This invention relates in general to production of oil and gas wells, and in particular to an automated vent system that prevents overpressure within an annulus in a wellhead assembly.
Systems for producing oil and gas from subsea wellbores typically include a wellhead assembly that includes a wellhead housing attached at a wellbore opening, where the wellbore extends through one or more hydrocarbon producing formations. Casing and a tubing hanger are landed within the housing for supporting casing and production tubing inserted into the wellbore. The wellhead assembly may include strings of concentrically arranged casing, such as conductor pipe, surface casing, and an inner casing. Generally, the inner casing goes deeper than the conductor pipe and surface casing and lines the wellbore to isolate the wellbore from the surrounding formation. Tubing typically lies concentric within the inner casing and provides a conduit for producing the hydrocarbons entrained within the formation. Annuli are defined between each pair of adjacent concentric tubulars, where each annulus is sealed from pressure communication with any of the other annuli. If an annulus becomes unexpectedly pressurized, such as from a leak or thermal expansion of fluids contained and constrained within the annuli, a pressure differential will develop across a tubular wall adjacent the pressurized annulus. Thus a need exists to periodically monitor the pressure in certain tubular members in well installations, both on land and at sea.
Checking the pressure in the inner wellhead housing would indicate whether or not any casing leakage or thermal loading has occurred. Subsea wells do not monitor pressure because installing a pressure sensor requires drilling a hole through the sidewall of the inner wellhead housing, which is operationally non-preferred from a pressure integrity standpoint. Further, because of the harsh and corrosive environments often encountered in petroleum well installations, an installed pressure sensor may succumb to the damaging effects and no longer perform.
Disclosed herein is a wellhead assembly that includes a pressure vent device that vents between concentric annuli when the pressure differential reaches or exceeds a pre-designated value. In an example embodiment the wellhead assembly includes an inner annulus set in a wellbore that is surrounded by an outer annulus. A tubular is between the inner and outer annuli that has a relief valve set in a sidewall. When closed, the relief valve forms a pressure seal between the inner annulus and outer annulus. The relief valve can selectively opened to allow venting from the higher pressure of the inner annulus and outer annulus. After the inner and outer annuli are substantially pressure equalized, the relief valve then closes. A designated pressure differential between the inner annulus and outer annulus can cause the relief valve to open. In an example embodiment, the relief valve includes a valve seat having a surface in pressure communication with one of the inner annulus or the outer annulus and that is biased to a closed position by a spring. The wellhead assembly may also include a passage leading through the wellhead from one of the annuli. Optionally, a pressure sensor can be set in one of the inner annulus or outer annulus. In an alternative embodiment, the inner annulus can be a tubing annulus and the outer annulus can be a casing annul us and the pressure relief valve allows flow from the casing annulus to the tubing annulus when in the open position. In an alternate example, the wellhead assembly includes a blocking sleeve selectively mounted within one of the annuli and into sealing contact with a vent side of the relief valve to block flow through the relief valve.
Also disclosed herein is a method of managing wellbore annulus pressure, in an example embodiment the method involves suspending a tubular in the wellbore that creates an inner annulus in the tubular and an outer annulus around the tubular. In the example method the tubular has a vent valve set in its sidewall, the vent valve opens in response to a pressure difference across the sidewall of the tubular. The pressure difference can be created when one of the inner annulus or outer annulus experiences an increase in pressure. The vent valve opens when the pressure difference is above a designated pressure differential. When open, pressure vents across the tubular to equalize the pressure in the inner and outer annuli. Thus when the pressure difference between the annuli falls below a set value, the vent valve closes. This example can also include monitoring pressure in the inner or outer annulus via non-intrusive means. The inner annulus can be a tubing annulus and the outer annulus can be a casing annulus. In an example embodiment, the annulus having a higher pressure is the outer annulus. In an alternative step, a bridging sleeve may be set in the tubular adjacent the vent valve to override the vent valve function. The wellhead assembly can include a vent passage for venting flow from the inner or outer annulus having the higher pressure through a wellhead and out of the wellbore.
An alternative embodiment of a wellhead assembly is described herein that is set over a well. Tubing is suspended in the well and circumscribed by a string of inner casing, that is surrounded by a string of outer casing. The tubing and inner and outer casings define an inner annulus between the tubing and inner casing and an outer annulus between the inner and outer strings casing. Also included is a pressure relief valve set in a passage in a side wall of the inner casing that blocks flow through the passage when a pressure difference between the inner annul us and outer annulus is less than a designated pressure differential and is selectively moveable out of the passage when a pressure difference between the inner annulus and outer annulus is greater than a designated pressure differential so that flow communicates through the passage from the outer annulus to the inner annulus. Optionally included with the wellhead assembly is a tubing annuls passage leads from the inner annuls and to an exterior of the wellhead assembly. Yet further optionally, a pressure sensor can be included in one of the inner annulus or outer annulus. Communication between the outer annulus and the exterior of the wellhead assembly may be limited to a flow path through the pressure relief valve. A blocking sleeve can be included that is selectively installable within the tubing annulus and into sealing contact with a side of the passage (during for instance a planned well workover).
The wellhead housing 16 coaxially circumscribes a tubing hanger 20 and production tubing 22 supported by the tubing hanger 20. A casing hanger 24 is also coaxially landed on a shoulder 26 within the wellhead housing 16. The shoulder 26 is formed on the inner radius of the wellhead housing 16 and projects inward towards the wellhead assembly axis AX. Casing 28, which is supported from the bottom end of the casing hanger 24, depends downward circumscribing the production tubing 22. The casing 28 defines a casing annulus 30 between it and the wellhead housing 16 and surface casing 18. A tubing annulus 32 is defined between the casing 28 and tubing 22. A seal 34 is shown disposed, in the space between the casing hanger 24 and high pressure housing 16, thereby isolating the casing annulus 30 from the tubing annulus 32.
A typical production tree 36 is shown mounted on the upper end of the high pressure housing 16; although this may take many alternative forms and is not intrinsic to the disclosure. The production tree 36 includes a main bore 38 that is axially formed through the production tree 36 and in fluid communication with the production tubing 22. A sealingly engaged sleeve 39 projects between the upper end of the tubing hanger 20 and the main bore 38. The main bore 38 is selectively opened or closed with a swab valve 40 shown disposed at its upper end. A production port 42 projects laterally from the main bore 38 through the outer circumference of the production tree 36. Flow through the production port 42 is regulated with an inline wing valve 44.
The pressure rating of the outer conductor pipe 14 and outer wellhead housing 12 is less than the surface casing 18 and high pressure wellhead housing 16. Pressure rating of the intermediate casing 28 is compatible with the pressure rating of the surface casing 18 and often higher. However, a leak may occur in the intermediate casing 28 or associated seals (typified by 34) and/or (most probably) thermal transients can cause undue pressure to become present in the annulus 30. Under some conditions, this can cause collapse of the casing 28 (i.e. if caused by thermal transient conditions) or rupture of surface casing 18 releasing wellbore fluids directly to the adjacent environment in the latter case
An optional pressure sensor 50 is shown mounted on the outer conductor pipe 14. The pressure sensor 50 would typically be a non-intrusive device, capable of monitoring pressure level in the annulus 30 without being in direct communication with the annulus 30. An example of a sensor 50 is depicted in U.S. Pat. No. 5,492,017 assigned to the assignee of the present application. Measurements made by the pressure sensor 50 can be conveyed to the controller 48 via a communication link 51 connected between the sensor 50 and controller 48
A vent valve 52 is illustrated that selectively allows communication through the intermediate casing 28 between the outer annulus 30 and inner annulus 32. In this embodiment, the vent valve 52 operates as a pressure relief valve and opens at a specific set pressure to allow communication between the casing annulus 30 and tubing annulus 32. An embodiment of the vent valve 52 is shown in a side sectional view in
Still referring to
A channel 78 is formed in the side of the seal 74 opposite the casing annulus 30 thereby defining a space 79 between the seal 74 and bottom of the groove 75. Flow passages 80 are shown in the body 70 that provide communication between the space 79 and the tubing annulus 32. The sealing interface between the seal 74 and valve seat 72 and body 70 as shown in
Fluid flow during venting from the casing annulus 30 to the tubing annulus 32 reduces the pressure in the casing annulus 30; and also reduces the pressure differential between the easing annulus 30 and the tubing annulus 32. Removing the pressure different allows the spring 77 to reseat the valve seat 72 and reinstate the sealing interface as illustrated in
In one example of use, when pressure in the casing annulus 30 approaches a designated pressure that may potentially damage wellbore assembly 10 hardware, the vent valve 52, automatically reverts to the open position of
As a contingency, later in field life if desired, during for instance recompletion, the vent valve 52 can be overridden by installation of a contingency “patch” or sleeve 64 (
In an alternative embodiment, the production tree 36 includes an annulus line 82 that extends from the tubing annulus 32, through the tubing hanger 20, and to the annular space 84 between the tubing hanger 20 and the production tree 36. The annulus line 82 has a valve that can be opened to bleed off pressure it receives from the pressurized (or leaking) casing annulus 30 in an example of use, the valve 52 allows flow only from the casing annulus 30 to the tubing annulus 32, and not vice-versa. As indicated above, the casing annulus 30 is closed and sealed at its supper end by the seal 34, also referred to as a casing hanger packoff. Optionally, the production tree 36 could be in a horizontal configuration, in which case the tubing annulus line 82 would bypass the tubing hanger 20.
While the invention has been shown or described in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention. For example, the vent valve 52 can be of the form found in Fenton et al. U.S. Pat. No. 6,840,323, which is assigned to the assignee of the present application and incorporated by reference herein. Optionally, the vent valve 52 can be made of a valve member urged closed by a resilient member, such as a spring, that compresses in response to a designated pressure differential.
This application claims priority to and the benefit of co-pending U.S. Provisional Application Set. No. 61/261,882, filed Nov. 17, 2009, the full disclosure of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4632188 | Schuh et al. | Dec 1986 | A |
6840323 | Fenton | Jan 2005 | B2 |
7219741 | Fenton | May 2007 | B2 |
7240739 | Schoonderbeek et al. | Jul 2007 | B2 |
20020074127 | Birckhead et al. | Jun 2002 | A1 |
20030010503 | Staudt | Jan 2003 | A1 |
20050189107 | McVay et al. | Sep 2005 | A1 |
Entry |
---|
The GB Search Report issued in connection with corresponding GB Application No. GB1019091.6 on Jan. 20, 2011. |
Number | Date | Country | |
---|---|---|---|
20110114333 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61261882 | Nov 2009 | US |