BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be apparent to those skilled in the art by reading the following detailed description of a preferred embodiment thereof, with reference to the attached drawings, in which:
FIG. 1 is a perspective view of a reagent chip analyzer in accordance with the present invention;
FIG. 2 is a perspective exploded view showing the structure of the reagent chip analyzer in accordance with the present invention;
FIG. 3 is another perspective exploded view showing the structure of the reagent chip analyzer in accordance with the present invention;
FIG. 4 is a planar top view showing that two guiding components move away from each other as reagent chips are inserted;
FIG. 5 is a planar top view showing that two guiding components move close to each other as reagent chips are ejected; and
FIG. 6 is a cross-sectional side view showing the structure of the reagent chip analyzer in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
As shown in FIGS. 1, 2, 3, and 6, a cartridge-type reagent chips analyzer in accordance with the present invention comprises a base 1, a positioning plate 6, a cover plate 5, at least two bars 11, two grooves 12, a gear 4, two gear racks 2, 2A, springs 7, guiding components 3, 3A, and positioning blocks 31, 31A. The positioning plate 6 is mounted on the base 1, and the cover plate 5 is installed on the positioning plate 6. Referring to FIG. 4, a slot for the insertion of a reagent chip 8 is defined between the cover plate 5 and the front of the base 1. The parallel bars 11 are installed on the base 1. The grooves 12 are formed by the bars 11 and are parallel to the front edge of the base 1. The gear 4 is installed on the base 1 and between the grooves 12. The gear racks 2, 2A are installed in the grooves 12 respectively, and mesh with the gear 4 symmetrically. The springs 7 are installed between the gear racks 2, 2A and the lateral sides of the base 1, respectively. The guiding components 3, 3A are symmetrically installed on gear racks 2, 2A, respectively. The guiding components 3, 3A adopt a splayed structure according to the preferred embodiment of the present invention. The inner ends of the guiding components 3, 3A are parallel to each other, and the outer ends close to the entrance of the slot spread apart. The guiding components 3, 3A are the devices for guiding reagent chips to be inserted into the base 1. Therefore, the splayed ends of the guiding components 3, 3A help guide the reagent chips to be inserted into the base 1. The positioning blocks 31, 31A are installed between the guiding components 3, 3A and gear racks 2, and 2A.
The positioning plate 6 with two rectangular positioning holes 61 is mounted on the base 1, when the gear 4 and the gear racks 2, 2A have been installed and the guiding components 3, 3A have not been installed. The positioning blocks 31, 31A are attached to the guiding components 3, 3A, placed in the positioning holes 61, and installed on the gear rack 2, 2A, respectively. The cover plate 5 is mounted on the positioning plate 6. A space for the insertion of the reagent chips 8 is defined between the cover plate 5 and the base 1. The guiding components 3, 3A are used to guide the insertion of the reagent chips 8. The cover plate 5 provides a window 51. The analyzer provides an image receiver, such as a CCD camera (not shown in the Figures), to take the images of reagent chips 8 through the window after the reagent chips 8 are inserted.
As shown in FIG. 4, when the reagent chip 8 is inserted into the analyzer, it pushes two guiding components 3, 3A apart from each other. The guiding components 3, 3A guide the reagent chip to enter the analyzer. When the reagent chip 8 is ejected out of the analyzer, the springs 7 pull the gear racks 2, 2A and then bring the guiding components 3, 3A close to each other. Thus, the guiding components 3, 3A return to their original positions. The positioning blocked 31, 31A are attached to the guiding components 3, 3A, placed in the positioning holes 61, and installed on the gear rack 2, 2A, respectively. The moving ranges of the positioning blocks 31, 31A are restricted by the positioning holes 61. Therefore, the moving ranges of the guiding components 3, 3A are also defined by the positioning holes 61.
Although the present invention has been described with reference to the preferred embodiment thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.