This invention relates to the field of automated palletizing of cased goods.
In an automated palletizing machine, called palletizers in the trade, cases of goods are received from a production line on an infeed conveyor. The cases of goods can be, for example, aluminum cans filled with beverages and wrapped in cardboard boxes, plastic water bottles shrink-wrapped together, or any other case or bundle. The cases of goods can be any product packaged in a similar manner or shape as these examples that is ready to be further packaged on a pallet. The palletizer groups the cases in layers, then successive layers are stacked on top of one another to form a load. The load of cases in turn can be stacked on top of a base, such as a pallet, that facilitates movement of the load by machine, such as by a forklift. The palletizer arranges the cases into layers and stacks them at a rapid pace—a pace equaling the speed at which the cases are received from the infeed conveyor.
For stability, the layers of cases can be arranged into a pattern. The patterns of adjacent layers may be alternated so that the load of cases is well supported, secure, and balanced. In order to arrange the cases in a layer into a desired pattern appropriate for stacking on top of the previous layer, it may be necessary to turn some of the cases as the layer is formed so that certain cases have a different orientation relative to the layer than others.
During the process of case turning, the cases can be damaged. Typically a prior art turning device comes into contact with a portion of the case while the case is traveling forward in a direction of case travel on the conveyor system of the palletizer. The turning device pushes on one end of the case and temporarily slows the forward movement of the one end of the case while the other end of the case continues to move forward at a greater speed than the one end. The difference in the forward speed of each end of the case causes the case to rotate. The contact of the turning device with the cases during case turning can generate significant forces when the cases are traveling at high speeds. As a result, the packaging of the case, or even the product itself, can be damaged during case turning. Also, case turning can cause the palletizer to operate unreliably. The case turning can cause the packaging of the case to come loose and jam the machinery of the palletizer. The case turning machinery itself can wear more quickly than other components of the palletizer because of its harsh contact with the cases. As a result of its more rapid wear, the case turning machinery can necessitate more frequent maintenance and down time of the palletizer. In addition, to operate effectively the case turning procedure can require the palletizer to operate at a lower case per minute speed than it might otherwise operate if the case turning did not occur.
Thus, benefit can be had from case turning that operates reliably and quickly, while causing less damage to the cases, so that losses from damaged cases can be minimized and so that the palletizer can be run at a more rapid pace and more reliably.
For convenience, similar elements are designated throughout the drawing figures with the same reference numerals.
The invention provides various methods of improving the turning of cases on a palletizer and palletizers capable of carrying out the various methods. In one aspect of the invention, cases may be turned simultaneously in groups through a single turning operation, rather than individually, in order to reduce the number of collisions that are necessary to turn the cases and form the desired pattern. For example, if contiguous first and second cases are to be oriented 90 degrees relative to the direction of case travel on the palletizer, then the two cases can be turned simultaneously in the same turning operation by the turning device contacting the first case only. The first case is turned by the contact with the turning device, and the second case is turned simultaneously due to its contact with the first case.
As previously stated, the cases are turned by a turning device 200. The turning device 200 could be an arm which moves laterally relative to the direction of case travel from a first lateral position, or rest position, outside of the path of the cases to a second lateral position in the path of the cases to collide with the cases. Such an arrangement is shown, for example, in
The turning device 200 also comprises an actuating means for moving the turning device from its rest position to a position where it will collide with the cases. The actuating means may comprise a pneumatic cylinder, a linear motor, a lead screw, a rack and pinion, a belt and pulley system, or any of a number of other known and functionally comparable actuating systems. In the drawings herein, a pneumatic cylinder 220 is provided as the actuating means.
According to this aspect of the invention, because multiple cases are turned together, the number of collisions between the turning device and the cases is reduced. The number of collisions is less than the total number of cases that are turned. While only the simultaneous turning of two cases has been described and illustrated, more than two cases may also be turned simultaneously in a similar manner. Of course, the same apparatus capable of turning multiple cases together may also be used to turn individual cases independently, or may also be used to turn selective multiple cases together and selective individual cases independently, as desired.
In another aspect of the invention, the speed at which the cases move on the conveyor system of the palletizing machine can be reduced as the cases enter the portion of the conveyor system where the cases are turned. In one embodiment of a palletizer illustrated in
Alternatively, if the speed of the cases is not slowed adequately so that the cases arrive at the turning device 200 back-to-back, a retractable stop 141 can be provided in the conveyor system 100 before the turning device 200 in order to group several cases together to be turned simultaneously. The stop 141 can selectively hold a case or group of cases stationary on the conveyor system 100 until the cases to be turned simultaneously have been grouped together and are touching one another. Then the stop 141 is retracted and the group of cases moves forward again in the direction of case travel toward the turning device 200.
If the groups of cases to be turned simultaneously arrive at the turning device already touching one another, then there would be no need for a stop to temporarily hold the cases stationary for grouping.
In order for the reduction in speed of the cases in the turning area 140 to consistently position the cases in close proximity to one another without using any stops 141, the infeed conveyor 110 must deliver cases continuously to the palletizer. In order to ensure that the infeed conveyor 110 delivers cases continuously to the palletizer, an accumulator conveyor 150 may be provided with a retractable stop 151. The retractable stop 151 will temporarily hold the cases until enough cases are accumulated in the accumulator conveyor 150 to make up an entire layer of cases for the load. The retractable stop 151 will then be retracted and permit the cases to move forward in the direction of case travel to the infeed conveyor 110 with each of the cases being back-to-back. It is also possible to simply turn off the accumulator conveyor 150 and let cases collect on this conveyor until enough cases have been accumulated to make up an entire layer of cases for the load. Then the accumulator conveyor 150 is turned back on to convey the cases forward in the direction of case travel to the infeed conveyor 110 with each of the cases being back-to-back.
In another aspect of the invention, the turning device 200 may be provided with a component of movement in the direction of case travel. When the cases collide with the turning device 200, the turning device can be moved forward in the direction of case travel to reduce the net speed of the collision. Because of the reduction in the net speed of the collision with the turning device 200, collision forces on the cases are reduced and some damage to the cases can be avoided.
An actuation means is provided for moving the turning device 200 in the direction of case travel. The actuating means may comprise a pneumatic cylinder, a linear motor, a lead screw, a rack and pinion, a belt and pulley system, or any of a number of other known and functionally comparable systems. In the drawings herein, a pneumatic cylinder 230 is provided as the actuating means for moving the turning device in the direction of case travel. Before the turning device 200 collides with the case, the actuating means can actuate the turning device to move the turning device in the direction of case travel, thus reducing the net speed of the collision.
As used herein, the description of a turning device moving in a direction of case travel will be met not only when the turning device is moving substantially parallel to the movement of the cases, but also when the turning device is moving in a direction diagonal to the movement of the cases, or is moving in some other direction, so long as the turning device has at least a component of movement in the direction of case travel.
The actuating means for moving the turning device 200 in the direction of case travel may actively actuate, for example by a pneumatic power system coupled to a pneumatic cylinder, or may passively actuate, for example by a mechanical or air spring. Passive actuation would occur with an air spring when a case collides with the rod 210 and the fluid within the cylinder 230 is compressed as the rod 210 moves in the direction of case travel under force of the case. The air spring could be constructed by closing the end of the cylinder 230 so that movement of the rod 210 toward the cylinder 230 compresses the fluid in the cylinder. The cylinder might also include a damper for damping the movement of the rod 210.
As used herein, the description of the turning device 200 moving in, or being propelled in the direction of case travel during collision with the cases is met i) when the turning device is actively actuated by moving the turning device with an active actuator independent of the occurrence of a collision with a case, or ii) when the turning device is moved in response to the collision with the turning device actuated by an actuating means which passively responds to the force of the collision, such as a spring.
While reducing the impact forces, the slowing of the net collision speed through either the reduction in the speed of the cases in the turning area 140 of the palletizer, and/or through the movement of the turning device 200 in the direction of case travel during the collision can cause poor turns where all the cases are not consistently reoriented to the desired orientation. In order to prevent poor turns, it may be necessary to move the turning device 200 in the opposite direction of case travel throughout the case's turn or near the end of the turn. When the turning device 200 is moved in the opposite direction of case travel, the net speed between the cases and the turning device is increased. Of course, when the turning device 200 is provided with an actuation means that is used to move the turning device 200 in the direction of case travel during collisions with the cases, the same actuation means can also be used to move the turning device in the opposite direction of case travel near the end of a case's turn.
If valve 250 is now energized to move to its energized, or leftward position in
Whether it is necessary to move the turning device 200 opposite the direction of case travel to assist with the turn is dependent upon the case speed and the case weight, among other factors. Slower moving cases and heavier cases may require this assistance, while faster moving cases and lighter cases may not.
Although the invention has been described through a description of a particularly preferred arrangement of components, and through a description of a particular sequence of steps in a method, various alternative configurations, alternative steps, and alternative step sequences are also possible. Modifications to the preferred embodiments will be readily apparent to those skilled in the art without departing from the spirit and scope of the invention. Thus, the foregoing descriptions of the preferred embodiments are illustrative only and are not intended to limit scope of the invention to the preferred embodiments. The scope of the invention shall be defined by the appended claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 1759220 | Brown | May 1930 | A |
| 3332531 | Chaney | Jul 1967 | A |
| 3559782 | Lesley et al. | Feb 1971 | A |
| 3815196 | Gotham et al. | Jun 1974 | A |
| 3930573 | Wyman | Jan 1976 | A |
| 3946880 | Schmitt | Mar 1976 | A |
| 3954190 | Howard et al. | May 1976 | A |
| 4026422 | Leenaards | May 1977 | A |
| 4063632 | Neth et al. | Dec 1977 | A |
| 4067456 | Schmitt | Jan 1978 | A |
| 4132387 | Somerville et al. | Jan 1979 | A |
| 4162016 | Schmitt | Jul 1979 | A |
| 4195959 | Schmitt | Apr 1980 | A |
| 4197046 | Shank | Apr 1980 | A |
| 4239433 | Hanson | Dec 1980 | A |
| 4298305 | Neth | Nov 1981 | A |
| 4316693 | Baxter et al. | Feb 1982 | A |
| 4498573 | Anderson et al. | Feb 1985 | A |
| 4681203 | Kornylak | Jul 1987 | A |
| 4930615 | Nash | Jun 1990 | A |
| 4993536 | Bell | Feb 1991 | A |
| 5062613 | Petrachkoff | Nov 1991 | A |
| 5092447 | Wyman | Mar 1992 | A |
| 5096050 | Hodlewsky | Mar 1992 | A |
| 5118243 | Huebner et al. | Jun 1992 | A |
| 5188211 | Ringot et al. | Feb 1993 | A |
| 5195627 | Wyman | Mar 1993 | A |
| 5213193 | Mullins | May 1993 | A |
| 5518103 | Achelpohl et al. | May 1996 | A |
| 5548198 | Backstrand | Aug 1996 | A |
| 5660262 | Landrum et al. | Aug 1997 | A |
| 5967292 | Corrales | Oct 1999 | A |
| 6067456 | Duran | May 2000 | A |
| 6082523 | Weeks | Jul 2000 | A |
| 6454082 | McTaggart et al. | Sep 2002 | B1 |
| 6464217 | Kulpa et al. | Oct 2002 | B1 |
| 6499583 | Sohlberg | Dec 2002 | B1 |
| 6516940 | Hart et al. | Feb 2003 | B1 |
| Number | Date | Country | |
|---|---|---|---|
| 20040069596 A1 | Apr 2004 | US |