately detect that the cartridge has actually become empty.
An object of the present invention is to provide an ink jet recording apparatus provided with a solvent cartridge, specifically, an ink jet recording apparatus capable of directly detecting the emptiness of the solvent cartridge mounted therein.
According to one embodiment of the present invention, the above technical object is achieved by providing an ink jet recording apparatus, the ink jet recording apparatus being a continuous type ink jet recording apparatus that has a reservoir detachably receiving a solvent cartridge and adjusts the viscosity of an ink liquid by replenishment with a solvent from the solvent cartridge, the ink jet recording apparatus including:
a main tank storing an ink liquid therein;
a solvent flowing tube connected to the reservoir, the solvent flowing tube allowing a solvent in the solvent cartridge attached to the reservoir to flow therethrough;
a pump for sucking the solvent in the solvent cartridge attached to the reservoir to supply the sucked solvent to the main tank through the solvent flowing tube; and
an optical emptiness detection mechanism disposed on the middle of a path of the solvent flowing tube,
wherein emptiness detection for the solvent cartridge attached to the reservoir is performed on the basis of the signal output from the light receiver.
According to a preferred embodiment of the present invention, the solvent cartridge is deformed to reduce the volume thereof in response to a decrease in the amount of solvent remaining therein. Gas is previously enclosed inside the solvent cartridge. When the amount of solvent remaining inside the solvent cartridge becomes zero, air enters the light transmissive tube. An optical path of light emitted from the light emitter changes between when the solvent is present inside the light transmissive tube and when air is present inside the light transmissive tube. This change leads to a change in the amount of light received by the light receiver. Therefore, it is possible to detect the emptiness of the solvent cartridge by the change in the amount of light received by the light receiver.
As one typical arrangement example, the light emitter and the light receiver are arranged so that light emitted from the light emitter is received by the light receiver when the solvent is present inside the light transmissive tube. As another typical arrangement example, the light emitter and the light receiver are arranged so that light emitted from the light emitter is received by the light receiver when gas is present inside the light transmissive tube.
The effects and other objects of the present invention will become apparent from the following detailed description of the preferred embodiment of the present invention.
Hereinbelow, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
Automatic Printing System and Ink Jet Printer:
The ink jet recording apparatus 2 is generally called “ink jet printer”. Therefore, the ink jet recording apparatus 2 will be described using the term “ink jet printer”. The ink jet printer 2 is a continuous type printer which continuously jets ink. The ink jet printer 2 of the embodiment is installed in a workpiece conveyance line 10 and used for printing characters or graphics on a workpiece W flowing on the workpiece conveyance line 10. The workpiece W as a printing target is, for example, an electronic component, a plastic bag, or the like. The workpiece detection sensor 4 detects the presence/absence of the workpiece W and outputs a trigger for starting printing. Upon receiving the trigger signal, printing on the workpiece W is started.
The ink jet printer 2 includes a printer body 200 which is installed near the workpiece conveyance line 10 and a head 300 which is placed above the workpiece conveyance line 10. The printer body 200 and the head 300 are connected to each other through a flexible hose 12. A quick-drying ink liquid is circulated between the printer body 200 and the head 300. The head 300 performs dot printing on workpieces W which are conveyed one after another. An arrow in
Circuit Configuration (
An ink liquid inside the main tank 202 is circulated through an ink circulation tube 208. In the ink circulation tube 208, a main path switching valve 210, a circulation pump 212, and the like are disposed in this order in an ink liquid flowing direction. The ink liquid inside the main tank 202 is circulated through the ink circulation tube 208 by the circulation pump 212. In
A viscometer 214 which takes in part of the ink liquid flowing through the ink circulation tube 208 to detect the viscosity of the ink liquid is disposed on the ink circulation tube 208. The concentration of the ink liquid inside the main tank 202 is monitored using the viscosity detected by the viscometer 214.
Replenishment of the main tank 202 with an ink liquid is performed using an ink cartridge 400. The ink cartridge 400 is connected to the main path switching valve 210 through an ink replenishment tube 220. An ink inside the ink cartridge 400 is supplied to the main tank 202 by controlling the main path switching valve 210.
Replenishment of the main tank 202 with a solvent is performed using a solvent cartridge 500. A solvent for maintaining the viscosity of the ink liquid constant, for example, methyl ethyl ketone (MEK) is stored in the solvent cartridge 500.
The printer body 200 has an optical emptiness detection mechanism 700 located near the solvent cartridge 500. The optical emptiness detection mechanism 700 will be described in detail later. In the illustrated example, the solvent cartridge 500 is connected to the main path switching valve 210 through the optical emptiness detection mechanism 700 and a solvent replenishment tube 222 which is “solvent flowing tube”. The solvent inside the solvent cartridge 500 is supplied to the main tank 202 by controlling the main path switching valve 210, and the concentration of the ink inside the main tank 202 is adjusted using the supplied solvent. Specifically, the concentration of the ink inside the main tank 202 is detected by the viscometer 214 while circulating the ink through the ink circulation tube 208, and a solvent of an amount corresponding to the detected concentration is supplied to the main tank 202 from the solvent cartridge 500 to thereby perform the adjustment of the concentration of the ink inside the main tank 202.
The main tank 202 is connected to the head 300 through an ink supply tube 230. An ink pump 232 is disposed on the ink supply tube 230. The ink inside the main tank 202 is supplied to the head 300 by the ink pump 232.
As is well known, the head 300 is provided with mechanism components 302 such as a cannon (pressurizer), a piezoelectric element, a nozzle, a charging electrode, and a deflection electrode. The mechanism components 302 deflect an impact position of charged ion particles to thereby perform printing on the workpiece W.
In the ink supply tube 230, a pressure reducing valve 234 and a pressure gauge 236 are disposed in this order in an ink flowing direction on the downstream side with respect to the ink pump 232. The discharge pressure of the ink pump 232 is adjusted based on the pressure detected by the pressure gauge 236.
The head 300 has a gutter 304 for receiving ink droplets. The gutter 304 is connected to the main tank 202 through an ink collection tube 240. A gutter pump 242 is disposed on the ink collection tube 240. The ink received in the gutter 304 is collected into the printer body 200 by the gutter pump 242.
In the illustrated example, the solvent cartridge 500 is connected to the head 300 through the optical emptiness detection mechanism 700 and a head cleaning tube 250 which is the “solvent flowing tube”. A cleaning pump 252 is disposed on the head cleaning tube 250. As a modification, the optical emptiness detection mechanism 700 may be disposed on the downstream side with respect to the cleaning pump 252.
When starting and stopping the ink jet printer 2, a solvent is supplied to the head 300 from the solvent cartridge 500. The components in the head 300 such as the nozzle, the charging electrode, and the deflection electrode are cleaned with the supplied solvent. The solvent that has been used for the cleaning is received in the gutter 304, and then collected into the printer body 200 through the ink collection tube 240.
The ink or solvent received in the gutter 304 is collected into the main tank 202 or the conditioning tank 204 by a second path switching valve 260 disposed on the ink collection tube 240. The collected solvent is stored in the conditioning tank 204. The solvent in the conditioning tank 204 is supplied to the main tank 202 in preference to the solvent inside the solvent cartridge 500 and used for controlling the concentration of ink.
JP 2007-190724 A describes, in detail, circulation of the ink liquid between the printer body 200 and the head 300, replenishment of the main tank 202 with the solvent, that is, adjustment of the viscosity of the ink liquid inside the main tank 202, circulation of the ink liquid inside the main tank 202, the configuration of the head 300, and details of a circuit of the printer body 200. Therefore, more detailed description will be omitted by incorporating the description in JP 2007-190724 A in the present specification.
Bottle of Ink Cartridge 400 and Solvent Cartridge 500 (
The bottle body 802 has four side faces 802a, a bottom face (not illustrated for drawing reasons), and a top face 802c. The projecting portion 804 is positioned on the central part of the top face 802c. The bottle body 802 further has four side corner portions 802d each having a shape chamfering a part between adjacent side faces 802a, 802a. Further, the bottom face is connected to the lower end of each of the side faces 802a and the lower end of each of the side corner portions 802d with a bottom inclined face 802e interposed therebetween. Similarly, the top face 802c is connected to the upper end of each of the side faces 802a and the upper end of each of the side corner portions 802d with an upper inclined face 802f interposed therebetween.
When a liquid (ink or solvent) which is a content of the bottle 800 is sucked out of the bottle 800, the bottle 800 is crushed to reduce the volume thereof in response to the suction. The central part of the top face 802c and the projecting portion 804 of the bottle 800 constitute a rigid portion 806 which is resistant to deformation. On the other hand, the bottle body 802 excepting the central part of the top face 802c constitutes a volume reduction portion 808 which deforms corresponding to a decrease of the liquid as the content so that the volume of the bottle body 802 decreases in response to the decrease of the content.
In the embodiment, the side faces 802a and the side corner portions 802d are thin. On the other hand, the upper inclined faces 802f, the bottom inclined faces 802e, and the bottom face 802b are relatively thick. As will be described later, when the bottle 800 is formed by blow molding, the wall thickness of the bottle 800 is gradually reduced toward the far side from an axis line passing through the center of the mouth 812 of the bottle 800. Therefore, the side corner portions 802d which are located farthest from the axis line are made thin. The bottle body 802 is designed so that the dimension in the height direction hardly varies and the volume thereof is reduced by a decrease in the dimension in the width direction by adjusting the thickness. That is, the bottle body 802 is designed so as to be made smaller in the width direction in a defined form by adjusting the thickness of the upper inclined faces 802f and the bottom inclined faces 802e. It is needless to say that the volume reduction portion 808 of the bottle body 802 may be made of an aluminum pouch or a thin flexible resin material and covered with a relatively hard outer cover which is composed of, for example, a synthetic resin molded article.
The projecting portion 804 which projects in the axial direction from a central part of the top face 802c of the bottle body 802 includes a neck 810 which expands after slightly extending upward from the bottle top face 802c and has a relatively large diameter and the mouth 812 which extends upward from the upper end of the neck 810 and has a relatively small diameter. A rubber stopper (reference numeral 814 in
Reservoir 600 (
The printer body 200 is provided with a reservoir 600 for detachably receiving the ink cartridge 400 or the solvent cartridge 500. The reservoir 600 has a recess 610 which closely receives the mouth 812 of the bottle 800 (hereinbelow, also referred to as “bottle mouth 812”). A hollow needle 612 stands on the center of the bottom of the recess 610 (
Optical Emptiness Detection Mechanism 700 (FIGS. 6 to 12(B)):
First, a method for detecting the emptiness of the ink cartridge 400 will be simply described. For example, there is a method (method 1) using the conductivity of ink by disposing an electrode on a path through which the ink flows. Specifically, when a single or a plurality of electrodes are disposed on an ink supply path, a signal obtained from the electrode(s) changes depending on the presence or absence of a conductive ink. On the basis of the change in the signal, the presence/absence of ink in the ink flow path is detected. When there is no ink in the ink flow path even when driving the pump for a predetermined time, it is possible to determine that the ink cartridge 400 has become empty. Also, for example, there is another method (method 2) in which a liquid level gauge is provided in the main tank. Specifically, when an increase in the amount of ink inside the main tank is not detected by the liquid level gauge even when driving the ink supply pump for a predetermined time (when time-out occurs), it is possible to determine that the ink cartridge 400 has become empty. As described above, there are several methods for detecting the emptiness of the ink cartridge 400.
However, it is not easy to detect the emptiness of the solvent cartridge 500 compared to the case of the ink cartridge 400. For example, the above method 1 cannot be used because the solvent does not have conductivity unlike ink in most cases. Further, the above method 2 also cannot be used. This is because that the solvent sucked out of the solvent cartridge 500 may be supplied to (stored in) the conditioning tank 204 in addition to the main tank 202, and the amount of solvent inside the main tank therefore does not always increase by driving the pump.
In addition, for example, when the amount of solvent taken out of the solvent cartridge 500 per unit time is known, it is possible to estimate, to some extent, the amount of a used solvent by measuring driving time of the pump (the amount of the used solvent=the amount of suction per unit time×the pump driving time). However, although this method is preferred for merely checking the amount of solvent remaining inside the solvent cartridge 500, it is difficult to more accurately determine whether the solvent cartridge 500 has become empty.
Therefore, the ink jet printer 2 according to the present embodiment is equipped with the optical emptiness detection mechanism 700. Accordingly, it is possible to more accurately detect the emptiness of the solvent cartridge 500. Hereinbelow, the optical emptiness detection mechanism 700 will be described in detail with reference to the drawings.
Referring to
When glass is employed as the material of the light transmissive tube 720, the refractive index of glass is 1.45. On the other hand, when a fluororesin (PFA) is employed as the material of the light transmissive tube 720, the refractive index of PFA is 1.35.
Generally, methyl ethyl ketone (MEK) or ethanol is used as the solvent in the solvent cartridge 500. The refractive index of MEK is 1.38, and the refractive index of ethanol is 1.35. On the other hand, the refractive index of air is 1.0003 which largely differs from the refractive index of MEK or ethanol.
One characteristic of the present invention is to use a difference in refractive index between the solvent and air. In the example illustrated in
As described above, a predetermined amount of air is enclosed inside the solvent cartridge 500. This fact is associated with the configuration of the solvent cartridge 500 which includes the bottle 800 which is crushed to reduce the volume thereof. If the bottle 800 is a bottle whose volume is not reduced, that is, a bottle from which a solvent is taken out with the form of the bottle maintained, air is blown into the bottle when taking out the solvent. Therefore, it is not necessary to previously enclose a predetermined amount of air inside the bottle.
When the amount of solvent remaining in the bottle 800 of the solvent cartridge 500 becomes small, the bottle 800 is crushed to reduce the volume thereof. When the amount of solvent remaining in the bottle 800 becomes zero, air inside the bottle 800 enters the light transmissive tube 720. When air enters the light transmissive tube 720, light emitted from the light emitter 722 gradually starts to be received by the light receiver 724. The threshold of the light receiver 724 may be adjusted to set how much amount of light needs to be received by the light receiver 724 to reverse output of the light receiver 724. Accordingly, it is possible to directly detect the emptiness of the solvent cartridge 500.
In the example illustrated in
The example illustrated in
Detailed description will be made with reference to
In the example illustrated in
As a modification relating to the arrangement of the light emitter 722 and the light receiver 724, the inclination angles of the light emitter 722 and the light receiver 724 and the relative arrangement between the light emitter 722 and the light receiver 724 may be defined so that light emitted from the light emitter 722 is received by the light receiver 724 when the light transmissive tube 720 is filled with the solvent S.
In the present embodiment, the light transmissive tube 720 illustrated in
Further, in the present embodiment, the light transmissive tube 720 is a member separated from the solvent flowing tube. Further, the light emitter 722, the light receiver 724, and the light transmissive tube 720 are unitized as the optical emptiness detection unit 702. Therefore, when there is failure in the light emitter 722 or the light receiver 724, it is possible to easily replace only the optical emptiness detection unit 702. Accordingly, the maintainability is improved. However, the present invention is not limited to such a configuration. It is needless to say that the light transmissive tube 720 and the solvent flowing tube may be composed of the same member.
Emptiness Detection for Solvent Cartridge 500 (
A specific control example for detecting the emptiness of the solvent cartridge 500 by the optical emptiness detection mechanism 700 will be described.
An example of the procedure of emptiness detection processing for determining whether the solvent in the solvent cartridge 500 has run out will be described with reference to flowcharts of
The main flow of
Negative Pressure Generation Operation Processing (
In step S201 of
Emptiness Detection Processing for Solvent Cartridge 500:
Referring back to
In the next step S5, it is determined whether the optical emptiness detection mechanism 700 has detected an empty state of the solvent cartridge 500. Specifically, the determination in step S5 is performed on the basis of a signal from the light receiver 724. The “light receiving signal” from the light receiver 724 may be an analog signal indicating the amount of light received by the light receiver 724, may be an analog signal on which predetermined processing (noise removal or the like) has been performed, and may be a digitized signal. When it is determined that the amount of solvent remaining in the solvent cartridge 500 is not zero in step S5 (NO in step S5), the processing proceeds to step S6 and the emptiness detection processing is finished.
On the other hand, when it is determined that the amount of solvent remaining in the solvent cartridge 500 is zero in step S5 (YES in step S5), the next confirmation processing (emptiness detection retry processing) is performed just in case (S7).
Emptiness Detection Retry Processing (
In the emptiness detection retry processing, a negative pressure generation operation is first performed (S701). That is, the solenoid on-off valve 704 (
On the other hand, when it is determined that the amount of solvent remaining in the solvent cartridge 500 is zero in step S704 (YES in step S704), the number of emptiness detection times is incremented in the next step S706. Then, it is determined whether the number of emptiness detection times has reached a specified number in step S707. When the number of emptiness detection times has reached the specified number, the processing proceeds to step S708 to determine that the solvent cartridge 500 is empty. Then, the processing proceeds to step S8 (
Referring back to
When it is determined that there is a solvent remaining in the solvent cartridge 500 in step S8 (NO in step S8), the processing proceeds to step S10 and shifts to a normal operation of the printer body 200.
Number | Date | Country | Kind |
---|---|---|---|
2014-006196 | Jan 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4884065 | Crouse et al. | Nov 1989 | A |
8534791 | Takata et al. | Sep 2013 | B2 |
Number | Date | Country |
---|---|---|
2007-190724 | Aug 2007 | JP |
2011-500353 | Jan 2011 | JP |
2009047497 | Apr 2009 | WO |
WO 2011076810 | Jun 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20150197096 A1 | Jul 2015 | US |