Carvedilol hydobromide

Information

  • Patent Application
  • 20050261355
  • Publication Number
    20050261355
  • Date Filed
    June 27, 2003
    21 years ago
  • Date Published
    November 24, 2005
    19 years ago
Abstract
The present invention relates to a salt of carvedilol, corresponding compositions containing such a carvedilol salt or corresponding solvates thereof, and/or methods of using the aforementioned compound(s) in the treatment of certain disease states in mammals, in particular man. The present invention further relates to a novel crystalline form of carvedilol hydrobromide, which is the hydrobromide salt of 1-(carbazol-4-yloxy)-3-[[2-(omethoxyphenoxyl)ethyl]amino]-2-propanol, and/or other carvedilol solvates thereof, compositions containing salts or solvates of carvedilol hydrobromide, and methods of using the aforementioned compound(s) to treat hypertension, congestive heart failure, and angina, etc.
Description
FIELD OF THE INVENTION

The present invention relates to a salt of carvedilol, corresponding compositions containing such a carvedilol salt or corresponding solvates thereof, and/or methods of using the aforementioned compound(s) in the treatment of certain disease states in mammals, in particular man.


The present invention further relates to a novel crystalline form of carvedilol hydrobromide, which is the hydrobromide salt of 1-(carbazol-4-yloxy-3-[[2-(o-methoxyphenoxy)ethyl]amino]-2-propanol, and/or other carvedilol hydrobromide solvates thereof, compositions containing such salts and/or solvates of carvedilol hydrobromide, and methods of using the aforementioned salt(s) and/or solvate(s) to treat hypertension, congestive heart failure, and angina, etc.


BACKGROUND OF THE INVENTION

The compound, 1-(carbazol-4-yloxy-3-[[2-(o-methoxyphenoxy)ethyl]-amino]-2-propanol is known as Carvedilol. Carvedilol is depicted by the following chemical structure:
embedded image


Carvedilol is disclosed in U.S. Pat. No. 4,503,067 to Wiedemann et al. (i.e., assigned to Boehringer Mannheim, GmbH, Mannheim-Waldhof, Fed. Rep. of Germany), which was issued on Mar. 5, 1985.


Currently, Carvedilol is synthesized as free base for incorporation in medication that is available commercially. The aforementioned free base form of Carvedilol is a racemic mixture of R(+) and S(−) enantiomers, where nonselective β-adrenoreceptor blocking activity is exhibited by the S(−) enantiomer and α-adrenergic blocking activity is exhibited by both R(+) and S(−) enantiomers. Those unique features or characteristics associated with such a racemic Carvedilol mixture contributes to two complementary pharmacologic actions: i.e., mixed venous and arterial vasodilation and non-cardioselective, beta-adrenergic blockade.


Carvedilol is used-for treatment of hypertension, congestive heart failure and angina. The currently commercially available carvedilol product is a conventional, tablet prescribed as a twice-a-day medication in the United States.


Carvedilol contains an α-hydroxyl secondary amine functional group, which has a pKa of 7.8. Carvedilol exhibits predictable solubility behaviour in neutral or alkaline media, i.e. above a pH of 9.0, the solubility of carvedilol is relatively low (<1 μg/mL). The solubility of carvedilol increases with decreasing pH and reaches a plateau near pH=5, i.e. where saturation solubility is about 23 μg/mL at pH 7 and about 100 μg/mL at pH=5 at room temperature. At lower pH values (i.e., at a pH of 1 to 4 in various buffer systems), solubility of carvedilol is limited by the solubility of its protonated form or its corresponding salt formed in-situ. The hydrochloride salt of carvedilol generated in-situ in an acidic medium, such as in a simulated gastric fluid, is less soluble in such medium than the protonated form of carvedilol.


In light of the foregoing, a salt, and/or novel crystalline form of carvedilol (i.e., such as carvedilol hydrobromide monohydrate, carvedilol hydrobromide anhydrate, and/or other solvates thereof) with greater aqueous solubility, chemical stability, etc. would offer many potential benefits for provision of medicinal products containing the drug carvedilol. Such benefits would include products with the ability to achieve desired or prolonged drug levels in a systemic system by sustaining absorption along the gastro-intestinal tract of mammals (i.e., such as humans), particularly in regions of neutral pH, where a drug, such as carvedilol, has minimal solubility.


Surprisingly, it has now been shown that a novel crystalline form of carvedilol hydrobromide salt, can be isolated as a pure, crystalline solid, which exhibits much higher aqueous solubility than the corresponding free base or other prepared crystalline salts of carvedilol, such as the hydrochloride salt. This novel crystalline form also has potential to improve the stability of carvedilol in formulations due to the fact that the secondary amine functional group attached to the carvedilol core structure, a moiety pivotal to degradation processes, is protonated as a salt.


In light of the above, a need exists to develop different carvedilol forms and/or different compositions respectively, which have greater aqueous solubility, chemical stability, sustained or prolonged drug or absorption levels (i.e., such as in neutral gastrointestinal tract pH regions, etc.).


There also exists a need to develop methods of treatment for hypertension, congestive heart failure or angina, etc. which comprises administration of the aforementioned compounds and/or compositions.


The present invention is directed to overcoming these and other problems encountered in the art.


SUMMARY OF THE INVENTION

In general, the present invention relates to a salt of carvedilol, corresponding compositions containing such a carvedilol salt or corresponding solvates thereof, and/or methods of using the aforementioned compound(s) in the treatment of certain disease states in mammals, in particular man.


More specifically, the present invention provides a salt, and/or novel crystalline form of carvedilol hydrobromide (i.e., such as carvedilol hydrobromide monohydrate, carvedilol hydrobromide anhydrate), and/or other solvates thereof.


The present invention further relates to pharmaceutical compositions, which contain the aforementioned salt and/or novel crystalline forms and/or solvates of carvedilol hydrobromide.


The present invention relates to a method of treating hypertension, congestive heart failure or angina, which comprises administering to a subject in need thereof an effective amount of a salt and/or novel crystalline form of carvedilol (i.e., as defined by the aforementioned salts and/or solvates) or a corresponding pharmaceutical composition, which contains such aforementioned salt, and/or novel crystalline forms of carvedilol., etc.




BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is an x-ray powder diffractogram for carvedilol hydrobromide monohydrate.



FIG. 2 is a differential scanning calorimetry thermogram for carvedilol hydrobromide monohydrate.



FIG. 3 is an FT-Raman spectrum for carvedilol hydrobromide monohydrate.



FIG. 4 is an FT-Raman spectrum for carvedilol hydrobromide monohydrate in the 4000-2000 cm−1 region of the spectrum.



FIG. 5 is an FT-Raman spectrum for carvedilol hydrobromide monohydrate in the 2000-400 cm−1 region of the spectrum.



FIG. 6 is an FT-IR spectrum for carvedilol hydrobromide monohydrate.



FIG. 7 is an FT-IR spectrum for carvedilol hydrobromide monohydrate in the 4000-2000 cm−1 region of the spectrum.



FIG. 8 is an FT-IR spectrum for carvedilol hydrobromide monohydrate in the 2000-500 cm−1 region of the spectrum.



FIG. 9 is a view of a single molecule of carvedilol hydrobromide monohydrate. The hydroxyl group and the water molecule are disordered.



FIG. 10 are views of molecules of carvedilol hydrobromide monohydrate showing the N—H . . . Br . . . H—N interactions. The top view focuses on Br1 and the bottom view focuses on Br2. The interaction between the carvedilol cation and the bromine anion is unusual. Each carvedilol molecule makes two chemically different contacts to the bromine anions. Each bromine anion sits on a crystallographic special position (that is, on a crystallographic two-fold axis) which means that there are two half bromine anions interacting with each carvedilol cation.



FIG. 11 is a differential scanning calorimetry thermogram for carvedilol hydrobromide dioxane solvate.



FIG. 12 is an FT-Raman spectrum for carvedilol hydrobromide dioxane solvate.



FIG. 13 is an FT-Raman spectrum for carvedilol hydrobromide dioxane solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 14 is an FT-Raman spectrum for carvedilol hydrobromide dioxane solvate in the 2000-400 cm−1 region of the spectrum.



FIG. 15 is an FT-IR spectrum for carvedilol hydrobromide dioxane solvate.



FIG. 16 is an FT-IR spectrum for carvedilol hydrobromide dioxane solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 17 is an FT-IR spectrum for carvedilol hydrobromide dioxane solvate in the 2000-500 cm−1 region of the spectrum.



FIG. 18 is a differential scanning calorimetry thermogram for carvedilol hydrobromide 1-pentanol solvate.



FIG. 19 is an FT-Raman spectrum for carvedilol hydrobromide 1-pentanol solvate.



FIG. 20 is an FT-Raman spectrum for carvedilol hydrobromide 1-pentanol solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 21 is an FT-Raman spectrum for carvedilol hydrobromide 1-pentanol solvate in the 2000-400 cm−1 region of the spectrum.



FIG. 22 is an FT-IR spectrum for carvedilol hydrobromide 1-pentanol solvate.



FIG. 23 is an FT-IR spectrum for carvedilol hydrobromide 1-pentanol solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 24 is an FT-IR spectrum for carvedilol hydrobromide 1-pentanol solvate in the 2000-500 cm−1 region of the spectrum.



FIG. 25 is a differential scanning calorimetry thermogram for carvedilol hydrobromide 2-methyl-1-propanol solvate.



FIG. 26 is an FT-Raman spectrum for carvedilol hydrobromide 2-methyl-1-propanol solvate.



FIG. 27 is an FT-Raman spectrum for carvedilol hydrobromide 2-methyl-1-propanol solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 28 is an FT-Raman spectrum for carvedilol hydrobromide 2-methyl-1-propanol solvate in the 2000-400 cm−1 region of the spectrum.



FIG. 29 is an FT-IR spectrum for carvedilol hydrobromide 2-methyl-1-propanol solvate.



FIG. 30 is an FT-IR spectrum for carvedilol hydrobromide 2-methyl-1-propanol solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 31 is an FT-IR spectrum for carvedilol hydrobromide 2-methyl-1-propanol solvate in the 2000-500 cm−1 region of the spectrum.



FIG. 32 is a differential scanning calorimetry thermogram for carvedilol hydrobromide trifluoroethanol solvate.



FIG. 33 is an FT-Raman spectrum for carvedilol hydrobromide trifluoroethanol solvate.



FIG. 34 is an FT-Raman spectrum for carvedilol hydrobromide trifluoroethanol solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 35 is an FT-Raman spectrum for carvedilol hydrobromide trifluoroethanol solvate in the 2000-400 cm−1 region of the spectrum.



FIG. 36 is an FT-IR spectrum for carvedilol hydrobromide trifluoroethanol solvate.



FIG. 37 is an FT-IR spectrum for carvedilol hydrobromide trifluoroethanol solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 38 is an FT-IR spectrum for carvedilol hydrobromide trifluoroethanol solvate in the 2000-500 cm−1 region of the spectrum.



FIG. 39 is a differential scanning calorimetry thermogram for carvedilol hydrobromide 2-propanol solvate.



FIG. 40 is an FT-Raman spectrum for carvedilol hydrobromide 2-propanol solvate.



FIG. 41 is an FT-Raman spectrum for carvedilol hydrobromide 2-propanol solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 42 is an FT-Raman spectrum for carvedilol hydrobromide 2-propanol solvate in the 2000-400 cm−1 region of the spectrum.



FIG. 43 is an FT-IR spectrum for carvedilol hydrobromide 2-propanol solvate.



FIG. 44 is an FT-IR spectrum for carvedilol hydrobromide 2-propanol solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 45 is an FT-IR spectrum for carvedilol hydrobromide 2-propanol solvate in the 2000-500 cm−1 region of the spectrum.



FIG. 46 is an x-ray powder diffractogram for carvedilol hydrobromide n-propanol solvate #1.



FIG. 47 shows the thermal analysis results for carvedilol hydrobromide n-propanol solvate #1.



FIG. 48 is an FT-Raman spectrum for carvedilol hydrobromide n-propanol solvate #1.



FIG. 49 is an FT-Raman spectrum for carvedilol hydrobromide n-propanol solvate #1 in the 4000-2000 cm−1 region of the spectrum.



FIG. 50 is an FT-Raman spectrum for carvedilol hydrobromide n-propanol solvate #1 in the 2000-400 cm−1 region of the spectrum.



FIG. 51 is an FT-IR spectrum for carvedilol hydrobromide n-propanol solvate #1.



FIG. 52 is an FT-IR spectrum for carvedilol hydrobromide n-propanol solvate #1 in the 4000-2000 cm−1 region of the spectrum.



FIG. 53 is an FT-IR spectrum for carvedilol hydrobromide n-propanol solvate #1 in the 2000-500 cm−1 region of the spectrum.



FIG. 54 is an x-ray powder diffractogram for carvedilol hydrobromide n-propanol solvate #2.



FIG. 55 shows the thermal analysis results for carvedilol hydrobromide n-propanol solvate #2.



FIG. 56 is an FT-Raman spectrum for carvedilol hydrobromide n-propanol solvate #2.



FIG. 57 is an FT-Raman spectrum for carvedilol hydrobromide n-propanol solvate #2 in the 4000-2000 cm−1 region of the spectrum.



FIG. 58 is an FT-Raman spectrum for carvedilol hydrobromide n-propanol solvate #2 in the 2000-400 cm−1 region of the spectrum.



FIG. 59 is an FT-IR spectrum for carvedilol hydrobromide n-propanol solvate #2.



FIG. 60 is an FT-IR spectrum for carvedilol hydrobromide n-propanol solvate #2 in the 4000-2000 cm−1 region of the spectrum.



FIG. 61 is an FT-IR spectrum for carvedilol hydrobromide n-propanol solvate #2 in the 2000-500 cm−1 region of the spectrum.



FIG. 62 is an x-ray powder diffractogram for carvedilol hydrobromide anhydrous.



FIG. 63 shows the thermal analysis results for carvedilol hydrobromide anhydrous.



FIG. 64 is an FT-Raman spectrum for carvedilol hydrobromide anhydrous.



FIG. 65 is an FT-Raman spectrum for carvedilol hydrobromide anhydrous in the 4000-2000 cm−1 region of the spectrum.



FIG. 66 is an FT-Raman spectrum for carvedilol hydrobromide anhydrous in the 2000-400 cm−1 region of the spectrum.



FIG. 67 is an FT-IR spectrum for carvedilol hydrobromide anhydrous.



FIG. 68 is an FT-IR spectrum for carvedilol hydrobromide anhydrous in the 4000-2000 cm−1 region of the spectrum.



FIG. 69 is an FT-IR spectrum for carvedilol hydrobromide anhydrous in the 2000-500 cm−1 region of the spectrum.



FIG. 70 is an x-ray powder diffractogram for carvedilol hydrobromide ethanol solvate.



FIG. 71 shows the thermal analysis results for carvedilol hydrobromide ethanol solvate.



FIG. 72 is an FT-Raman spectrum for carvedilol hydrobromide ethanol solvate.



FIG. 73 is an FT-Raman spectrum for carvedilol hydrobromide ethanol solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 74 is an FT-Raman spectrum for carvedilol hydrobromide ethanol solvate in the 2000-400 cm−1 region of the spectrum.



FIG. 75 is an FT-IR spectrum for carvedilol hydrobromide ethanol solvate.



FIG. 76 is an FT-IR spectrum for carvedilol hydrobromide ethanol solvate in the 4000-2000 cm−1 region of the spectrum.



FIG. 77 is an FT-IR spectrum for carvedilol hydrobromide ethanol solvate in the 2000-500 cm−1 region of the spectrum.



FIG. 78 is an x-ray powder diffractogram for carvedilol hydrobromide dioxane solvate.



FIG. 79 is an x-ray powder diffractogram for carvedilol hydrobromide 1-pentanol solvate.



FIG. 80 is an x-ray powder diffractogram for carvedilol hydrobromide 2-methyl-1-propanol solvate.



FIG. 81 is an x-ray powder diffractogram for carvedilol hydrobromide trifluoroethanol solvate.



FIG. 82 is an x-ray powder diffractogram for carvedilol hydrobromide 2-propanol solvate.




DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a salt and/or novel crystalline form of carvedilol, i.e., such as carvedilol hydrobromide monohydrate, carvedilol hydrobromide anhydrate, and/or other solvates thereof.


The present invention relates to a pharmaceutical composition, which comprises the aforementioned salts and/or solvates of carvedilol and a pharmaceutically acceptable carrier.


The present invention relates to a method of treating hypertension, congestive heart failure or angina, which comprises administering to a subject in need thereof an effective amount of a salt and/or novel crystalline form of carvedilol (i.e., as defined by the aforementioned salts and/or solvates) or a corresponding pharmaceutical composition, which contains such aforementioned salt, and/or novel crystalline forms of carvedilol.


Carvedilol is disclosed and claimed in U.S. Pat. No. 4,503,067 to Wiedemann et al. (“U.S. '067 Patent”). Reference should be made to U.S. '067 Patent for its full disclosure, which include methods of preparing and/or using the carvedilol compound, etc. The entire disclosure of the U.S. '067 Patent is incorporated hereby by reference in its entirety.


The present invention relates to a compound, which is a salt of carvedilol hydrobromide (such as crystalline carvedilol hydrobromide mono hydrate), and/or a carvedilol solvate thereof.


In accordance with the present invention, it has been found unexpectedly that carvedilol hydrobromide can be isolated readily as a novel crystalline form, which displays much higher solubility when compared to the free base of carvedilol.


In particular, crystalline carvedilol hydrobromide monohydrate of the present invention can be prepared by crystallization from an acetone-water solvent system containing carvedilol and hydrobromic acid.


In accordance with the present invention suitable solvates of the instant invention may be prepared by preparing a slurry of the carvedilol hydrobromide salt in a solvent, such as dioxane, 1-pentanol, 2-methyl-1-propanol, trifluoroethanol, 2-propanol and n-propanol.


Suitable solvates of carvedilol as defined in the present invention, include, but are not limited to carvedilol hydrobromide 1-pentanol solvate, carvedilol hydrobromide 2-methyl-1-pentanol solvate, carvedilol hydrobromide trifluoroethanol solvate, carvedilol hydrobromide 2-propanol solvate, carvedilol hydrobromide n-propanol solvate #1, carvedilol hydrobromide n-propanol solvate #2, carvedilol hydrobromide ethanol solvate, carvedilol hydrobromide anhydrate, etc.


In the present invention, carvedilol hydrobromide anhydrate can be prepared by dissolving carvedilol in a solvent, such as dichloromethane, acetonitrile or isopropyl acetate, followed by the addition of anhydrous HBr (HBr in acetic acid or gaseous HBr).


It is recognized that the compounds of the present invention may exist in forms as stereoisomers, regioisomers, or diastereiomers, etc. These compounds may contain one or more asymmetric carbon atoms and may exist in racemic and optically active forms. For example, carvedilol may exist as as racemic mixture of R(+) and S(−) enantiomers, or in separate respectively optically forms, i.e., existing separately as either the R(+) enantiomer form or in the S(+) enantiomer form. All of these individual compounds, isomers, and mixtures thereof are included within the scope of the present invention.


According to the instant invention, the various forms of carvedilol hydrobromide and/or corresponding solvates are distinguished from each other using different spectroscopic identification techniques, such as Infrared (IR), Raman, Differential Scanning Calorimetry (DSC) and X-ray powder diffraction, etc.


Specifically, a salt or novel crystalline form of carvedilol, which includes carvedilol hydrobromide monohydrate, anhydrate, and/or other solvates thereof, are characterized by spectroscopic data as described below and depicted in FIGS. 1-82.


For example, crystalline carvedilol hydrobromide monohydrate (see, Example 1: Form 1) is identified by an x-ray diffraction pattern as shown substantially in FIG. 1, which depicts characteristic peaks in degrees two-theta (2θ): i.e., 6.5±0.2 (2θ), 10.3±0.2 (2θ), 15.7±0.2 (2θ), 16.3±0.2 (2θ), 19.8±0.2 (2θ), 20.1±0.2 (2θ), 21.9±0.2 (2θ), 25.2±0.2 (2θ), and 30.6±0.2 (2θ).


Crystalline carvedilol hydrobromide dioxane solvate (see, Example 2: Form 2) also is identified by an x-ray diffraction pattern as shown substantially in FIG. 78, which depicts characteristic peaks in degrees two-theta (2θ): i.e., 7.7±0.2 (2θ), 8.4±0.2 (2θ), 15.6±0.2 (2θ), 17.0±0.2 (2θ), 18.7±0.2 (2θ), 19.5±0.2 (2θ), 21.4±0.2 (2θ), 23.7±0.2 (2θ), and 27.9±0.2 (2θ).


Crystalline carvedilol hydrobromide 1-pentanol solvate (see, Example 3: Form 3) also is identified by an x-ray diffraction pattern as shown substantially in FIG. 79, which depicts characteristic peaks in degrees two-theta (2θ): i.e., 77.5±0.2 (2θ), 7.8±0.2 (2θ), 15.2±0.2 (2θ), 18.9±0.2 (2θ), 22.1±0.2 (2θ), and 31.4±0.2 (2θ).


Crystalline carvedilol hydrobromide 2-methyl-1-propanol solvate (see, Example 4: Form 4) also is identified by an x-ray diffraction pattern as shown substantially in FIG. 80, which depicts characteristic peaks in degrees two-theta (2θ): i.e., 7.8±0.2 (2θ), 8.1±0.2 (2θ), 16.3±0.2 (2θ), 18.8±0.2 (2θ), 21.8±0.2 (2θ), and 28.5±0.2 (2θ).


Crystalline carvedilol hydrobromide trifluoroethanol solvate (see, Example 5: Form 5) also is identified by an x-ray diffraction pattern as shown substantially in FIG. 81, which depicts characteristic peaks in degrees two-theta (2θ): i.e.,. 7.7±0.2 (2θ), 8.4±0.2 (2θ), 15.6±0.2 (2θ), 16.9±0.2 (2θ), 18.9±0.2 (2θ), 21.8±0.2 (2θ), 23.8±0.2 (2θ), 23.7±0.2 (2θ), and 32.7±0.2 (2θ).


Crystalline carvedilol hydrobromide 2-propanol solvate (see, Example 6: Form 6) also is identified by an x-ray diffraction pattern as shown substantially in FIG. 82, which depicts characteristic peaks in degrees two-theta (2θ): i.e., 7.9±0.2 (2θ), 8.3±0.2 (2θ), 18.8±0.2 (2θ), 21.7±0.2 (2θ), 23.2±0.2 (2θ), 23.6±0.2 (2θ), and 32.1±0.2 (2θ).


Crystalline carvedilol hydrobromide n-propanol solvate #1 (see, Example 7: Form 7) also is identified by an x-ray diffraction pattern as shown substantially in FIG. 46, which depicts characteristic peaks in degrees two-theta (2θ): i.e., 7.9±0.2 (2θ), 8.5±0.2 (2θ), 17.0±0.2 (2θ), 18.8±0.2 (2θ), 21.6±0.2 (2θ), 23.1±0.2 (2θ), 23.6±0.2 (2θ), and 21.2±0.2 (2θ).


Crystalline carvedilol hydrobromide n-propanol solvate #2 (see, Example 8: Form 8) also is identified by an x-ray diffraction pattern as shown substantially in FIG. 54, which depicts characteristic peaks in degrees two-theta (2θ): i.e., 8.0±0.2 (2θ), 18.8±0.2 (2θ), 21.6±0.2 (2θ), 23.1±0.2 (2θ), 25.9±0.2 (2θ), 27.2±0.2 (2θ), 30.6±0.2 (2θ), and 32.2±0.2 (2θ).


Crystalline carvedilol hydrobromide anhydrous (see, Example 9: Form 9) also is identified by an x-ray diffraction pattern as shown substantially in Figure 62, which depicts characteristic peaks in degrees two-theta (2e): i.e.,. 6.6±0.2 (2θ), 16.1±0.2 (2θ), 17.3±0.2 (2θ), 21.2±0.2 (2θ), 22.1±0.2 (2θ), 24.1±0.2 (2θ), and 27.9±0.2 (2θ).


Crystalline carvedilol hydrobromide ethanol solvate (see, Example 10: Form 10) also is identified by an x-ray diffraction pattern as shown substantially in FIG. 70, which depicts characteristic peaks in degrees two-theta (2θ): i.e., 8.1±0.2 (2θ), 8.6±0.2 (2θ), 13.2±0.2 (2θ), 17.4±0.2 (2θ), 18.6±0.2 (2θ), 21.8±0.2 (2θ), 23.2±0.2 (2θ), 23.7±0.2 (2θ), and 27.4±0.2 (2θ).


Crystalline carvedilol hydrobromide monohydrate further is identified by an infrared spectrum as shown substantially in FIG. 6.


Carvedilol hydrobromide anhydrate also an infrared spectrum which comprises characteristic absorption bands expressed in wave numbers as shown substantially in FIG. 67.


Crystalline carvedilol hydrobromide monohydrate is identified also by a Raman spectrum as shown substantially in FIG. 3.


Carvedilol hydrobromide anhydrate also a Raman spectrum which comprises characteristic peaks as shown substantially in FIG. 64.


Further, the present invention relates to pharmaceutical compositions, which contain the aforementioned salt and/or novel crystalline forms and/or solvates of carvedilol hydrobromide.


Importantly, the chemical and/or physical properties of carvedilol forms described herein, which include salt and/or novel crystalline forms of carvedilol, indicate that those forms may be particularly suitable for inclusion in medicinal agents, pharmaceutical compositions, etc.


For example, solubility of various carvedilol salts, anhydrates, and/or solvates as those described herein may facilitate provision or development of a dosage form from which the drug substance becomes available for bioabsorption throughout the gastrointestinal tract (i.e., in particular the lower small intestine and colon). In light of the foregoing, it may be possible to develop stable controlled release dosage forms containing such carvedilol hydrobromide monohydrate, anhydrates and/or solvates, etc., for once-per-day dosage, delayed release or pulsatile release to optimize therapy by matching pharmacokinetic performance with pharmacodynamic requirements.


Compounds or compositions within the scope of this invention include all compounds or compositions, wherein the compound of the present invention is contained in an amount effective to achieve its intended purpose. While individual needs vary, determination of optimal ranges of effective amounts of each component is within the skill of the art.


Moreover, the quantity of the compound or composition of the present invention administered will vary depending on the patient and the mode of administration and can be any effective amount.


Treatment regimen for the administration of the compounds and/or compositions of the present invention can also be determined readily by those with ordinary skill in art. The quantity of the compound and/or composition of the present invention administered may vary over a wide range to provide in a unit dosage an effective amount based upon the body weight of the patient per day to achieve the desired effect.


In particular, a composition of the present invention is presented as a unit dose and taken preferably from 1 to 2 times daily, most preferably once daily to achieve the desired effect.


Depending upon the treatment being effected, the compounds, and/or or compositions of the present invention can be administered orally, intravascularly, intraperitoneally, subcutaneously, intramuscularly or topically. Preferably, the composition is adapted for oral administration.


In general, pharmaceutical compositions of the present invention are prepared using conventional materials and techniques, such as mixing, blending and the like.


In accordance with the present invention, compounds and/or pharmaceutical composition can also include, but are not limited to, suitable adjuvants, carriers, excipients, or stabilizers, and can be in solid or liquid form such as, tablets, capsules, powders, solutions, suspensions, or emulsions.


Typically, the composition will contain a compound of the present invention, such as a salt of carvedilol or active compound(s), together with the adjuvants, carriers and/or excipients. In particular, a pharmaceutical composition of the present invention comprises an effective amount of a salt of carvedilol (i.e., such as carvedilol hydrobromide monohydrate), corresponding solvates (i.e., as identified herein) and/or anhydrates (i.e., carvedilol anhydrate) thereof, with any, of the characteristics noted herein, in association with one or more non-toxic pharmaceutically acceptable carriers and/or diluents thereof, and if desired, other active ingredients.


In accordance with the present invention, solid unit dosage forms can be conventional types known in the art. The solid form can be a capsule and the like, such as an ordinary gelatin type containing the compounds of the present invention and a carrier, for example, lubricants and inert fillers such as, lactose, sucrose, or cornstarch. In another embodiment, these compounds are tableted with conventional tablet bases such as lactose, sucrose, or cornstarch in combination with binders like acacia, cornstarch, or gelatin, disintegrating agents, such as cornstarch, potato starch, or alginic acid, and a lubricant, like stearic acid or magnesium stearate.


The tablets, capsules, and the like can also contain a binder, such as gum tragacanth, acacia, corn starch, or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose, or saccharin. When the dosage unit form is a capsule, it can contain, in addition to materials of the above type, a liquid carrier such as a fatty oil.


Various other materials may be present as coatings or to modify the physical form of the dosage unit. For instance, tablets can be coated with shellac, sugar, or both. A syrup can contain, in addition to active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye, and flavoring such as cherry or orange flavor.


For oral therapeutic administration, these active compounds can be incorporated with excipients and used in the form of tablets, capsules, elixirs, suspensions, syrups, and the like. The percentage of the compound in compositions can, of course, be varied as the amount of active compound in such therapeutically useful compositions is such that a suitable dosage will be obtained.


Typically in accordance with the present invention, the oral maintenance dose is between about 25 mg and about 50 mg, preferably given once daily. In accordance with the present invention, the preferred unit dosage forms include tablets or capsules.


The active compounds of the present invention may be orally administered, for example, with an inert diluent, or with an assimilable edible carrier, or they can be enclosed in hard or soft shell capsules, or they can be compressed into tablets, or they can be incorporated directly with the food of the diet.


The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form should be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.


The compounds or pharmaceutical compositions of the present invention may also be administered in injectable dosages by solution or suspension of these materials in a physiologically acceptable diluent with a pharmaceutical adjuvant, carrier or excipients. Such adjuvants, carriers and/or excipients, include, but are not limited to sterile liquids, such as water and oils, with or without the addition of a surfactant and other pharmaceutically and physiologically acceptable carrier, including adjuvants, excipients or stabilizers. Illustrative oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, or mineral oil. In general, water, saline, aqueous dextrose and related sugar solution, and glycols, such as propylene glycol or polyethylene glycol, are preferred liquid carriers, particularly for injectable solutions.


These active compounds may also be administered parenterally. Solutions or suspensions of these active compounds can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Illustrative oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, or mineral oil. In general, water, saline, aqueous dextrose and related sugar solution, and glycols such as, propylene glycol or polyethylene glycol, are preferred liquid carriers, particularly for injectable solutions. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.


The compounds and/or compositions prepared according to the present invention can be used to treat warm blooded animals, such as mammals, which include humans.


Conventional administration methods may be suitable for use in the present invention.


The present invention relates to a method for treatment of hypertension, congestive heart failure and angina in a mammal in need thereof, which method comprises administering to said mammal an effective amount of carvedilol hydrobromide monohydrate, or solvates thereof, with any of the characteristics noted herein.


The Examples set forth below are illustrative of the present invention and are not intended to limit, in any way, the scope of the present invention.


EXAMPLES
Example 1

Form 1. Carvedilol HBr Monohydrate.


A suitable reactor is charged with acetone. The acetone solution is sequentially charged with carvedilol, water and 48% aqueous HBr. On addition of the water, the acetone slurry becomes a solution. The reaction mixture is stirred at room temperature. A solid precipitates during the course of the stir. The precipitate is filtered and the collected cake is washed with acetone. The cake is dried under vacuum to a constant weight. The cake is weighed and stored in a polyethylene container.


The single crystal x-ray data for carvedilol hydrobromide monohydrate is provided below.

TABLE 1Sample and Crystal Data for Carvedilol Hydrobromide Monohydrate.Crystallization solventsAcetone, waterCrystallization methodSlow coolingEmpirical formulaC24H29BrN2O5Formula weight505.40Temperature150(2) KWavelength0.71073 ÅCrystal size0.18 × 0.14 × 0.08 mmCrystal habitClear colorless prismCrystal systemMonoclinicSpace groupC2/cUnit cell dimensionsa = 18.0356(3) Å  α = 90°b = 20.8385(5) Å  β = 103.5680(10)°c = 12.9342(3) Å  γ = 90°Volume4725.46(18) Å3Z8Density (calculated)1.421 Mg/m3Absorption coefficient1.777 mm−1F(000)2096









TABLE 2








Data collection and structure refinement for Carvedilol Hydrobromide


Monohydrate.
















Diffractometer
KappaCCD


Radiation source
Fine-focus sealed tube, MoKα


Data collection method
CCD; rotation images; thick slices


Theta range for data collection
3.42 to 23.27°


Index ranges
0 ≦ h ≦ 20, 0 ≦ k ≦ 23, −14 ≦ / ≦ 13


Reflections collected
30823


Independent reflections
3404 [R(int) = 0.042]


Coverage of independent reflections
99.7%


Variation in check reflections
N/A


Absorption correction
Symmetry-related measurements


Max. and min. transmission
0.8709 and 0.7404


Structure solution technique
Direct methods


Structure solution program
SHELXTL V5.10 UNIX (Bruker, 1997)


Refinement technique
Full-matrix least-squares on F2


Refinement program
SHELXTL V5.10 UNIX (Bruker, 1997)


Function minimized
Σ w(Fo2 − Fc2)2


Data / restraints / parameters
3404 / 11 / 336


Goodness-of-fit on F2
1.020



Δ/σmax

0.000


Final R indices


3071 data; l > 2σ(l)
R1 = 0.0353, wR2 = 0.0797


all data
R1 = 0.0405, wR2 = 0.0829


Weighting scheme
w = 1/[σ2(Fo2) + [(0.0304P)2 + 14.1564P]



where P = [MAX(Fo2,0) + 2Fc2]/3


Largest diff. peak and hole
0.786 and −0.914 e.Å−3


Refinement summary:


Ordered Non-H atoms, XYZ
Freely refined


Ordered Non-H atoms, U
Anisotropic


H atoms (on carbon), XYZ
Idealized positions riding on attached atom


H atoms (on carbon), U
Appropriate constant times Ueq of attached atom


H atoms (on heteroatoms), XYZ
Freely refined


H atoms (on heteroatoms), U
Refined Isotropically


Disordered atoms, OCC
See Table 10


Disordered atoms, XYZ
Refined with distance restaints


Disordered atoms, U
Anisotropic
















TABLE 3










Atomic Coordinates and Equivalent Isotropic Atomic Displacement


Parameters (Å2) for Carvedilol Hydrobromide Monohydrate.












x/a
y/b
z/c
U(eq)















Br1
0.5000
0.22079(2)
−0.2500
0.04329(15)


Br2
0.0000
0.40821(2)
−0.2500
0.04510(16)


O1
0.19543(10)
0.37037(10)
−0.00168(15)
0.0328(5)


O2
0.08660(19)
0.48508(15)
0.1085(2)
0.0312(7)


O2′
0.0825(3)
0.4816(3)
−0.0328(4)
0.0311(13)


O3
−0.19428(10)
0.39492(10)
−0.01310(15)
0.0347(5)


O4
−0.24723(12)
0.46974(11)
0.11008(16)
0.0404(5)


O99A
−0.0880(5)
0.4236(3)
0.1967(7)
0.0430(19)


O99B
−0.0833(5)
0.4514(4)
0.1784(7)
0.0431(19)


N1
0.34092(16)
0.25072(13)
−0.1793(2)
0.0390(7)


N2
−0.03151(14)
0.39706(13)
−0.0026(2)
0.0314(6)


C1
0.26859(15)
0.35551(14)
−0.0070(2)
0.0301(7)


C2
0.33380(16)
0.38188(15)
0.0568(2)
0.0339(7)


C3
0.40553(17)
0.36537(16)
0.0409(3)
0.0402(8)


C4
0.41433(17)
0.32249(16)
−0.0364(3)
0.0401(8)


C5
0.34850(16)
0.29538(15)
−0.0986(2)
0.0343(7)


C6
0.26499(17)
0.23737(14)
−0.2202(2)
0.0343(7)


C7
0.23145(19)
0.19604(15)
−0.3022(2)
0.0401(8)


C8
0.15313(19)
0.19096(15)
−0.3275(2)
0.0412(8)


C9
0.10866(18)
0.22594(14)
−0.2721(2)
0.0364(7)


C10
0.14185(17)
0.26731(14)
−0.1910(2)
0.0323(7)


C11
0.22085(16)
0.27356(13)
−0.1639(2)
0.0300(7)


C12
0.27490(16)
0.31103(13)
−0.0855(2)
0.0294(6)


C13
0.18523(16)
0.41746(14)
0.0740(2)
0.0301(7)


C14
0.10181(16)
0.43671(13)
0.0452(2)
0.0305(7)


C15
0.05016(15)
0.37919(14)
0.0363(2)
0.0289(6)


C16
−0.08143(16)
0.33991(14)
−0.0272(2)
0.0361(7)


C17
−0.16200(16)
0.35626(16)
−0.0833(2)
0.0380(7)


C18
−0.27156(15)
0.40680(14)
−0.0445(2)
0.0300(6)


C19
−0.30049(16)
0.44705(14)
0.0236(2)
0.0316(7)


C20
−0.37754(18)
0.46060(16)
0.0007(3)
0.0409(8)


C21
−0.42545(18)
0.43467(17)
−0.0895(3)
0.0499(9)


C22
−0.39733(18)
0.39593(17)
−0.1567(3)
0.0S04(9)


C23
−0.31949(17)
0.38199(15)
−0.1342(3)
0.0388(7)


C24
−0.2743(2)
0.50999(17)
0.1833(3)
0.0482(9)







U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.














TABLE 4








Selected Bond Lengths (Å) for Carvedilol Hydrobromide Monohydrate.




















O1-C1
1.373(3)
O1-C13
1.428(3)



O2-C14
1.366(4)
O2′-C14
1.360(6)



O3-C18
1.380(3)
O3-C17
1.435(3)



O4-C19
1.376(4)
O4-C24
1.433(4)



N1-C6
1.376(4)
N1-C5
1.381(4)



N2-C16
1.482(4)
N2-C15
1.488(4)



C1-C2
1.382(4)
C1-C12
1.399(4)



C2-C3
1.399(4)
C3-C4
1.378(5)



C4-C5
1.388(4)
C5-C12
1.415(4)



C6-C7
1.389(4)
C6-C11
1.416(4)



C7-C8
1.377(5)
C8-C9
1.399(4)



C9-C10
1.381(4)
C10-C11
1.391(4)



C11-C12
1.458(4)
C13-C14
1.517(4)



C14-C15
1.506(4)
C16-C17
1.503(4)



C18-C23
1.374(4)
C18-C19
1.403(4)



C19-C20
1.380(4)
C20-C21
1.388(5)



C21-C22
1.368(5)
C22-C23
1.396(4)

















TABLE 5








Selected bond angles (°) for Carvedilol Hydrobromide Monohydrate.




















C1-O1-C13
118.0(2)
C18-O3-C17
116.5(2)



C19-O4-C24
117.2(2)
C6-N1-C5
109.9(3)



C16-N2-C15
112.0(2)
O1-C1-C2
125.0(3)



O1-C1-C12
115.4(2)
C2-C1-C12
119.6(3)



C1-C2-C3
120.1(3)
C4-C3-C2
122.3(3)



C3-C4-C5
117.1(3)
N1-C5-C4
129.2(3)



N1-C5-C12
108.5(3)
C4-C5-C12
122.4(3)



N1-C6-C7
129.4(3)
N1-C6-C11
108.9(3)



C7-C6-C11
121.7(3)
C8-C7-C6
117.9(3)



C7-C8-C9
121.1(3)
C10-C9-C8
121.0(3)



C9-C10-C11
119.1(3)
C10-C11-C6
119.1(3)



C10-C11-C12
134.7(3)
C6-C11-C12
106.2(3)



C1-C12-C5
118.6(3)
C1-C12-C11
134.8(3)



C5-C12-C11
106.6(3)
O1-C13-C14
107.0(2)



O2′-C14-O2
83.4(3)
O2′-C14-C15
116.4(3)



O2-C14-C15
115.2(3)
O2′-C14-C13
115.6(3)



O2-C14-C13
112.0(3)
C15-C14-C13
111.6(2)



N2-C15-C14
111.8(2)
N2-C16-C17
113.0(3)



O3-C17-C16
108.1(2)
C23-C18-O3
125.0(3)



C23-C18-C19
120.1(3)
O3-C18-C19
114.9(2)



O4-C19-C20
125.4(3)
O4-C19-C18
115.1(2)



C20-C19-C18
119.4(3)
C19-C20-C21
119.8(3)



C22-C21-C20
120.9(3)
C21-C22-C23
119.7(3)



C18-C23-C22
120.0(3)

















TABLE 6










Hydrogen Bonds and Short C-H . . . X


Contacts for Carvedilol Hydrobromide


Monohydrate (Å and °).









D-H . . . A
d(D-H)
d(H . . . A) d(D . . . A) < (DHA)














N1-H1N . . . Br1
0.76(3)
2.53(4)
 3.269(3)
166(3)


N2-H2NA . . . O99A
0.83(4)
2.29(4)
 3.037(10)
149(3)


N2-H2NA . . . O99B
0.83(4)
2.13(4)
 2.943(10)
165(4)


N2-H2NB . . . O2#1
0.89(5)
2.17(4)
 2.873(4)
135(4)


O2′-H2O′ . . . Br2
0.67(5)
2.65(7)
 3.237(6)
149(12)


O99A-H99A . . . Br1#2
0.94(3)
2.49(4)
 3.395(8)
163(6)


O99B-H99B . . . Br2#1
0.94(3)
2.38(3)
 3.320(8)
173(6)


C15-H15A . . . O10.99
2.38
2.783(3)
103.2


C15-H15B . . . Br1#2
0.99
2.85
 3.738(3)
149.3


C16-H16A . . . Br1#2
0.99
2.88
 3.760(3)
148.2







Symmetry transformations used to generate equivalent atoms: #1 −x, −y + 1 , −z #2 −x + 1/2, −y + 1/2, −z














TABLE 7








Selected torsion angles (°) for Carvedilol Hydrobromide Monohydrate.


















C13-O1-C1-C2
1.2(4)
C13-O1-C1-C12
−177.5(2)


O1-C1-C2-C3
−177.0(3)
C12-C1-C2-C3
1.7(4)


C1-C2-C3-C4
−0.8(5)
C2-C3-C4-C5
−0.5(5)


C6-N1-C5-C4
−179.7(3)
C6-N1-C5-C12
0.8(3)


C3-C4-C5-N1
−178.6(3)
C3-C4-C5-C12
0.8(4)


C5-N1-C6-C7
179.4(3)
C5-N1-C6-C11
−0.9(3)


N1-C6-C7-C8
179.5(3)
C11-C6-C7-C8
−0.1(4)


C6-C7-C8-C9
−0.4(5)
C7-C8-C9-C10
0.8(5)


C8-C9-C10-C11
−0.6(4)
C9-C10-C11-C6
0.0(4)


C9-C10-C11-C12
−179.9(3)
N1-C6-C11-C10
−179.4(3)


C7-C6-C11-C10
0.3(4)
N1-C6-C11-C12
0.6(3)


C7-C6-C11-C12
−179.7(3)
O1-C1-C12-C5
177.4(2)


C2-C1-C12-C5
−1.4(4)
O1-C1-C12-C11
−2.4(5)


C2-C1-C12-C11
178.8(3)
N1-C5-C12-C1
179.6(2)


C4-C5-C12-C1
0.1(4)
N1-CS-C12-C11
−0.5(3)


C4-C5-C12-C11
180.0(3)
C10-C11-C12-C1
−0.3(6)


C6-C11-C12-C1
179.8(3)
C10-C11-C12-C5
179.9(3)


C6-C11-C12-C5
−0.1(3)
C1-O1-C13-C14
166.1(2)


O1-C13-C14-O2′
−82.6(4)
O1-C13-C14-O2
−175.8(2)


O1-C13-C14-C15
53.4(3)
C16-N2-C15-C14
171.3(2)


O2′-C14-C15-N2
−38.6(4)
O2-C14-C15-N2
56.6(3)


C13-C14-C15-N2
−174.2(2)
C15-N2-C16-C17
−170.5(2)


C18-O3-C17-C16
−170.7(2)
N2-C16-C17-O3
−63.3(3)


C17-O3-C18-C23
3.3(4)
C17-O3-C18-C19
−177.3(3)


C24-O4-C19-C20
1.0(4)
C24-O4-C19-C18
−178.7(3)


C23-C18-C19-O4
−179.2(3)
O3-C18-C19-O4
1.4(4)


C23-C18-C19-C20
1.0(4)
O3-C18-C19-C20
−178.3(3)


O4-C19-C20-C21
179.9(3)
C18-C19-C20-C21
−0.4(5)


C19-C20-C21-C22
−0.3(5)
C20-C21-C22-C23
0.3(6)


O3-C18-C23-C22
178.2(3)
C19-C18-C23-C22
−1.1(5)


C21-C22-C23-C18
0.4(5)
















TABLE 8










Anisotropic Atomic Displacement Parameters (Å2) for


Carvedilol Hydrobromide Monohydrate.


The anisotropic atomic displacement factor exponent takes


the form: −2π2 [h2a*2U11 + . . . + 2 hka* b* U12]














U11
U22
U33
U23
U13
U12

















Br1
0.0484(3) 
0.0447(3) 
0.0464(3) 
0.000  
0.0306(2) 
0.000  


Br2
0.0707(3) 
0.0413(3) 
0.0234(2) 
0.000  
0.0111(2) 
0.000  


O1
0.0272(11)
0.0408(12)
0.0323(11)
0.0067(9) 
0.0108(9) 
 −0.0009(9)   


O2
0.0416(18)
0.0306(18)
0.0215(17)
−0.0006(14)  
0.0077(15)
0.0059(14)


O2′
0.038(3) 
0.028(3) 
0.031(3) 
0.001(3) 
0.014(3) 
0.000(3) 


O3
0.0254(11)
0.0473(13)
0.0308(11)
 −0.0091(9)   
0.0058(9) 
 −0.0001(9)   


O4
0.0400(12)
0.0500(14)
0.0323(11)
−0.0076(10)  
0.0108(10)
0.0019(10)


O99A
0.042(3) 
0.044(5) 
0.040(4) 
−0.004(4)   
0.004(3) 
0.002(4) 


O99B
0.033(3) 
0.061(6) 
0.035(4) 
−0.004(4)   
0.007(2) 
−0.010(4)   


N1
0.0384(17)
0.0449(17)
0.0393(16)
0.0053(13)
0.0203(14)
0.0112(13)


N2
0.0270(13)
0.0341(15)
0.0332(15)
0.0015(13)
0.0075(12)
0.0033(11)


C1
0.0283(16)
0.0324(16)
0.0321(16)
0.0078(13)
0.0124(13)
0.0005(12)


C2
0.0321(17)
0.0381(17)
0.0327(16)
0.0056(13)
0.0100(13)
−0.0014(13)  


C3
0.0301(17)
0.048(2) 
0.0412(18)
0.0104(16)
0.0051(14)
−0.0044(14)  


C4
0.0290(17)
0.0471(19)
0.0470(19)
0.0133(16)
0.0148(15)
0.0064(14)


C5
0.0324(17)
0.0390(17)
0.0343(16)
0.0113(14)
0.0132(14)
0.0065(14)


C6
0.0391(18)
0.0334(17)
0.0339(17)
0.0099(14)
0.0161(14)
0.0088(14)


C7
0.056(2) 
0.0324(17)
0.0362(18)
0.0011(14)
0.0204(16)
0.0098(15)


C8
0.055(2) 
0.0337(18)
0.0357(18)
−0.0020(14)  
0.0119(16)
0.0003(15)


C9
0.0411(18)
0.0344(17)
0.0348(17)
0.0030(14)
0.0111(14)
−0.0009(14)  


C10
0.0362(17)
0.0321(16)
0.0323(16)
0.0038(13)
0.0155(14)
0.0022(13)


C11
0.0377(17)
0.0275(15)
0.0277(15)
0.0079(12)
0.0136(13)
0.0040(13)


C12
0.0305(16)
0.0309(16)
0.0295(15)
0.0085(13)
0.0122(13)
0.0017(12)


C13
0.0311(16)
0.0331(16)
0.0265(15)
−0.0019(12)  
0.0078(12)
−0.0021(12)  


C14
0.0325(16)
0.0307(16)
0.0290(16)
0.0010(13)
0.0083(13)
0.0015(13)


C15
0.0263(15)
0.0327(16)
0.0289(15)
0.0031(12)
0.0090(12)
0.0043(12)


C16
0.0322(16)
0.0347(17)
0.0390(18)
−0.0078(14)  
0.0036(14)
0.0016(13)


C17
0.0298(16)
0.0477(19)
0.0342(17)
−0.0106(15)  
0.0031(13)
0.0023(14)


C18
0.0246(15)
0.0317(16)
0.0337(16)
0.0031(13)
0.0069(13)
−0.0014(12)  


C19
0.0299(16)
0.0352(17)
0.0313(16)
0.0063(13)
0.0103(13)
−0.0031(13)  


C20
0.0379(18)
0.0382(18)
0.051(2) 
0.0048(15)
0.0194(16)
0.0033(15)


C21
0.0245(17)
0.050(2) 
0.073(3) 
0.0038(19)
0.0059(17)
0.0012(15)


C22
0.0326(18)
0.053(2) 
0.057(2) 
−0.0075(18)  
−0.0052(16)  
−0.0012(16)  


C23
0.0317(17)
0.0407(18)
0.0407(18)
−0.0045(14)  
0.0021(14)
−0.0004(14)  


C24
0.065(2) 
0.050(2) 
0.0325(18)
−0.0027(15)  
0.0176(17)
0.0098(17)
















TABLE 9










Hydrogen Atom Coordinates and Isotropic


Atomic Displacement Parameters (Å2) for


Carvedilol Hydrobromide Monohydrate.












x/a
y/b
z/c
U















H2O
0.086(3)
0.471(3)
0.155(4)
0.047


H2O′
0.082(6)
0.465(5)
−0.077(6)
0.047


H99A
−0.073(4)
0.3802(19)
0.201(6)
0.064


H99B
−0.060(4)
0.490(2)
0.205(6)
0.065


H99
−0.1344(19)
0.4409(13)
0.157(3)
0.065


H1N
0.373(2)
0.2411(16)
−0.205(3)
0.039(10)


H2NA
−0.043(2)
0.4188(18)
0.045(3)
0.058(12)


H2NB
−0.036(2)
0.422(2)
−0.060(4)
0.077(14)


H2A
0.3299
0.4112
0.1114
0.041


H3A
0.4497
0.3844
0.0850
0.048


H4A
0.4633
0.3119
−0.0468
0.048


H7A
0.2616
0.1720
−0.3395
0.048


H8A
0.1289
0.1632
−0.3836
0.049


H9A
0.0548
0.2212
−0.2906
0.044


H10A
0.1112
0.2912
−0.1543
0.039


H13A
0.2180
0.4552
0.0713
0.036


H13B
0.1990
0.3994
0.1468
0.036


H14
0.0925
0.4552
−0.0281
0.037


H14′
0.0943
0.4596
0.1099
0.037


H15A
0.0642
0.3477
−0.0132
0.035


H15B
0.0576
0.3585
0.1069
0.035


H16A
−0.0819
0.3172
0.0400
0.043


H16B
−0.0599
0.3103
−0.0723
0.043


H17A
−0.1625
0.3802
−0.1496
0.046


H17B
−0.1922
0.3165
−0.1021
0.046


H20A
−0.3977
0.4876
0.0466
0.049


H21A
−0.4785
0.4439
−0.1048
0.060


H22A
−0.4306
0.3786
−0.2183
0.060


H23A
−0.2996
0.3553
−0.1809
0.047


H24A
−0.2310
0.5242
0.2397
0.072


H24B
−0.3101
0.4858
0.2148
0.072


H24C
−0.3002
0.5475
0.1455
0.072
















TABLE 10










Site Occupation Factors that Deviate from Unity


for Carvedilol Hydrobromide Monohydrate.














Atom
sof
Atom
sof
Atom
sof


















Br1
1
Br2
1
O1
1



O2
0.65
H2O
0.65
O2′
0.35



H2O′
0.35
O99A
0.50
H99A
0.50



O99B
0.50
H99B
0.50
H99
1



H14
0.65
H14′
0.35










Example 2

Form 2. Carvedilol HBr (Dioxane Solvate)


Form 1 is slurried in dioxane between 0 and 40° C. for 2 days. The product is filtered and mildly dried.


Example 3

Form 3. Carvedilol HBr (1-pentanol Solvate)


Form 1 is slurried in 1-pentanol between 0° C. and 40° C. for 2 days. The product is filtered and mildly dried.


Example 4

Form 4. Carvedilol HBr (2-Methyl-1-Propanol Solvate)


Form 1 is slurried in 2-Methyl-1-Propanol between 0° C. and 40° C. for 2 days. The product is filtered and mildly dried.


Example 5

Form 5. Carvedilol HBr (Trifluoroethanol Solvate)


Form 1 is slurried in trifluoroethanol between 0° C. and 40° C. for 2 days. The product is filtered and mildly dried.


Example 6

Form 6. Carvedilol HBr (2-propanol Solvate)


Form 1 is slurried in 2-propanol between 0° C. and 40° C. for 2 days. The product is filtered and mildly dried.


Example 7

Form 7. Carvedilol HBr (n-propanol Solvate #1)


Carvedilol free base is dissolved in n-propanoI/water (95:5), and stoichiometric hydrobromic acid is added. The solution is cooled, and crystallization ensues. The product is filtered, washed with process solvent, and dried.


Example 8

Form 8. Carvedilol HBr (n-propanol Solvate #2)


Carvedilol HBr monohydrate (Form 1) is dissolved in n-propanol at ambient temperature. The n-propanol is slowly evaporated off, giving a white solid.


Example 9

Form 9. Carvedilol HBr (Anhydrous and Solvent Free)


Carvedilol free base is dissolved in a solvent (dichloromethane, isopropyl acetate, and acetonitrile have been used) and anhydrous HBr is added (HBr in acetic acid or gaseous HBr). The solution is cooled, and crystallization ensues. The product is filtered, washed with process solvent, and dried.


Example 10

Form 10. Carvedilol HBr (Ethanol Solvate)


Carvedilol free base is dissolved in ethanol, and anhydrous HBr is added (HBr in acetic acid). The solution is cooled, and crystallization ensues. The product is filtered, washed with process solvent, and dried.


It is to be understood that the invention is not limited to the embodiments illustrated herein. The right is reserved to the illustrated embodiments and all modifications coming within the scope of the following claims.


The various references to journals, patents, and other publications which are cited herein comprise the state of the art and are incorporated herein by reference as though fully set forth.

Claims
  • 1. A compound which is carvedilol hydrobromide monohydrate.
  • 2. The compound according to claim 1 having an x-ray diffraction pattern as substantially shown in FIG. 1.
  • 3. The compound according to claim 2 having characteristic peaks from 0° degrees 2-theta (2θ) to 35° degrees 2-theta (2θ) at about 6.5±0.2 (2θ), 10.3±0.2 (2θ), 15.7±0.2 (2θ), 16.3±0.2 (2θ), 19.8±0.2 (2θ), 20.1±02 (2θ), 25.2±0.2 (2θ), and 30.6±0.2 (2θ).
  • 4. The compound according to claim 1 having an infrared spectrum, which comprises characteristic absorption bands expressed in wave numbers as substantially shown in FIG. 6.
  • 5. The compound according to claim 1 having a Raman spectrum, which comprises characteristic peaks as shown in FIG. 3.
  • 6. A compound which is carvedilol hydrobromide dioxane solvate.
  • 7. The compound according to claim 6 having an x-ray diffraction pattern as substantially shown in FIG. 78.
  • 8. The compound according to claim 7 having characteristic peaks from 0° degrees 2-theta (2θ) to 35° degrees 2-theta (2θ) at about 7.7±0.2 (2θ), 8.4±0.2 (2θ), 15.6±0.2 (2θ), 17.0±0.2 (2Θ), 18.7±0.2 (2Θ), 19.5±0.2 (2θ), 21.4±0.2 (2θ), 23.7±0.2 (2θ), and 27.9±0.2 (2θ).
  • 9. A compound which is carvedilol hydrobromide 1-pentanol solvate.
  • 10. The compound according to claim 9 having an x-ray diffraction pattern as substantially shown in FIG. 79.
  • 11. The compound according to claim 10 having characteristic peaks from 0° degrees 2-theta (2θ) to 35° degrees 2-theta (2θ) at about 7.5±0.2 (2θ), 7.8±0.2 (2θ), 15.2±0.2 (2θ), 18.9±0.2 (2θ), 22.1±0.2 (2θ), and 31.4±0.2 (2θ).
  • 12. A compound which is carvedilol hydrobromide 2-methyl-1-propanol solvate.
  • 13. The compound according to claim 12 having an x-ray diffraction pattern as substantially shown in FIG. 80.
  • 14. The compound according to claim 13 having characteristic peaks from 0° degrees 2-theta (2θ) to 35° degrees 2-theta (2θ) at about 7.8±0.2 (2θ), 8.1±0.2 (2θ), 16.3±0.2 (2θ), 18.8±0.2 (2θ), 21.8±0.2 (2θ), and 28.5±0.2 (2θ).
  • 15. A compound which is carvedilol hydrobromide trifluoroethanol solvate.
  • 16. The compound according to claim 15 having an x-ray diffraction pattern as substantially shown in FIG. 81.
  • 17. The compound according to claim 16 having characteristic peaks from 0° degrees 2-theta (2θ) to 35° degrees 2-theta (2θ) at about 7.7±0.2 (2θ) 8.4±0.2 (2θ), 15.6±0.2 (2θ), 16.9±0.2 (2θ), 18.9±0.2 (2θ), 21.8±0.2 (2θ), 23.3±0.2 (2θ), 23.8±0.2 (2θ), and 32.7±0.2 (2θ).
  • 18. A compound which is carvedilol hydrobromide 2-propanol solvate.
  • 19. The compound according to claim 18 having an x-ray diffraction pattern as substantially shown in FIG. 82.
  • 20. The compound according to claim 19 having characteristic peaks from 0° degrees 2-theta (2θ) to 35° degrees 2-theta (2θ) at about 7.9±0.2 (2θ), 8.3±0.2 (2θ), 18.8±0.2 (2θ), 21.7±0.2 (2θ), 23.2±0.2 (2θ), 23.6±0.2 (2θ), and 32.1±0.2 (2θ).
  • 21. A compound which is carvedilol hydrobromide n-propanol solvate #1.
  • 22. The compound according to claim 21 having an x-ray diffraction pattern as substantially shown in FIG. 46.
  • 23. The compound according to claim 22 having characteristic peaks from 0° degrees 2-theta (2θ) to 35° degrees 2-theta (2θ) at about 7.9±0.2 (2θ), 8.5±0.2 (2θ), 17.0±0.2 (2θ), 18.8±0.2 (2θ), 21.6±0.2 (2θ), 23.1±0.2 (2θ), 23.6±0.2 (2θ), and 21.2±0.2 (2θ).
  • 24. A compound which is carvedilol hydrobromide n-propanol solvate #2.
  • 25. The compound according to claim 24 having an x-ray diffraction pattern as substantially shown in FIG. 54.
  • 26. The compound according to claim 25 having characteristic peaks from 0° degrees 2-theta (2θ) to 35° degrees 2-theta (2θ) at about 8.0±0.2 (2θ), 18.8±0.2 (2θ), 21.6±0.2 (2θ), 23.1±0.2 (2θ), 25.9±0.2 (2θ), 27.2±0.2 (2θ), 30.6±0.2 (2θ), and 32.2±0.2 (2θ).
  • 27. A compound which is carvedilol hydrobromide ethanol solvate.
  • 28. The compound according to claim 27 having an x-ray diffraction pattern as substantially shown in FIG. 70.
  • 29. The compound according to claim 28 having characteristic peaks from 0° degrees 2-theta (2θ) to 35° degrees 2-theta (2θ) at about 8.1±0.2 (2θ), 8.6±0.2 (2θ), 13.2±0.2 (2θ), 17.4±0.2 (2θ), 18.6±0.2 (2θ), 21.8±0.2 (2θ), 23.2±0.2 (2θ), 23.7±0.2 (2θ), and 27.4±0.2 (2θ).
  • 30. A compound which is carvedilol hydrobromide anhydrous.
  • 31. The compound according to claim 30 having an x-ray diffraction pattern as substantially shown in FIG. 62.
  • 32. The compound according to claim 31 having characteristic peaks from 0° degrees 2-theta (2θ) to 35° degrees 2-theta (2θ) at about 6.6±0.2 (2θ), 16.1±0.2 (2θ), 17.3±0.2 (2θ), 21.2±0.2 (2θ), 22.1±0.2 (2θ), 24.1±0.2 (2θ), and 27.9±0.2 (2θ).
  • 33. The compound according to claim 30 having an infrared spectrum, which comprises characteristic absorption bands expressed in wave numbers as substantially shown in FIG. 67.
  • 34. The compound according to claim 30 having a Raman spectrum, which comprises characteristic peaks as substantially shown in FIG. 64.
  • 35. A pharmaceutical composition, comprising the compound according to claim 1 and a pharmaceutically acceptable carrier.
  • 36. A pharmaceutical composition, comprising the compound according to claim 30 and a pharmaceutically acceptable carrier.
  • 37. A method of treating hypertension, congestive heart failure, or angina, which comprises administering to a subject in need thereof an effective amount of a compound according to claim 1.
  • 38. A method of treating hypertension, congestive heart failure, or angina, which comprises administering to a subject in need thereof an effective amount of a compound according to claim 30.
  • 39. A method of treating hypertension, congestive heart failure, or angina, which comprises administering to a subject in need thereof an effective amount of a pharmaceutical composition according to claim 35.
  • 40. A method of treating hypertension, congestive heart failure, or angina, which comprises administering to a subject in need thereof an effective amount of a pharmaceutical composition according to claim 36.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US03/20346 6/27/2003 WO 12/16/2004
Provisional Applications (1)
Number Date Country
60392374 Jun 2002 US