Case packing machine and method

Information

  • Patent Grant
  • 6718730
  • Patent Number
    6,718,730
  • Date Filed
    Thursday, March 23, 2000
    24 years ago
  • Date Issued
    Tuesday, April 13, 2004
    20 years ago
Abstract
An improved case packer machine is disclosed, of the type where containers are dropped through grid fingers to an empty case positioned on a lift table. The case packer machine of the present invention includes a flap opener which includes a pair of shoes mounted to an air cylinder. The shoes are extended by the air cylinder to contact and open the leading flap. The lifting table of the present invention is motor driven and controlled to limit the shock loading experienced by the containers as they are positioned within the cases. The lifting table includes a pair spur gears driven by the motor in meshing arrangement with a pair rack gears each mounted to a table and a novel gear guide to maintain proper engagement between the racks and gears and further to provide for backlash adjustment between the gears.
Description




BACKGROUND




A case packer is designed to pack containers (typically bottles or cans) into cases or trays at speeds up to 40 cases per minute (cpm), depending on product specifications.




The typical case packer can be broken down into five major sections, the product infeed, case feed, lift table, grid and operator interface sections.




The product infeed section carries product toward the machine and separates it into the desired pack pattern using stainless steel lane guides. Product is typically monitored for volume and position throughout this section by a series of electronic sensors.




The case feed section transports empty cases into the lift table on a conveyor and discharges cases out of the machine after product has filled the cases. Cases are indexed into the lift table section using a series of stops, which prohibit cases from advancing in the case feed when activated. Case volume and positioning is monitored throughout this section by a series of electronic sensors.




The lift table section of prior art case packers lifts the cases to a point beneath the grid area and waits for product to enter the case before descending. This section is equipped with an air over oil lift table which prompts the up and down motion of the table. As the grid area is filled with product, the lift table rises. Once the product has successfully entered the case, the lift table lowers. The case feed then discharges the filled cases.




The grid section is responsible for releasing product into the empty cases on the lift table. This section is made up of two primary components: the riding strip on which the product rests as it enters the grid area; and the grid basket through which product descends once the riding strips are shifted. The grid components are typically changed to accommodate a new product size, depending on product specifications.




The operator interface section controls a system to manage the operation of the machine. In certain case packers of the prior art the interface is mounted on a swing boom which enables the operator to control the machine from either side.




Containers are fed into the product infeed from a product conveyor system. As the containers advance downstream, they are arranged into a nested pattern using a series of guides. The containers are monitored throughout the infeed using sensors such as a high-level detector, low level detector, void detectors and a down product detector.




The low level detector monitors the volume of containers entering the machine. If a shortage of product flow occurs, the machine will automatically come to a controlled end of-cycle stop and wait for additional product. The machine will then automatically restart when additional product is supplied. The void detectors monitor the volume of product entering the machine. In the event that the low-level detector is blocked indicating sufficient containers and a void detector senses no containers, the void detector will signal an infeed oscillator cylinder to actuate lane guides to move back and forth, freeing any potential container jams. If a jam is present, the freed containers will then flow downstream, block the void detectors and stop the infeed oscillator from actuating. The down product detector prevents fallen containers from entering the grid area. In the event of a fallen container, a detector signals the machine to come to a stop. The case feeds section is responsible for transporting empty cases into the machine. Empty cases enter the case feed from a conveyor and the first case comes to rest against a stop. The second case then comes to rest against the first case and relieves a low level condition signal allowing the two empty cases to enter the lift table section and come to rest against a lift table case stop. A pair of case brakes grasp the side of a subsequent case whenever a case in front of it is fed into a lift table. This prevents additional cases from flowing onto the lift table and interfering with normal operation. One problem with the case brakes of the prior art is the time consumption and difficulty associated with accommodating cases of different sizes.




The cases then exit the case feed section and enter the lift table. Once the first and second cases are positioned on lift table the lift table is raised upward toward the grid. At the same time a case clamp is closed, prohibiting the cases positioned on the lift table from moving backwards. As the cases exit the case feed the forward flap of the cases must be opened prior to presentation to the lift table. Typically an air cylinder having a helix drive and a shoe mounted to the end is employed. The air cylinder propels the shoe towards the leading flap end of the forward moving case and simultaneously rotates the shoe to lift and open the leading flap. Some of the problems with this type of flap opener include the relatively high expense of the helix air cylinder, high part wear and the timing and adjustment problems associated with case size changes.




Once the lift table advances upward two additional empty cases are allowed to advance downstream against the infeed case stop. Once the lift bale returns to its down position, both filled cases will be discharged at the same time that two empty cases will be entering the lift table. Once the first case is cleared, the lift table case stop will close and empty cases will then enter the lift table. The operation cycle will then repeat, based on the amount of containers in the product infeed. If there is a low product condition, the case feed will wait until all conditions in the product infeed and grid are satisfied before continuing.




The lift table section is responsible for positioning empty cases at a point beneath a grid basket. This section of the machine typically consists of an air over oil lift cylinder, which is controlled through the operation of several photoeyes and timers controlled, for example, by a programmable logic controller (PLC). The grid is activated to shift and to release the containers as will be more fully discussed herein below and filled cases are discharged from the machine on a conveyor. The grid section is responsible for arranging containers in their final pack pattern and ensuring that the containers lower into the case smoothly and in order. The grid consists of two primary components, the riding strips and the grid basket. The product infeed advances containers downstream onto the riding strips within the grid section. Overhead brakes lower into contact with incoming containers thereby prohibiting additional containers from entering the section. Once the overhead brakes are lowered, the riding strips are shifted to one side approximately ½ the diameter of the product. This allows the containers positioned in the grid to lower through the riding strips and grid basket into the empty cases positioned on the lift table.




Once the containers pass through the grid into the cases the riding strips are returned to their original position and the overhead brakes are raised and subsequent containers are moved from the product infeed into the grid. The process will then repeat itself, depending on the amount of containers entering the grid.




The lift table of the prior art as described herein has deficiencies associated with the high levels of shock loading transmitted to containers delivered from the grid and also from the stand point of machine speed. The containers, as they are dropped into the cases, experience shock loads on the average of about 15 to 25 times the force of gravity. Typical containers are comprised of glass and thin walled plastic which may shatter or rupture due to these types of shock loadings. The shock loading not only dictates container design but also a robust drive system for the table which increases the weight and momentum of the system, all causing wear and timing problems. The lift table experiences approximately 1500 pounds of shock loading, as the containers impact the cases, each cycle at a rate of up to 40 cases per minute.




Control of the case packer machine is managed through the operator interface, which is sometimes mounted on a swing boom on the side of the machine. This interface consists of a series of pushbuttons which enable the operator to start, stop, alter the performance of machine, and locate/correct any fault conditions.




SUMMARY OF THE INVENTION




The above discussed and other drawbacks and deficiencies of the prior art are overcome or alleviated by the present invention.




This invention relates generally to machines for packing containers into cases. In particular this invention relates specifically to improvements to a case packer of the type where containers are dropped through grid fingers to an empty case positioned on a lift table. The improvements include a device for opening flaps on the case and a lift table section including an improved lift table drive assembly.




The case packer machine of the present invention includes a flap opener which includes a pair of shoes mounted to an air cylinder. The shoes are extended by the air cylinder to overtake the cases as they are advanced through the case packer machine to contact and open the leading flap. The shoes are biased in a retracted position by a tension spring and as the shoes contact the leading flap they work to rotate the leading flap toward an open position. As the shoes contact the leading flap they pivot about a pivot pin in a rod end of the air cylinder and disposed within a slot on the shoes. The shoes continue to extend to the point where they contact the leading comer of the case wherein the shoes rotate along a path defined by a cam slot and move the leading flap to an open position. When the cylinder is retracted the shoes are retracted by the biasing force provided by the spring.




The lifting table of the present invention is motor driven and controlled to limit the shock loading experienced by the containers as they are positioned within the cases. The lifting table includes a pair spur gears driven by the motor in meshing arrangement with a pair rack gears each mounted to a table and a novel gear guide to maintain proper engagement between the racks and gears and further to provide for backlash adjustment between the gears. A vibration and shock absorbing mount is used to position the motor to the machine to eliminate shock loading effects on the drive system and on the containers themselves.











The above discussed and other features and advantages of the present invention will be appreciated and understood by those skilled in the art from the following detailed description and drawings.




BRIEF DESCRIPTION OF THE DRAWINGS




Referring now to the drawings wherein like elements are numbered alike in the several FIGURES:





FIG. 1

is a side plan view of a case packer machine of the present invention;





FIG. 2

is a side plan view of an embodiment of the flap opener of the present invention;





FIG. 2A

is an end plan view of the flap opener of

FIG. 2

;





FIG. 3

is a side plan view of an embodiment of the lift table section of a case packer machine in accordance with the present invention;





FIG. 4

is an end plan view of the lift table section of a case packer machine in accordance with the present invention;





FIG. 5

is a side plan view in partial section of the drive assembly of a case packer machine in accordance with the present invention;





FIG. 6

is a top plan view in partial section of the drive assembly of a case packer machine in accordance with the present invention; and





FIG. 7

is an end plan view showing the lift table assemblies and rack gear supports.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring to

FIG. 1

there is shown a case packer, or drop packer, generally indicated as I having a product infeed section


3


for delivering containers


138


,


140


(

FIG. 3

) to a grid section


5


in the direction of product flow indicated by arrow


7


. Case packer


1


further includes case feed section


9


for delivering empty cases to lift table section


11


also in the direction of product flow indicated by arrow


7


. As described herein above with respect to case packers of the prior art, empty cases are delivered to the lift table section


11


which raises the cases to the grid section


5


to receive containers from the grid section. Also included in drop packer


1


of the present invention is leading flap opener


15


to ensure that the cases presented to lift table section


11


are capable of receiving containers from grid section


5


.




Referring to

FIGS. 2 and 2A

, there is shown case feed section flap opener


15


positioned within mounting frame


17


including trailing flap opener


31


. Empty cases


21


,


23


are conveyed along flat top chain


25


to flap opener


15


in the direction of product flow indicated by arrow


7


toward lift table section


11


(

FIG. 1

) with leading flap


27


and trailing flap


29


in the closed and unsealed condition. Upon entering flap opener


15


, trailing flap opener


31


, in the form of a tang extending rearward from skid portion


33


, contacts trailing flap


29


and the relative motion between empty case


21


and the trailing flap opener causes the trailing flap to rotate to the open position. As empty case


21


continues to travel along chain


25


, skid portion


33


ensures that trailing flap


29


remains open. Leading flap


27


of case


23


remains in the closed position due to the relative motion between the case and flap opener


15


. Once case


23


advances to the position shown in

FIG. 2

air cylinder


35


is triggered to extend by a controller


37


, such as a PLC, contained in enclosure


39


(FIG.


1


). Air cylinder


35


extends at a greater rate than the speed at which case


23


travels and as such shoes


41


mounted to rod end fitting contact leading flap


27


to initiate rotation of the leading flap.




Shoes


41


are pivotly mounted to rod end fitting


43


by pivot pin


45


disposed mounting slot


46


and the path of the rotational movement of the shoes is controlled by follower


47


disposed within the rod end fitting which runs inside of cam slot


49


. Mounting slot


46


and cam slot


49


are defined within the shoes


41


. Shoes


41


are biased in a retracted position while air cylinder


35


is in the retracted position by tension spring


51


attached to ear portion


53


of the shoes. As case


23


advances, to the position shown as


23




a


, air cylinder


35


extends to the position shown in phantom and contact surface


40


of shoes


41


contact case


23


a at leading corner


55


below pivot pin


45


and overcomes the biasing force of spring


51


causing the shoes to pivot within mounting slot


46


and move along cam slot


49


and rotates leading flap


27


toward the open position. As empty case


23


is advanced to position


23




b


air cylinder


35


extends pivot pin


45


past leading comer


55


causing shoes


41


to rotate to a fully extended position and thereby positioning leading flap


27


in a fully open position. Once leading flap


27


is fully opened rails (not shown) maintain the flap in an open position as in the prior art for presentation to the lift table section and cylinder


35


is triggered to retract by controller


37


and spring


51


returns shoes


41


to the retracted position. The sequence is repeated for each empty case to ensure the leading flap


27


is in the open position prior to presentation with the lift table section


15


to allow for filling of the case as described herein above.




In another embodiment of the present invention case


23


is interrupted in its travel in the direction indicated by arrow


7


by a case brake


42


as in the prior art described herein above. While case


23


is held by case brake


42


air cylinder


35


extends as described herein above and contact surface


40


of shoes


41


contact case


23


at leading corner


55


below pivot pin


46


and overcomes the biasing force of spring


51


causing the shoes to pivot within mounting slot


46


and move along cam slot


49


and rotates leading flap


27


toward the open position. As air cylinder


35


continues to extend pivot pin


45


travels past leading corner


55


causing shoes


41


to rotate to a fully extended position and thereby positioning leading flap


27


in an open position. Once leading flap


27


is in the open position rails (not shown) maintain the flap in the open position as in the prior art for presentation to the lift table section and cylinder


35


is triggered to retract by controller


37


and spring


51


returns shoes


41


to the retracted position. The sequence is repeated for each empty case to ensure the leading flap


27


is in the open position prior to presentation with the lift table section


15


to allow for filling of the case as described herein above.




Referring to

FIG. 3

there is shown lift table section


15


of case packer


1


of the present invention incorporating a compensating lift table assembly


60


which is shown in the down position. Compensating lift table assembly


60


includes motor


62


, shown as a servo motor, and a right angle gear box


64


to raise and lower table assemblies


66


,


68


between case feed section


9


and grid fingers


70


of grid section


5


(FIG.


1


). Although motor


62


is shown as a DC servo motor the scope of the present invention includes other alternatives such as AC servo motors, AC vector drives, air driven motors, and their equivalents.




As best shown in

FIGS. 3 and 4

table assemblies


66


,


68


are mounted to lift rods


72


and ride within linear bearings


74


mounted to machine frame


76


and are further mounted to rack gears


78


,


80


by mounting pins


82


. Lift table drive assembly


84


, in the embodiment shown, includes motor


62


and gear box


64


which transfer torque to shaft


86


disposed within bearings


87


attached to frame


76


and further having spur gears


88


,


90


mounted thereto by spur gear retainers


91


. Spur gear


88


is disposed on shaft


86


in meshing arrangement with rack gear


78


as best shown in

FIGS. 5 and 6

. Spur gear


90


is similarly arranged on shaft


86


with respect to rack gear


80


. In one embodiment of the present invention rack gears


78


,


80


and spur gears


88


,


90


are comprised of a nylon material to resist fretting and fatigue in the highly loaded cyclic environment of a drop packer.




Although lift table drive system


84


is shown as a rack and spur gear other drive systems are within the scope of the present invention. Other alternative embodiments of drive system equivalents include a bellcrank system, a ball screw arrangement, a cam and follower system, an eccentric drive system, or a roller chain and gear arrangement and other equivalents coupled to a servo type drive and controlled as described herein below.




As discussed herein above with respect to the prior art, lift tables generally experience high shock loading which leads to premature part wear, requires slower machine speeds and may lead to container damage. The lift table assembly


60


of the present invention incorporates many features to reduce or eliminate the problems associated with the shock loading. Referring again to

FIGS. 5 and 6

and with further reference to

FIG. 7

, rack gear guide assemblies


92


,


94


are but one feature of the present invention which reduce the problems associated with shock loading. The rack gear assemblies


92


,


94


are shown including lateral guides


96


,


98


comprised of U-shaped members mounted to guide frame


93


to stabilize rack gears


78


,


80


in the lateral direction as shown. Guide frame


93


is mounted to machine frame


76


. Rack gear guide assemblies


92


,


94


also include roller assemblies


100


,


102


to maintain proper engagement between the racks and gears and further to provide for backlash adjustment between the gears. Roller assemblies


100


,


102


include rollers


104


,


106


mounted to eccentric studs


108


,


110


within guide frames


93


. Rollers


104


,


106


rotate about centerline


112


parallel to rack gears


78


,


80


and may be adjusted to increase or decrease contact with the rack gears by applying a wrench (not shown) to eccentric studs


108


,


110


. Increasing the contact between the rollers and the rack gears increases the engagement and decreases the backlash of the gear pairs. The ability to adjust the amount of engagement and backlash increases reliability and accuracy of the lift table and decreases wear and associated maintenance.




Referring back to

FIGS. 3 and 4

, it is shown that motor


62


and gearbox


64


are mounted to machine frame


76


via vibration isolating assembly


120


including reaction arm bracket


122


linked to vibration mount assembly


124


via tie rod


126


. As best shown in

FIG. 4

, tie rod


126


is connected to vibration mount assembly


124


via control mounts


128


,


130


which are connected to machine frame


76


via reaction arm bracket


132


. Control mounts


128


,


130


are comprised of a material capable of absorbing the cyclic shock loads transmitted to the motor


62


and gear box


64


such as rubber or other shock absorbing material. For example, control mounts


128


,


130


are comprised from a neoprene material in one embodiment of the present invention.




Right hand lift table assembly


66


and left hand lift table assembly


68


are mounted to machine frame


76


via lift rods


72


which ride within linear bearings


74


as described herein above about centerline


134


(FIG.


4


). Mounted in this fashion paddles


136


, driven by servo motor


148


, pass between the lift table assemblies to remove filled cases


138


,


140


from the lift table section as in the prior art described herein above.




An operator (not shown) selects a setting from operator interface


150


(

FIG. 1

) corresponding to a particular case size and quantity of containers to be loaded into each case


121


. Case packer


1


accommodates various size cases ranging from


138


to


140


, specifically from about 6 inches to 24 inches in length


142


, from 6 inches to 19 inches in width


144


, and up to 14 inches in height


146


. The operator interface


150


then transmits a corresponding signal to controller


37


. Among other settings of case packer


1


, controller


37


controllers the maximum height to which lift table assembly


60


extends, as shown in phantom in

FIG. 4

, as well as the speed and accelerations of the movement of the assembly as will be more fully explained herein below.




With reference to

FIG. 1

, during operation containers move along the product infeed section


3


to the grid section


5


as in the prior art described herein above. Similarly empty cases move through the case feed section


9


, the leading and trailing flaps are opened by flap opener


15


, and the cases are indexed into the lift table section


11


. Now referring to

FIGS. 3 and 4

, a case


138


enters the lift table section


15


and rests on top of lift table assemblies


66


,


68


. Controller


37


then sends signals to motor


64


to lift case


138


upward toward grid fingers


70


. In an embodiment of the present invention motor


62


comprises a servo motor and in conjunction with controller


37


limits the height to which the table assemblies


66


,


68


are lifted depending on case and product dimensions selected by the operator.




In operation, drive assembly


84


lifts table assemblies


66


,


68


upward toward grid fingers


70


and riding strips (not shown), as in the prior art and described herein above, are shifted to release containers into the grid fingers. As the containers are released from grid fingers, controller


37


accelerates drive assembly


84


at a predetermined rate to lower lift table assemblies


66


,


68


to anticipate the dropping containers. The table assemblies are accelerated at such a rate as to minimize the shock load associated with the containers impacting the cases


138


,


140


. In an embodiment of the present invention the lift table assemblies are accelerated at such a rate as to have a velocity equal to the velocity of the containers at contact with the case. Drive assembly


84


then decelerates table assemblies


66


,


68


, including filled case


138


,


140


, as they reach the down to reduce the shock loading on the containers as the lift table assemblies bottom out. In this manner the apparent velocity between the case and the containers at first contact is nearly zero and the loading on the containers is controlled by the predetermined rate of deceleration of the lift table assemblies. Once filled, case


138


,


140


reaches the down position paddle


136


, driven by servo motor


148


, pass between the lift table assemblies to remove the filled cases from the lift table section as in the prior art described herein above. The above sequence is repeated until the desired number of cases are filled.




While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.



Claims
  • 1. A lift table assembly for supporting a case while said case is being filled with containers, said lift table assembly comprising:a lift table configured to support said case; a lift table drive assembly operably connected to said lift table, wherein said lift table drive assembly lowers said lift table as said case is being filled with said containers to reduce a shock load associated with said containers impacting said case.
  • 2. The lift table assembly of claim 1, wherein said lift table drive assembly decelerates said lift table as said lift table reaches a lowered position.
  • 3. The lift table of claim 1, wherein said lift table drive assembly is coupled to a machine frame by a vibration isolating assembly.
  • 4. The lift table of claim 1, wherein said lift table drive assembly comprises:a motor; a shaft coupled to said motor; at least one spur gear disposed on said shaft; and a rack gear pivotally attached to said lift table in meshing arrangement with said spur gear, said rack gear and said spur gear are comprised of a non-metallic material.
  • 5. A lift table assembly for supporting a case while said case is being filled with containers, said lift table assembly comprising:a lift table configured to support said case; a lift table drive assembly operably connected to said lift table, said lift table drive assembly includes: a motor, a shaft coupled to said motor, a gear disposed on said shaft, and a rack gear pivotally attached to said lift table in meshing arrangement with a spur.
  • 6. A case packer machine comprising:a lift table assembly for supporting a case while said case is being filled with containers, said lift table assembly comprising: a lift table configured to support said case; a lift table drive assembly in operable communication with said lift table, wherein said lift table drive assembly decelerates as said containers fall into said case.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. application Ser. No. 09/185,483 filed Nov. 4, 1998 now U.S. Pat. No. 6,098,375, which is hereby incorporated by reference in its entirety.

US Referenced Citations (30)
Number Name Date Kind
3201916 McGill Aug 1965 A
3529732 Wayne Sep 1970 A
3765546 Westerling Oct 1973 A
3837140 Golantsev et al. Sep 1974 A
3852942 Johnson et al. Dec 1974 A
3863427 Rossi Feb 1975 A
3871762 Van Der Vlasakker Mar 1975 A
3948018 Rowekamp Apr 1976 A
4132013 Ferrarell Jan 1979 A
4162649 Thornton Jul 1979 A
4522014 Robinson Jun 1985 A
4570413 Raudat Feb 1986 A
4587792 Hartness et al. May 1986 A
4597707 Cornacchia Jul 1986 A
4671042 Moekle et al. Jun 1987 A
4686918 Hjalmer et al. Aug 1987 A
4709536 Hartness et al. Dec 1987 A
4835946 Hartness et al. Jun 1989 A
4861529 Groebli et al. Aug 1989 A
4955794 Fluck Sep 1990 A
5122097 Chasteen et al. Jun 1992 A
5148654 Kisters Sep 1992 A
5269742 Crouch et al. Dec 1993 A
5447405 Bayne et al. Sep 1995 A
5454210 Piazza Oct 1995 A
5529295 Leilbach et al. Jun 1996 A
5555700 Marti Sep 1996 A
5655355 Ramler Aug 1997 A
5743695 Ryu Apr 1998 A
6098375 Button et al. Aug 2000 A