1. Field of the Invention
The present invention generally relates to doors and, more particularly, to doors having a façade formed from a solid piece of material and methods of manufacturing thereof.
2. Description of the Related Art
Doors, and particularly large doors such as overhead garage doors, come in numerous styles, shapes, and sizes. In a residential setting, many people prefer garage doors that are embellished or stylized to enhance the outer appearance of their homes. Such garage doors may be manufactured using a stamped metal or vinyl exterior or a more traditional multiple-piece construction (such as rail and stile construction).
However, these manufacturing methods each have their own drawbacks. For example, garage doors having a stamped metal exterior have design limitations due to the nature of the materials and tools required to form the desired patterns on the face of the door. In addition, each design requires varying tools to stamp the designs into the door. As such, this method is very expensive to use for larger numbers of designs.
Multiple-piece construction techniques are usually very time-consuming, due to the number of different parts that must be fabricated, aligned, and assembled to form the door. Moreover, the likelihood of quality control issues arising, such as out of tolerance, overall appearance of the door, or door-to-door variations increases with the number of components to be fabricated and pieced together.
Therefore, a need exists for a door suitable for ease of fabrication and flexibility of design options.
Embodiments of the present invention provides a door and method of manufacture therefor. In one embodiment, the door includes a substantially solid flat face with a desired design carved into the flat face to emulate the look of a door manufactured using other traditional techniques, such as stamping or multiple-piece construction. Optionally, the door may have a backing affixed to the front face for support. The door may be manufactured using computer-aided machinery to carve the design. The flat face of the door may optionally further comprise multiple sections.
In one embodiment, a carved solid face door includes a solid base having a substantially flat face and an opposing rear surface, wherein the face has a design carved into at least one section of the face that emulates the appearance of a multiple-piece construction including at least one of a frame, a rail, a stile, a molding, a trim, a plurality of planks, or a panel.
In another embodiment, a method of making a door is provided. The method includes making a carving into a front portion of the flat face to form a generally decorative pattern in the door. In one embodiment, the design is carved into the flat face using a computer-controlled machine, such as a computer numerical control (CNC) milling machine, or the like.
In one embodiment, a method for fabricating a door includes providing a solid base having a substantially flat face and an opposing rear surface; and carving a design into the face to emulate the appearance of a multiple-piece construction including at least one of a frame, a rail, a stile, a molding, a trim, a plurality of planks, or a panel.
So the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof, some of which are illustrated in the appended drawings. It is to be noted, however, the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
FIGS. 4A-B depict a partial sectional side view of embodiments of the window of
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
Embodiments of the present invention provide a door suitable for ease of construction in a variety of styles/designs and a method of manufacturing the door. The door may be any door, including front entranceways, overhead garage doors, side-mounted garage doors, and the like. The door has a solid flat face with a desired design carved into the flat face. The design may emulate the look of a door manufactured using other traditional techniques, such as stamping or multiple-piece construction (e.g., rail and stiles, raised panels, and the like). Optionally, the door may have a backing affixed to the front face for support. The door may be efficiently manufactured using computer-aided machinery to carve the design.
The flat face 102 of the door 100 may optionally further comprise multiple sections. In the embodiment depicted in
The design 110 is carved into a front portion of the flat face 102 to form a generally decorative pattern in the door 100. The design 110 may be carved into the flat face 102 in a variety of ways. In one embodiment, the design 110 is carved into the flat face 102 using a computer-controlled machine, such as a computer numerical control (CNC) milling machine, or the like. Using a computer-aided machine, the design 110 may be formed into the flat face 102 of the door 100 with tight tolerances, repeatability, speed, and excellent process control. Moreover, the design 110 may be expediently and inexpensively changed or altered to varying designs simply by loading a new design into the computer-aided machine. This facilitates greater speed and flexibility of manufacturing as compared to expensive and time consuming traditional methods of manufacturing doors.
By carving the design 110 into the flat face 102 of the door 100, embodiments of the present invention facilitate emulation of the look of a traditional multi-piece construction (such as at least one of a frame, a rail, a stile, a molding, a trim, a plurality of planks, or a panel) with greater design flexibility, process repeatability, and speed of construction. In addition, carving the design 110 into the flat face 102 of the door facilitates greater design flexibility as compared to traditional stamped steel and vinyl construction techniques. Specifically, the carved design 110 may have designs that flow between adjacent sections (e.g., sections 104A-C) of the door 100. In stamped steel doors, the sections typically have uniform raised edges due to the rolled edge at the border of adjacent sections. Moreover, in accordance with embodiments of the present invention, changing from one design to the next in a production environment may be accomplished by merely loading, or selecting a preloaded, new design program in the computer-controlled machine, thereby facilitating simple, quick, and practically seamless changeovers to new products.
In one embodiment, the door 100 may further optionally comprise a backing to stiffen, strengthen, or otherwise structurally support the flat face 102.
The backing 210 may comprise one or more elements arranged to support the flat face 102 as described above. In one embodiment, the backing 210 comprises an outer frame 214 and an optional inner core 216 that are covered with a skin 212. The frame 214 may comprise wood, plastic, metal, or any other suitable material or combination of materials. The inner core 216 may comprise foam or other suitable material and may provide a high insulative rating, or R-value. The skins 212 may comprise any thin, structurally sound material, such as plywood, wood, plastic, MDF, hardboard, and the like. It is contemplated that the flat face 102 may comprise structural elements such as metal rods and or bars in place of or in addition to the backing 210. In an alternative embodiment, the outer frame 214 may be directly affixed to the flat face 102. In this arrangement, relatively larger openings and/or glass sections, and the like, can be formed in the door 100.
The use of a computer-aided machine greatly reduces the time and effort required to align any openings formed in the backing and in the flat face 102. As can be seen in the window 300 of
The window 300 may be left open, or a piece of material such as glass, plastic, or the like (typically glass) may be provided to cover the openings 306 of the window 300. To facilitate manufacture, the glass for the window 300 may be cut into a convenient polygonal shape, such as a square or rectangle, and may be secured to the backside of the flat face. In embodiments where a backing is used, the backing may have a corresponding opening that facilitates the placement of the glass in the window 300, as indicated by the dashed lines 310 in
In one embodiment, as depicted in
In another embodiment, depicted in
Thus, in one embodiment of the present invention a door has been provided that facilitates flexibility and ease of construction in a variety styles/designs and a method of manufacturing the door. The door has a desired design carved into a solid flat face that may be efficiently manufactured using computer-aided machinery to fabricate the design. The use of computer-aided machinery facilitates raised levels of production as compared to traditional techniques while maintaining or improving quality, accuracy, and repeatability, as well as reducing changeover times and costs to implement new designs.
While the foregoing is directed to the illustrative embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the following claims.
This application claims benefit of U.S. Provisional Patent Application Ser. No. 60/723,764, filed Oct. 5, 2005, which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60723764 | Oct 2005 | US |