Casement window operator with adjustable bushing

Information

  • Patent Grant
  • 6672010
  • Patent Number
    6,672,010
  • Date Filed
    Tuesday, September 26, 2000
    24 years ago
  • Date Issued
    Tuesday, January 6, 2004
    21 years ago
Abstract
A housing assembly which can accommodate either one of a split arm drive mechanism and a dual arm drive mechanism for a casement window. The housing assembly includes an escutcheon and a base as well as an adjustable bushing that is adjustable to at least two positions, one for the split arm drive mechanism and the other for the dual arm drive mechanism. A worm drive assembly is contained within the housing assembly for driving the drive mechanism. A handle is snap fitted into the worm drive assembly for rotating the worm drive assembly and moving the casement window. A spacer is mounted to the base to enable the base to fit a wide variety of window configurations.
Description




FIELD OF THE INVENTION




The present invention relates to an operator or drive mechanism for a casement window. Still more specifically, the present invention relates to a single casement window operator which may be used for both dual arm and split arm drive mechanisms. Still more specifically, the present invention relates to a casement window operator which incorporates a spacer underneath the base to provide a water barrier between the operator and the window.




BACKGROUND OF THE INVENTION




Casement window operators are known and typically include a hand crank that drives a worm gear and an arm or lever which pushes the window sash open. The worm gear is meshed with a gear segment which is part of a lever or linkage assembly that is connected to the sash. The worm gear includes shafts at each end with one of the shafts being splined. The splined shaft is received in the end of the crank or handle. The worm gear and gear segment are partially accommodated within a housing or escutcheon with the splined shaft of the worm gear extending outward through the housing to mateably engage the crank. When the crank is turned, the worm gear causes the gear segment and lever to rotate which causes the sash to pivot on its hinges between open and closed positions.




There are three general types of casement operators. One type is a single arm operator. The single arm operator has an arm which pivots about an axis that is fixed with respect to the window frame and worm gear. The remote end of the arm carries a bearing which slides in a track mounted to the underside of the sash. The single arm operator is made in a wide range of sizes in order to accommodate a range of sash widths. An advantage to the single arm is its ability to open a sash. One disadvantage with single arm operators is the torque required to move the sash towards its fully open position. Specifically, because of the sliding connection between the arm and the sash, the torque required to move the sash increases as the sash moves between its closed and open positions. Near the fully open position, the amount of torque required to twist the handle or crank may be unacceptably high.




A second conventional casement operator is the split arm operator. This operator is similar to the single arm operator in that it includes a drive arm that rotates about a fixed axis with respect to the worm gear. However, a split arm operator also includes a second arm that has a pivot joint in the middle of the second arm and the remote end of the second arm is secured through a pivotable mounting to a fixed point on the sash. The split arm operator is manufactured in a variety of sizes so there is a split arm operator suitable for most sizes of residential windows. A disadvantage of the split arm operator is its difficulty in opening a sash. On the other hand, an advantage of the split arm operator is its ability to extend the sash to its fully open position.




A third conventional type of window operator is the dual arm operator. The dual arm operator includes features common to both the single arm and split arm operators. Specifically, the dual arm operator includes one arm which rotates about a fixed axis in the housing and which carries at its far end a bearing to slide in a track mounted to the window sash, similar to the single arm operator. The dual arm operator also includes a second arm which has a pivot joint and which is secured at its remote end by a pivotable but fixed connection to the sash, similar to the split arm operator. Dual arm operators come in a variety of sizes to handle a variety of sash sizes.




Dual arm operators and split arm operators require different housing designs due to the different spacings between the rotational axes for the arms that rotate about a fixed axis and the worm gear. Specifically, both the dual arm operator and the split arm operator have a gear sector which rotates about a fixed axis. The radius of the gear sector for the split arm operator is larger than the radius of the gear sector for the dual arm operator. Accordingly, the distance between the rotational axis and the worm gear for the split arm operator is greater than the distance between the rotational axis and the worm gear for the dual arm operator. Hence, the base portion of the housing for the split arm operator must be configured differently than the base portion for the dual arm operator. However, this is inconvenient and costly given the fact that manufacturers often choose to utilize a single style design for both dual arm operators and single arm operators. It would be more cost efficient to generate an escutcheon/base combination which could be utilized for both split arm and dual arm operators.




Further, with both split arm and dual arm operators, the worm gear is equipped with a splined shaft that protrudes outward through the escutcheon. The splined shaft is mateably received in a shaped opening in the crank. If the crank or handle is removed, the unsightly splined shaft is left exposed. Even if a protective cap is provided for the splined shaft, the cap and shaft still protrude outwardly from the escutcheon and do not provide the sleek, low profile appearance that many interior designers and consumers demand. Therefore, there is a need for an improved worm gear assembly which provides an escutcheon having a low profile and which permits removal of the crank or handle without leaving an unsightly shaft protruding outward from the escutcheon.




Further, vinyl windows are manufactured by a number of different companies, with a number of different profiles. Accordingly, it is difficult to provide a single operator with a base that is capable of fitting the large number of vinyl window profiles that are present in the marketplace. Accordingly, there is a need for an improved base design which can be adapted to a wide variety of window profiles. Such a design would enable a single operator to be used on most or all of the vinyl windows currently being manufactured.




SUMMARY OF THE INVENTION




The present invention satisfies the aforenoted needs by providing an improved casement window operator that includes a base and an escutcheon that forms a housing for accommodating a drive gear. The base includes an elongated recess. The operator also includes a bushing. The bushing comprises an elongated flange that has a first end and a second end. The flange is connected to a shaft that extends upward from the flange. The shaft is connected to the flange at an eccentric position that is closer to the first end of the flange than the second end of the flange. The flange of the bushing is mateably accommodated in the recess of the base. The drive gear is mounted onto the shaft. The bushing may be removed from the shaft, rotated and reinserted into the recess to relocate the shaft and the drive gear with respect to the base.




By rotating the bushing, 180°, the rotational axis of the drive gear represented by the shaft of the bushing is relocated within the housing. As a result, the distance between the rotational axis of the drive gear from the worm gear is either shortened or lengthened. For a dual arm operator, the bushing is rotated so that the shaft is closer to the worm gear; for a split arm operator, the bushing is rotated so the shaft is farther away from the worm gear.




In an embodiment, the flange further comprises a raised surface that surrounds the shaft. The raised surface acts as a bearing support for the drive gear.




In an embodiment, the shaft comprises an axial hole extending through the shaft. The axial hole accommodates a screw. Further, the recess of the base also comprises two holes. A first hole accommodates the screw and is in alignment with the axial hole of the shaft when the flange of the bushing is mateably accommodated in the elongated recess in a first position. The second hole accommodates the screw and is in alignment with the axial hole of the shaft when the flange of the bushing has been rotated and is mateably accommodated in the recess in a second position.




In an embodiment, the flange comprises an underside. The underside of the flange comprises a protrusion that is spaced apart from the axial hole of the shaft. The protrusion is mateably accommodated in the second hole of the base when the bushing is in the first position. The protrusion is also mateably accommodated in the first hole of the base when the bushing is in the second position.




In an embodiment, the escutcheon comprises an underside and the shaft comprises a top end disposed opposite the shaft from the flange. The top end of the shaft engages the underside of the escutcheon.




In an embodiment, the underside of the escutcheon comprises a first recess and a second recess. The first recess receives the top end of the shaft when the bushing is in the first position; the second recess receives the top end of the shaft when the bushing is in the second position.




In an embodiment, the top end of the shaft is tapered.




In an embodiment, the first end of the flange of the bushing comprises a notch and the second end of the flange of the bushing comprises a notch. The first end of the elongated recess comprises a projection for mateably engaging the notch of the first end of the flange or the notch of the second end of the flange. Further, the second end of the elongated recess also comprises a projection for mateably engaging the notch of the first end of the flange or the notch of the second end of the flange.




In an embodiment, the base comprises an underside which comprises a lower portion disposed in registry with the escutcheon and a stepped upper portion that extends rearward from the lower portion. The window operator further comprises a spacer that engages the stepped upper portion of the underside of the base.




In an embodiment, the spacer is detachably and slidably connected to the stepped upper portion of the underside of the base.




In an embodiment, the present invention provides an improved worm drive assembly that is housed entirely within the housing defined by the base and the escutcheon as follows. Specifically, the base comprises an angled recess and an angled support. The worm drive assembly comprises a worm gear, a lower thrust bushing, a drive coupling and a retainer bushing. The worm gear comprises two ends, each end of the worm gear comprising a shaft. The shaft of one end of the worm gear is mateably received in the lower thrust bushing which, in turn, is received in the angled recess of the base. The shaft of the other end of the worm gear is mateably received in the drive coupling which, in turn, is mateably received in the retainer bushing. The retainer bushing engages the angled support of the base. The worm drive assembly is disposed entirely between the escutcheon and the base.




In an embodiment, the escutcheon comprises an underside and the retainer bushing comprises a top end that engages the underside of the escutcheon.




In an embodiment, the angled support of the base and the recess of the base support the worm drive assembly at an angle with respect to the base.




In an embodiment, the casement window operator further comprises a handle. The handle comprises an end. The escutcheon further comprises a hole for receiving the handle. The hole is in registry with the worm drive assembly. The end of the handle is mateably received in the top end of the retainer bushing.




In an embodiment, the end of the handle comprises a sidewall with a circumscribed recess. The top end of the retainer bushing comprises a radially inwardly protruding bead. The bead is received in the circumscribed recess of the end of the handle when the end of the handle is mateably received in the top end of the retainer bushing.




Other advantages and objects of the present invention will become apparent upon reading the following detailed description and appended claims, and upon reference to the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS




For a more complete understanding of the present invention, reference should now be made to the embodiments illustrated in greater detail in the accompanying drawings and described below by way of examples of the present invention.




In the drawings:





FIG. 1

is a perspective view of the operator housing made in accordance with the present invention and fitted with a split arm drive mechanism;





FIG. 2

is a perspective view of the housing of the present invention as equipped with a dual arm drive mechanism;





FIG. 3

is a perspective view of the dual position center bushing of the present invention which enables the rotational axis of a drive gear to be relocated with respect to the worm gear thereby enabling a single housing structure to accommodate both a split arm drive mechanism as well as a dual arm drive mechanism;





FIG. 4

is a bottom perspective view of the bushing shown in

FIG. 3

;





FIG. 5

is a perspective view of the base portion of the housing of the present invention with the bushing of

FIG. 3

in a first position;





FIG. 6

is a perspective view of the base portion of the housing of the present invention with the bushing of

FIG. 3

in a second position;





FIG. 7

is a perspective view of the base, worm drive assembly and bushing of the present invention as fitted with a portion of a single arm drive mechanism;





FIG. 8

is a perspective view of the worm drive assembly, base and bushing of

FIG. 7

as equipped with a dual arm drive mechanism;





FIG. 9

is an exploded view of the worm drive assembly of the present invention;





FIG. 10

is a sectional view of the retainer bushing shown in

FIG. 9 and a

partial view of an end of a crank or handle;





FIG. 11

is a perspective view of a spacer made in accordance with the present invention;





FIG. 12

is a side plan view of the spacer shown in

FIG. 11

;





FIG. 13

is a side perspective view of the housing and spacer made in accordance with the present invention;





FIG. 14

is a side perspective view of the housing and spacer shown in

FIG. 13

with the spacer moved laterally outward;





FIG. 15

is a bottom perspective view of the base of the present invention as attached to the spacer and escutcheon;





FIG. 16

is a bottom perspective view of the escutcheon and worm drive assembly of the present invention;





FIG. 17

is a bottom perspective view of the escutcheon and worm drive assembly of the present invention; and





FIG. 18

is a bottom perspective view of the escutcheon of the present invention.











It should be understood that the drawings are not necessarily to scale and that the embodiments are sometimes illustrated by phantom lines and fragmentary views. In certain instances, details which are not necessary for an understanding of the present invention or which render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.




DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS





FIG. 1

illustrates, in a perspective view, a split arm operator assembly


10




a


which includes an escutcheon


11


, a crank or handle


12


, a driven arm


13


and a second arm


14


. The split arm operator assembly


10




a


also includes a base


15


. The base


15


and escutcheon


11


form a housing for the drive mechanism which will be discussed below. Similarly,

FIG. 2

illustrates a dual arm operator assembly


10




b


that includes the same escutcheon


11


, handle


12


and base


15


shown in FIG.


1


. However, the dual arm operator assembly


10




b


includes a different driven arm


16


that includes a pivot joint


17


in the middle thereof and a non-jointed second arm


18


.




One principle component, in addition to the base


15


, that enables the present invention to provide a housing formed by the escutcheon


11


and base


15


which can be readily adapted to both the split arm drive mechanism and dual arm drive mechanism is the center bushing


19


illustrated in

FIGS. 3 and 4

. Specifically, the bushing


19


includes an elongated flange


21


that is connected to a shaft


22


. The shaft


22


is connected eccentrically to the flange


21


. That is, the shaft


22


is connected closer to one end


23


of the flange


21


than the other end


24


of the flange


21


. Each end


23


,


24


of the flange


21


includes a locating notch


25


,


26


respectively. Further, surrounding the shaft


22


is a raised surface


27


. As will be discussed below, the raised surface


27


provides a bearing surface for the gear end of either the split arm drive mechanism or dual arm drive mechanism. Further, as will be discussed below, the top end


28


of the shaft


23


is tapered by way of the beveled surface


29


and recessed surface


31


. Configuration enables the top end


28


of the shaft


22


, to be received in one of two locating recesses


32


,


33


disposed in the underside


34


of the escutcheon


11


as shown in

FIGS. 16 and 17

. Further, the flattened surface


35


of the top end


28


of the shaft


22


, engages the flattened surface


36


of the recess


32


or the flattened surface


37


of the recess


33


of the escutcheon


11


as shown in

FIGS. 16 and 17

as depending upon the position of the bushing


19


in the recess


38


of the base


15


as shown in

FIGS. 5-6

.




Turning to

FIGS. 5-6

, the elongated recess


38


of the base


15


is shown receiving the elongated flange


21


of the bushing


19


in two positions. Turning to

FIG. 5

, it will be noted that with the bushing


19


rotated as shown in FIG.


5


and received in the recess


38


, the shaft


22


is disposed adjacent to one end


39


of the elongated recess


38


as opposed to the other end


41


of the elongated recess


38


. In the position shown in

FIG. 5

, the shaft


22


is disposed closer to the worm drive assembly (not shown in

FIG. 5

) and therefore the position of the shaft


22


as shown in

FIG. 5

is suitable for a dual arm drive mechanism. In contrast, as shown in

FIG. 6

, the shaft


22


is disposed adjacent to the end


41


of the elongated recess


38


and therefore farther away from the worm drive assembly (not shown in FIG.


6


). Accordingly, the configuration shown in

FIG. 6

is suitable for a split arm drive mechanism. Therefore, by utilizing the combination of the elongated recess


38


and the appropriately shaped bushing


19


, two drive mechanisms can be accommodated utilizing a single base


15


and therefore a single housing design provided by the combination of the escutcheon


11


and base


15


.




Still referring to

FIGS. 5 and 6

, the elongated recess


38


is equipped with two protruding members


42


,


43


disposed at the opposing ends


39


,


41


of the elongated recess


38


respectively. The protruding members


42


,


43


are received in the notches


25


,


26


of the elongated flange


21


of the bushing


19


(see FIGS.


3


and


4


).




Still referring to

FIGS. 5 and 6

, the base


15


also provides support for the worm drive assembly


44


shown in FIG.


9


. Referring to

FIGS. 5

,


6


and


9


collectively, the base


15


includes an angled recess


45


which supports the lower thrust bearing


46


. The base


15


also includes an angled support


47


which supports the retainer bushing


48


. Stops


49


and


51


are provided to engage the arms


14


,


18


and


13


,


16


of the operator assemblies


10




a


,


10




b


as shown in

FIGS. 1 and 2

. Also shown in

FIGS. 5 and 6

are the elongated slots


52


,


53


which receive the protruding member


54


,


55


of the spacer


56


as shown in

FIGS. 11 and 12

.




Referring to FIG.


4


and

FIG. 15

, it will be noted that the underside


57


of the elongated flange


21


includes a downward protrusion


58


that is spaced apart from an axial hole


59


that extends through the shaft


22


. The axial hole


59


receives a screw (not shown) that extends through one of the holes


61


,


62


that extend through the underside


63


of the base


15


. Thus, in either position, the bushing


19


can be secured in place. Further, the protrusion


58


plugs the other of the holes


61


,


62


that are not used to receive a screw for securing the retainer


19


in place. The holes


64


,


65


(see also

FIGS. 5 and 6

) are utilized to secure the escutcheon


11


to the base


15


. The remaining holes


66


are utilized to secure the base


15


to the window.





FIG. 7

illustrates the base


15


with the bushing


19


configured for the arm


13


of a single arm drive mechanism. The arm


13


is connected to an arcuate gear sector


60


having an axis defined by the shaft


23


of the bushing


19


. The gear sector


16


engages the worm gear


67


as shown. Referring to

FIGS. 9 and 7

, the worm gear


67


includes shafts


68


,


69


at opposite ends thereof. The shaft


69


is received in the lower thrust bearing


46


which is accommodated in the angled recess


45


(see FIGS.


5


and


6


). The shaped shaft


68


is received in the drive coupling


71


which, in turn, is received in the retainer bushing


48


. The drive coupling


71


includes a shaped hole


72


for receiving an end


73


of the drive shaft


70


crank handle


12


. The end


73


of the drive shaft


70


of the handle


12


also includes a cylindrical portion


74


which includes a circumscribed recess


75


. The recess


75


receives the bead


76


disposed at the upper inside surface


77


of the top end


78


of the retainer bushing


48


(see also FIG.


10


). The cooperation of the bead


76


and circumscribed recess


75


provides a snap fit between the retainer bushing


48


and the handle


12


. Further, the cooperation between the shaped end


73


of the handle


12


and the shaped hole


72


of the drive coupling


71


ensures an efficient transmission of torque from the handle


12


to the worm gear


67


.





FIG. 8

illustrates the base


15


and bushing


19


of the present invention configured for a dual arm drive mechanism. Specifically, the bushing


19


has been rotated so that the shaft


23


is closer to the worm drive


67


so that the smaller gear sector


76


can engage the worm gear


67


. The gear sector


76


meshes with the gear sector


77


thereby rotating the arm


16


. The pivoting arm


18


pivots about the axis defined by the shaft


22


.





FIGS. 11 and 12

further illustrate the spacer


56


. As noted above, the upwardly directed protuberances


54


,


55


are received in the slots


52


,


53


respectively of the base


15


(see FIGS.


5


and


6


). The remaining slots, shown generally at


77


, enable the spacer


56


to be slidably connected to the base


15


. The connection of the spacer


56


to the base


15


is further illustrated in

FIGS. 13-15

.




Specifically, spaced fins


78


,


79


disposed at opposing ends of the spacer


56


are sized to receive the end walls


81


,


82


of the base


15


. The protuberances


54


,


55


are received in the slots


52


,


53


respectively. Screws or other suitable fasteners are inserted downward through the hole


66


to one of the slots


77


of the spacer. The position of the spacer can be slidably adjusted and then the screws tightened down to secure the relationship of the spacer


56


to the base


15


and the window (not shown). Also shown in

FIGS. 13 and 14

is the hole


83


in the escutcheon


11


for receiving the handle


12


. The base


15


further comprises an underside comprising a first portion


15


′ disposed beneath the escutcheon


11


and a second portion


15


″ that extends rearward from the first portion


15


′. The spacer


56


detachably and slidably engages the second portion.




Turning to

FIGS. 16 and 17

, the configuration of the underside


34


of the escutcheon


11


is illustrated. The opening


83


for receiving the handle also leads to a cylindrical support


84


for providing additional support to the retainer bushing


48


and worm drive


67


. The holes


85


,


86


are in registry with the holes


64


,


65


of the base (see

FIGS. 5 and 6

) and receive the screws that extend upward through the holes


64


,


65


of the base to secure the escutcheon


11


to the base


15


.




From the above description, it is apparent that the objects and advantages of the present invention have been achieved. While only certain embodiments have been set forth, alternative embodiments and various modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the spirit and scope of the present invention.



Claims
  • 1. A casement window operator comprising:a base connected to an escutcheon, the base and escutcheon forming a housing for accommodating a drive gear, the base comprising an elongated recess, a bushing comprising an elongated flange having a first end and a second end, the flange being connected to a shaft that extends upward from the flange, the shaft being connected to the flange at an eccentric position that is closer to the first end of the flange than the second end of the flange, the flange of the bushing being removably and mateably accommodated in the elongated recess of the base, the drive gear being mounted onto the shaft wherein the bushing is adapted to be removed from the elongated recess, rotated and reinserted into the elongated recess to relocate the shaft and drive gear with respect to the base.
  • 2. The casement window operator of claim 1 wherein the flange further comprises a raised surface that encircles the shaft and acts as a bearing support for the drive gear.
  • 3. The casement window operator of claim 1 wherein the shaft comprises an axial hole extending therethrough for accommodating a screw, and the recess of the base further includes a first hole and a second hole, the first hole accommodating the screw and being in alignment with the axial hole of the shaft when the flange of the bushing is mateably accommodated in the elongated recess in a first position, the second hole accommodating the screw and being in alignment with the axial hole of the shaft when the flange of the bushing has been rotated and is mateably accommodated in the recess in a second position.
  • 4. The casement window operator of claim 3 wherein the flange comprises an underside, the underside of the flange comprising a protrusion that is spaced apart from the axial hole of the shaft, the protrusion being mateably accommodated in the second hole of the base when the flange of the bushing is in the first position, the protrusion being mateably accommodated in the first hole of the base when the flange of the bushing is in the second position.
  • 5. The casement window operator of claim 1 wherein the escutcheon comprises an underside and the shaft comprises a top end disposed opposite an end of the shaft connected to the flange, the top end of the shaft engaging the underside of the escutcheon.
  • 6. The casement window operator of claim 5 wherein the underside of the escutcheon comprises a first recess and a second recess, the first recess receiving the top end of the shaft when the bushing is in a first position, the second recess receiving the top end of the shaft when the bushing is in a second position.
  • 7. The casement window operator of claim 6 wherein the top end of the shaft is tapered.
  • 8. The casement window operator of claim 1 wherein the first end of the flange of the bushing comprises a notch and the second end of the flange of the bushing comprises a notch,the elongated recess comprising a first end and a second end, the first end of the elongated recess comprising a projection for mateably engaging one of the notch of the first end of the flange and the notch of the second end of the flange, the second end of the elongated recess comprising a projection for mateably engaging one of the notch of the first end of the flange and the notch of the second end of the flange.
  • 9. The casement window operator of claim 1 wherein the bushing is rotated 180° to relocate the shaft and drive gear with respect to the base.
  • 10. The casement window operator of claim 1 wherein the base comprises an underside comprising a first portion disposed beneath the escutcheon and a second portion that extends rearward from the first portion, and wherein the window operator further comprises a spacer that engages the second portion of the underside of the base.
  • 11. The casement window operator of claim 10 wherein the spacer is detachably and slidably connected to the second portion of the underside of the base.
  • 12. The casement window operator of claim 1 further comprising a worm drive assembly, the base further comprising an angled recess and an angled support,the worm drive assembly comprising a worm gear, a lower thrust bushing, a drive coupling and a retainer bushing, the worm gear comprising two ends, one of the ends of the worm gear being connected to the lower thrust bushing, the lower thrust bushing being received in the angled recess of the base, the other one of the ends of the worm gear connected to the drive coupling, the drive coupling connected to the retainer bushing, the retainer bushing engaging the angled support of the base, the worm drive assembly being entirely disposed between the escutcheon and the base.
  • 13. The casement window operator of claim 12 wherein the escutcheon comprises an underside and the retainer bushing comprises a top end that engages the underside of the escutcheon.
  • 14. The casement window operator of claim 13 further comprising a handle, the handle comprising an end, the escutcheon further comprising a hole for receiving the handle, the hole being aligned with the worm drive assembly, the end of the handle being mateably received in the top end of the retainer bushing.
  • 15. The casement window operator of claim 14 wherein the end of the handle comprises a sidewall having a recess circumscribed therein and the top end of the retainer bushing comprises an radially inwardly protruding bead, the bead being received in the recess of the end of the handle when the end of the handle is mateably received in the top end of the retainer bushing.
  • 16. The casement window operator of claim 12 wherein the angled support of base and the angled recess of the base support the worm drive assembly at an angle with respect to the base.
  • 17. A casement window operator comprising:a base connected to and disposed beneath an escutcheon, the base and escutcheon forming a housing for accommodating a worm drive assembly, the base comprising an angled recess and an angled support, the worm drive assembly comprising a worm gear, a lower thrust bushing, a drive coupling member and a retainer bushing, the worm gear comprising two ends, one of said ends of the worm gear being connected to the lower thrust bushing, the lower thrust bushing being received in the angled recess of the base, the other one of said ends of the worm gear being operatively connected to the drive coupling member for being rotatably driven by said drive coupling member, the drive coupling member being connected to the retainer bushing the retainer bushing engaging the support of the base, the escutcheon comprises an underside and the retainer bushing comprises a top end that engages the underside of the escutcheon, a handle, the handle comprising a drive shaft fixedly connected thereto, the handle comprising an end, the escutcheon further comprising a hole for receiving the drive shaft of the handle, the hole being aligned with the worm drive assembly, the drive shaft of the handle being removably received in the top end of the retainer bushing.
  • 18. The casement window operator of claim 17 wherein the angled support of the base and the angled recess of the base support the worm drive assembly at an angle with respect to the base.
  • 19. The casement window operator of claim 17 wherein the drive shaft of the handle comprises a sidewall having a recess circumscribed therein and the top end of the retainer bushing comprises an radially inwardly protruding bead, the bead being received in the recess of the drive shaft of the handle when the drive shaft of the handle is received in the top end of the retainer bushing.
US Referenced Citations (26)
Number Name Date Kind
2022036 Haberstump Nov 1935 A
2214280 Lang Sep 1940 A
2214884 Kistner Sep 1940 A
2686669 Johnson Aug 1954 A
2817511 Reynaud Dec 1957 A
3098647 Teggelaar et al. Jul 1963 A
3250038 Steel May 1966 A
3523389 Gray Aug 1970 A
4189248 Sully Feb 1980 A
4209266 Bowen et al. Jun 1980 A
4253276 Peterson et al. Mar 1981 A
4445794 Sandberg May 1984 A
4860493 Lense Aug 1989 A
5152103 Tucker et al. Oct 1992 A
5205074 Guhl et al. Apr 1993 A
5272837 Nolte et al. Dec 1993 A
5493813 Vetter et al. Feb 1996 A
5531045 Piltingsrud Jul 1996 A
5531138 Vetter Jul 1996 A
5623784 Kuersten et al. Apr 1997 A
5802913 Winner Sep 1998 A
5839229 Briggs et al. Nov 1998 A
5937582 Taylor Aug 1999 A
6122863 Tippin et al. Sep 2000 A
6128858 Vetter et al. Oct 2000 A
6247270 Huml Jun 2001 B1
Foreign Referenced Citations (1)
Number Date Country
2 467 954 Apr 1981 FR