The present disclosure relates to an improved operator for a casement window.
A casement is a window that is attached to its frame by one or more hinges at the side. They are used singly, in pairs or even in greater numbers within a common frame, in which case they are hinged on the outside. Casement windows have a single sash, which is hinged on the side and cranks open on a metal track. The sash opens with the turn of a handle, making casement windows a great choice for hard-to-reach places, such as over countertops and sinks.
A casement window has a window sash which is moveably mounted within a frame by a pair of hinges mounted between the window frame and the top and bottom of the window sash. Typically, the arrangement is such that a track is configured within the window frame and an operator arm is connectable to the window sash. A hinge member interconnects the track and the sash window with the hinge member being pivotably connected to the sash arm and to the track. The hinge member is pivotably connected to a mounting shoe which is supported and guided for movement lengthwise of the track.
Casement window operators are well known and typically include a hand crank which drives a worm gear arrangement which is connected to an arm or lever which pushes the window sash open. The worm gear assembly includes a gear shaft having the worm at one end thereof with the other end of the gear shaft extending outwardly through the housing to engage a crank. When the crank is turned, the worm causes the worm wheel to rotate thereby causing the sash to pivot on its hinges between open and closed positions.
As previously noted, there are different opening arrangements for casement windows. A first type is a single arm operator which has an arm which pivots about an axis that is fixed with respect to the window frame and worm gear. The remote end of the arm carries a bearing which slides in a track mounted to the underside of the sash. A disadvantage with single arm operators is the torque required to move the sash towards its fully open position.
A second type of casement operator is the split arm variety. A split arm operator includes a second arm which has a pivot point in the middle of the second arm and the remote end of the second arm is secured through a pivotable mounting to a fixed point on the sash. While a split arm operator allows the window to extend to its fully open position, it does present difficulty at the time of the initial opening of the sash.
A third type of window operator is a dual arm operator which has one arm which rotates about a fixed axis and a housing which carries at its far end a bearing to slide in the track mounted to the window sash. There is also a second arm which has a pivot joint and which is secured at its remote end by a pivotable but fixed connection to the sash.
Many of the operators described above are relatively complex and difficult to assemble such that they will function in a reliable manner. A further problem in northern climates is the tendency of the operator to permit infiltration of cold air thus driving up energy costs.
Disclosed herein is a casement operator that greatly simplifies the mechanism required to open and close a casement window. According to one aspect of the casement operator disclosed herein, there is provided an operator for a window having a window frame and a sash operable between a window closed position in which the sash is received in the frame and a window open position in which the sash is swung outwardly from the frame. The casement operator includes a rack with a first end and a second end. The rack is slidable in a track disposed within the window frame.
The casement operator also includes an operator arm with a first end and a second end, the first end of the operator arm is interchangeably and rotatably connectable to either the first end or the second end of the rack depending upon the desired swing direction of the sash. The second end of the operator arm is rotatably connected to the sash. The casement operator further utilizes a shaft with a first end and a second end and a pinion mounted to the second end of the shaft. The pinion functionally engages with the rack and as the pinion rotates it imparts movement to the rack and the operator arm. The rack and the operator arm movement allow transitioning the sash between the window open and the window closed position.
It is an object of the present invention to provide a window operator which overcomes some of the disadvantages of the prior art.
It further is an object of the casement operator disclosed herein to provide a single operator that can function in either a left or right hand opening window.
It further is an object of the casement operator disclosed herein to reduce the number of operator mechanisms required for nearly all casement windows to a single set of standard components thereby substantially reducing the number of operators that must be inventoried.
It further is an object of the casement operator disclosed herein to substantially streamline the profile of the casement operator handle to minimize interference with window accouterments such as blinds and shades.
Various objects, features, aspects and advantages of the inventive subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawings in which like numerals represent like components. The contents of this summary section are provided only as a simplified introduction to the disclosure, and are not intended to be used to limit the scope of the appended claims. The contents of this summary section are provided only as a simplified introduction to the disclosure, and are not intended to be used to limit the scope of the appended claims.
The following description is of various exemplary embodiments only, and is not intended to limit the scope, applicability or configuration of the present disclosure in any way. Rather, the following description is intended to provide a convenient illustration for implementing various embodiments including the best mode. As will become apparent, various changes may be made in the function and arrangement of the elements described in these embodiments without departing from the scope of the appended claims.
The hinge shoe 28 is slidably disposed atop a hinge track 30 which is secured in position within a frame channel 32 that optionally may be formed into the base 34 of the window frame 14. Alternatively, the frame channel 32 may rest atop the frame 14 itself. The hinge track 30 is preferably secured in position within the frame channel 32 by a plurality of threaded fasteners 36 and includes a longitudinally extending overhanging flange 38 that serves to restrain an upwardly extending flange 40 on the hinge shoe 28 in position during translation of the hinge shoe 28 along the hinge track 30. In a preferred embodiment the overhanging flange 38 does not extend the entire span of the hinge track 30 thereby allowing for ready insertion of the upwardly extending flange 40 on the hinge shoe 28 into the gap G resulting from the overhanging flange 38 on the hinge track 30.
At a distal end 42 of the hinge track 30 is a riser 44 that extends upwardly. Mounted upon the riser 44 is an opening 46 in the distal end 48 of a support arm 50. The proximal end 52 of the support arm 50 is pivotally secured at roughly a midpoint 54 of the bottom side 56 of the hinge arm 18.
As seen in
The upper hinge shoe 72 is slidably disposed beneath an upper hinge track 74 which is secured in position within a frame channel 76 formed into the upper cross member 76 of the window frame 14. The upper hinge track 74 is preferably secured in position within the frame channel 76 by a plurality of threaded fasteners 78 and includes a longitudinally extending overhanging flange 80 that serves to restrain a downwardly extending flange 82 on the upper hinge shoe 72 in position during translation of the upper hinge shoe 72 along the upper hinge track 74. In a preferred embodiment the overhanging flange 80 does not extend the entire span of the upper hinge track 74 thereby allowing for ready insertion of the downwardly extending flange 82 on the hinge shoe 72 into the gap G resulting from the overhanging flange 80 on the hinge track 74.
At a distal end 84 of the upper hinge track 74 is a riser 86 that extends downwardly. Mounted over the riser 86 is an opening 88 in the distal end 90 of an upper support arm 92. The proximal end 94 of the upper support arm 92 is pivotally secured at roughly a midpoint 96 of the upper side 98 of the upper hinge arm 60.
As shown in
The second end 120 of the operator arm 116 is interchangeably and rotatably connectable to either the first boss 110 on the first end 102 or the second boss 112 on the second end 118 of the rack 110 depending upon the desired swing direction of the sash. The second end 120 of the operator arm 116 is rotatably connected to a downwardly extending boss 121 on the sash bracket 128 which in turn is secured to the sash 16 (not shown in
As shown in
As also shown in
The thumb plate shaft 222 extends through a bore 228 in a thumb plate 230 and extends to a distal end 232 of the thumb plate. The distal end 224 of the cylindrical shaft 222 and the distal end 232 of the thumb plate 230 are coterminous. The thumb plate 230 is rotationally secured in position with a set screw 234 installed at the distal end 224 of the cylindrical shaft 222.
In operation, and starting from a closed window orientation, a human operator unfolds the handle 186 including the thumb plate 230 from the handle cradle 160. Once the handle 186 and thumb plate 230 are elevated off of the cradle 160 the human operator positions the thumb plate 230 in a comfortable orientation allowing the handle to be rotated in the direction to open the window.
As seen in
As the human user rotates the handle 186, in the direction to open the window, the handle coupler 180 which is mounted over the splined shaft 180 and which has its own internal mating spline 182, imparts rotation to the pinion gear 148 which engages with the cutouts 106 in the rack 100 causing movement of the rack 100. The shaft 140 which passes through openings 152, 166 in both the cradle 160 and the window frame 14 maintains positional orientation because of the collar 154 located on the shaft 140 above the pinion gear 148. The collar 154 prevents the shaft 140 from dropping too low into the window frame 14 and provides for precise engagement with the cutouts 106 in the rack 100.
With the pinion gear 148 engaged with the cutouts 106 in the rack 100, the rotation of the pinion gear 148 is transferred to translation of the rack 100 within the track 108 of the window frame 14. As the rack 100 translates within the track 108 of the window frame 14 an opening 122 in the first end 118 of the operator arm 116 is mounted to the boss 110 of the first end 102 of the rack 100. The second end 120 of the operator arm 116 is secured to a sash bracket 128 as seen in
When moving the sash 16 into a fully open position, the translation of the rack 100 pulls the operator arm 116 which is connected to the sash bracket 128 which in turn causes the upper and lower hinge shoes 70, 28 to slide atop the hinge tracks 30, 74. Turning the handle 168 the opposite direction, causing the window to close, simply reverses the movement. The rack 100 reverses direction and causes the operator arm 116 to push on the sash brackets 154, 128. The sash brackets then transfers the force from the operator arm 116 to the sash 16 causing the hinge shoes 28, 70 to slide, or translate, atop their respective hinge tracks 30, 74 eventually returning the vertical panel 272 of the sash 16 to contact the window frame 14 and allowing the opposite vertical panel 274 of the sash 16 to come into contact with the opposite window frame member.
Having shown and described various embodiments of the present invention, further adaptations of the apparatus described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Potential modifications will be apparent to those skilled in the art. For instance, the examples, embodiments, geometries, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings. Moreover, the order of the components detailed in the system may be modified without limiting the scope of the disclosure.