The present invention relates generally to drilling a wellbore, and more particularly to the drilling tools used at the end of a casing or liner within the wellbore. The present invention concerns drilling tools (and methods for forming drilling tools) that are attachable to a casing or liner string. In the context of the present invention, the terms casing and liner are used interchangeably.
In conventional drilling techniques, a longitudinally extending string comprising sections of drill pipe is secured to a drill bit of a larger diameter than the drill pipe. After a selected portion of the wellbore has been drilled, the drill string is removed and a string of tubular members of lesser diameter than the wellbore, known as a casing string, is placed in the wellbore. The annulus between the wall of the wellbore and the outside of the casing string is then filled with cement by pumping the cement down through a casing shoe or reamer shoe disposed at the end of the casing string.
In an alternative technique, designed to address the inefficiencies associated with making multiple wellbore trips in the conventional drilling technique discussed above, it is now known to drill with casing. In this technique, the drilling operation employs a drill bit, termed a casing bit, which is attached to the end of the casing string. The casing bit functions not only to drill the earth formation, but also to guide the casing string into the wellbore. The casing bit remains in place during subsequent cementing of the casing in place. The casing string is thus run into the wellbore as the wellbore is being formed by the casing bit. This eliminates the need for one or more extra trips to retrieve a drill string and drill bit after reaching a target depth where cementing is desired.
In either technique, additional drilling beyond the end depth of the casing string may be required. If so, the operator must drill out the casing end tool (shoe or bit) to reach the underlying formation. This is typically accomplished with a mill bit that is specifically designed to cut through the material from which the shoe is made. This has led to the development of casing end tools that are more readily drilled out. Primarily, such end tools use an aluminum alloy as the parent body material for the reamer nose or the cutting structure carrying face of the end tool. More recently, casing end tools made of alloyed steel have been commercialized and are run on casing prior to being drilled out with specially designed drill out PDC bits that carry an additional, standalone, overexposed tungsten carbide cutting structure to accomplish the drill out.
Prior art efforts relating to casing operations are set forth below. All references discussed herein are incorporated by reference.
U.S. Pat. No. 6,062,326 to Strong et al discloses a casing shoe/reamer with cutting means. The shoe/reamer has flutes (blades) that in one embodiment carry PDC cutters along the gage and across the nose of the tool. The tool is disclosed as being made either from drillable aluminum or non-drillable material. In one embodiment the nose section is designed to be segmented with the segments being hinged to the outer portion of the tool so the nose segments can be pushed out and forward prior to cementing or as part of the cementing process.
U.S. Pat. Nos. 6,401,820 and 6,659,173 to Kirk et al describe a shoe with reaming members and a nose portion of aluminum or zinc alloy to allow the nose to be drilled out.
U.S. Pat. No. 6,443,247 to Wardley describes a casing drilling shoe with an outer drilling section constructed of a hard material such as steel and an inner section constructed of a readily drillable material such as aluminum. It further includes a device for displacing the outer drilling section radially outwardly.
U.S. Pat. No. 6,848,517 to Wardley describes a drillable drill bit nozzle for use in a drill bit that is going to be drilled out.
U.S. Pat. No. 7,066,253 to Baker describes a casing shoe or reamer shoe with an outer body of relatively hard material and a nose of relatively soft material which are interlocked. A following drill bit is used to drill out the majority of the soft material leaving a sheath of the soft material in the internal circumference of the hard material.
U.S. Pat. No. 7,096,982 to McKay et al discloses a drill shoe with a body constructed of a relatively soft material which is set with blades of a relatively hard material. The blades, typically steel, are further set with PDC cutters. Once the desired depth of drilling has been achieved, a displacement element is activated to push out the soft material and bend the blades to the sidewalls of the annulus. The displacement element can then be drilled out with a following bit. McKay wants to provide a cutting structure support mechanism with the steel blades strong enough to handle drilling loads.
U.S. Pat. No. 7,117,960 to Wheeler et al describes a bit for drilling with a completion string that incorporates an integrated female non-shouldered oilfield completion string thread. The specification describes the bit as being manufactured from a material which does not allow the bit to be readily drilled.
U.S. Pat. No. 7,216,727 to Wardley discloses a casing drilling bit constructed from a relatively soft material such as aluminum, copper, or brass alloy and is coated with relatively hard material. The cutting means of the cutting members consist of fine layers or cutting elements formed from hard material.
U.S. Pat. No. 7,395,882 to Oldham et al is for “Casing and Liner Drilling Bits”. This patent teaches making such tools with an axisymmetric inner profile to be evenly addressed by a subsequent drilling bit. It also teaches using nozzles deployed with sleeves, and gage sections that extend over the casing to which the tool is attached.
U.S. Patent Application Publication No. 2007/028972 to Clark et al is for “Reaming Tool Suitable for Running on Casing or Liner and Method of Reaming”. This published application also teaches an axisymmetric inner profile and further states “. . . the absence of blades in the nose area projecting above the face of the nose allows for an uninterrupted cut of material of the body shell in the nose, making the reaming tool PDC bit-drillable.”
U.S. Pat. No. 6,845,816 to Kirk et al teaches the use of an austemperized ductile iron (ADI) material for a centralizer. This material is more robust than aluminum and lighter than and more machinable than steel. See also, for example, ADI materials provided for sale by THDick.
Reference is also made to the Baker Hughes (Hughes Christensen) EZ Case Casing Bit System and the Weatherford International DrillShoe tools used for drilling with casing prior art devices (the disclosures of which are hereby incorporated by reference).
To summarize the prior art in this area, great attention has been given to the eventual drill out of the casing end tool, but little attention has been paid to the drilling efficiency of the casing end tool itself. Significant improvements to casing end tool performance can be made by adapting efficient drilling technology to the unique challenges of casing end tool structure and architecture. The other significant trade off in the prior art is in the choice of body material. Aluminum is readily drilled out but has a low resistance to erosion and abrasion, and cannot take the level of loading that steel is able to absorb. Alternatively, steel is more robust than aluminum but is much more difficult to drill out. If casing equipment is to be drilled out with a PDC bit then this has required the use of specially designed PDC drill out bits that compromise bit performance in the rock formations encountered after drill out.
What is needed are casing end tools (including casing bits and reamer shoes, liner drill in bits, liner reamers, and liner or casing mud motor driven reamers or mills) that perform effectively while drilling or reaming, are resistant to erosion, abrasion, and impact damage, and that can be effectively and consistently drilled out using standard PDC drill bits or cutter protected PDC bits.
Casing end tools used for casing drilling and reaming or liner drill in or reaming are presented which overcome many of the previously noted shortfalls of the prior art. These tools employ advanced design and manufacturing techniques not previously practiced on casing end tools. A preferred, but non-limiting, embodiment of a casing bit is described. A casing reamer embodiment is also described.
Several approaches are incorporated in the construction of the superabrasive cutting elements for the casing end tool. These cutter element configurations are intended to reduce the total volume of tungsten carbide substrate material that has to be crushed, pushed aside, or flushed up hole as a part of the drill out of the casing end tool. In a typical superabrasive cutting element, the vast majority of its length is made of tungsten carbide. In a preferred embodiment of the casing end tool, an included cutter uses a short substrate. An alternative embodiment uses a short tungsten carbide substrate, bonded to an additional length of alternative substrate material such as steel or vanadium carbide. This allows for casing end tools that are designed around cutters of a traditional total length while reducing the total amount of hard cemented tungsten carbide material to be encountered during drill out.
In a preferred embodiment, the PDC or other superabrasive cutting element cutting structure is designed to be force balanced to within less than 10%, or less than 7%, or less than 5%, or less than 2%.
In an embodiment the casing end tool employs partially shallow leached or partially deep leached PDC cutters. In an embodiment the casing end tool employs fully leached cutters that have been reattached to a metal substrate through a second high pressure and high temperature (HP/HT) press cycle.
In an embodiment the casing end tool employs a cutter layout that has trailing or leading redundant, tracking, or plural cutters. These cutters may be mounted on the same blade as a set of primary cutters or may be mounted on a separate and distinct blade or blades.
In an embodiment the casing end tool uses cutter back up structures. These cutter back up structures may be cast from the parent body material or may be manufactured separately and pressed, glued or brazed in. These structures may be made of steel, tungsten carbide, vanadium carbide, tungsten carbide matrix, domed superabrasive, or may be diamond impregnated segments. The cutter back up structures may be slightly overexposed, equally exposed, or underexposed in comparison to their corresponding primary cutter. The cutter back up structures may be at the same radial distance, or at a slightly greater distance, or at a slightly lesser distance from bit centerline than their corresponding primary cutter.
In an embodiment the casing end tool uses a large number of ports or sleeved ports. If sleeves are used they may be made of thin walled tungsten carbide, vanadium carbide, ceramic, or steel. The casing end tool of this invention purposefully does not use replaceable or threaded nozzles to choke flow and create higher hydraulic horsepower per square inch, but rather relies on flow rate through a large number of relatively large inner diameter sleeved ports for cleaning and drilling efficiency while reducing the incidence of bit body erosion. In an embodiment the port sleeves are highly extended into the inner plenum of the casing end tool to move the active area of erosive flow away from the inner concave surface of the tool.
In an embodiment the casing end tool does not have a regular axisymmetric inner profile, but rather a non-axisymmetric pattern of raised bosses or lands creating an uneven, undulating and irregular surface (it being understood that “axisymmetric” means “exhibiting symmetry around an axis; or exhibiting cylindrical symmetry”). The point here is to increase the amount of interrupted cut during drill out (by an axisymmetric mill/drill bit) to stress the center part of the bit body and improve fragmentation during drill out. At least some of the raised bosses or lands are meant to provide increased contact and support area if highly extended port sleeves are used. In an embodiment the raised lands coincide with channels cast into or machined into the casing end tool nose or face. On a bladed bit the internal lands radiate out generally from the center and alternate with internal channels. Each internal land is positioned to generally correspond with an external facial fluid channel, while an internal channel is positioned to generally correspond with an external facial blade. Even in this instance the preferred embodiment is non-axisymmetry of the height and radial layout of the internal lands. During drill out the lands are drilled first thus increasing the likelihood of break up and fragmentation of the corresponding raised facial features on the nose or face of the casing end tool when it is drilled out.
In any of the bladed embodiments slits may be cut or cast in between some of the cutter pockets to increase the rate of fragmentation during drill out. In any of the embodiments blind holes may be drilled or cast into the face of the casing end tool. These holes do not break into the plenum of the tool. The purpose of the holes is to create interrupted cuts and fracture points across the casing end tool face to accelerate the break up and fragmentation of the end tool face during drill out.
In an alternative embodiment the inner concave surface is an axisymmetric inner profile.
Embodiments of casing end tools that will be used as reamers may or may not have cutters deployed across the full nose or face of the tool. Embodiments of casing end tools that will be used as reamers may have eccentric noses, or symmetric noses. If concentric, the nose or face may have a concave “cone” section. Alternative embodiments of casing end tools intended for use as reamers may use domed superabrasive cutting elements, or tungsten carbide domes, rather than flat faced cutting elements. Domed elements create less torque and are less likely to bite into the borehole wall. In an embodiment a centralizing inner collar of aluminum, phenolic, or similar is employed to stabilize the drill out bit during drill out of the casing end tool.
In a preferred embodiment the primary material used to manufacture the body of the casing end tool is made of an austemperized ductile iron (ADI) material.
In an embodiment the casing end tool is manufactured using an aluminum or aluminum alloy material.
In an alternative embodiment the casing end tool primary body is manufactured using a copper, brass, zinc alloy, steel, or titanium material.
In another embodiment the casing end tool primary body is cast from crystalline tungsten infiltrated with a brass binder. In this embodiment the parent body material may be “graded” with the inclusion of a volume of tungsten carbide powder or paste deployed on the outermost surface followed by a layer or layers of mixed tungsten carbide and crystalline tungsten ultimately ending with pure crystalline tungsten covering the distance to the inner concave surface of the casing end tool. The purpose of the graded powder layers is to enhance the erosion resistance of the nose or face of the tool while using highly machinable crystalline tungsten for the majority of the powder mix in the tool body casting. By grading the material an abrupt transition from a soft material to a hard material during drill out is avoided. In this infiltration embodiment an outer cylindrical shell is typically made of steel. This steel cylinder acts as the blank or casting mandrel as is known in the art. Typically a blank makes up the central body of an infiltrated drill bit. In the case of this invention the blank is a cylinder that is placed around the periphery of the milled facial features in a graphite casting mold. The steel cylinder may be fitted into a machined groove in the mold to accurately locate it relative to the facial features. When the mold is loaded with tungsten carbide, or crystalline tungsten or both the infiltration metal, typically a nickel brass alloy is positioned to infiltrate down into the powder(s) in a furnace cycle. Preferably the lower end of the steel blank cylinder is channeled and/or grooved to create a positive lock with the cast face of the tool. Any excess steel of the cylinder which protrudes below the face of the casting may be machined off. The great advantage of this embodiment is that it can take advantage of existing materials, design software, casting methods, and machine tools used in the manufacture of tungsten carbide matrix drill bits.
In an alternative embodiment, the casing end tool incorporates a float valve for use in cementing operations. In an alternative embodiment, the casing end tool employs a float valve that is offset from center to improve the drillability of the float valve.
In an embodiment, the casing end tool incorporates one or more frangible zones or bypass ports to provide an additional passage area for the flow of cement out of the casing end tool during the cementing of the casing.
In an embodiment, the body of the casing end tool is nitride treated to alter the surface electrical charge so as to enhance bit cleaning
In an embodiment, the gage sections of the casing end tool are narrower in the uphole direction than they are in the downhole direction.
In an embodiment, the cutters on the casing end tool are deployed in pairs resulting in more, but shorter, blade sections. These blade sections are more likely to break up into smaller pieces during drill out making them easier to flush out of the hole.
In an embodiment, the central portion of the casing end tool is made by laser cutting or wire Electro Discharge Machining a cylinder, preferably of the parent body material, into pieces. These pieces are then tightly clamped together and machined for blades, pockets, and internal surface. The outer diameter is then threaded so that the center piece can be turned in a clockwise manner into a mating thread on the face of the main tool body, preferably stopping at an internal shoulder. When drilling downhole the forces on the cutter faces keep the center locked into the tool. Upon drill out by a following bit as the bit begins to machine away the internal surface of the casing end tool it will put torque on the threaded face insert to unscrew it in a counter-clockwise manner and allow it to come apart in more readily broken and flushed pieces.
In an embodiment, the casing end tool of the present invention is operated in conjunction with non-rotating casing centralizers to improve the transmission of weight and torque to the casing end tool.
In an embodiment, the cutters of the casing end tool are fitted with protective caps. In this instance the casing end tool has an enhanced capability of performing drill out through float equipment or a previously run and cemented casing end tool, or both.
In an embodiment, the upper gage sections of the casing end tool are set with up drill PDC cutters or other hard or superabrasive up drill cutting structure.
Reference is now made to
In a preferred embodiment, the primary material used to manufacture the body of the casing end tool is austemperized ductile iron (ADI). In an embodiment, the casing end tool is manufactured using an aluminum or aluminum alloy material. In an alternative embodiment, the casing end tool primary body is manufactured using a copper, brass, zinc alloy, steel, or titanium material.
In another embodiment, the casing end tool primary body is cast from crystalline tungsten infiltrated with a brass binder. In this embodiment the parent body material may be “graded” with the inclusion of a volume of tungsten carbide powder or paste deployed on the outermost surface followed by a layer or layers of mixed tungsten carbide and crystalline tungsten ultimately ending with pure crystalline tungsten covering the distance to the inner concave surface of the casing end tool. The purpose of the graded powder layers is to enhance the erosion resistance of the nose or face of the tool while using highly machinable crystalline tungsten for the majority of the powder mix in the tool body casting. By grading the material an abrupt transition from a soft material to a hard material during drill out of the wall of the tool is avoided.
In this infiltration embodiment an outer cylindrical shell of the bit is typically made of steel. This steel cylinder acts as the blank or casting mandrel as is known in the art. Typically a blank makes up the central body of an infiltrated drill bit. In this instance, the blank is a cylinder that is placed around the periphery of the milled facial features in a graphite casting mold. The steel cylinder may be fitted into a machined groove in the mold to accurately locate it relative to the facial features. When the mold is loaded with tungsten carbide, or crystalline tungsten or both the infiltration metal, typically a nickel brass alloy is positioned to infiltrate down into the powder(s) in a furnace cycle. Preferably the lower end of the steel blank cylinder is channeled and/or grooved to create a positive lock with the cast face of the tool. Any excess steel of the cylinder which protrudes below the face of the casting may be machined off. The great advantage of this embodiment is that it can take advantage of existing materials, design software, casting methods, and machine tools used in the manufacture of tungsten carbide matrix drill bits.
In an alternative embodiment, the casing bit incorporates a float valve for use in cementing operations. In an alternative embodiment, the casing end tool employs a float valve that is offset from center to improve the drillability of the float valve. See, for example, Published U.S. Application for Patent No. 2007/0246224, the disclosure of which is incorporated by reference.
Several approaches are incorporated in the construction of the superabrasive cutting elements for the casing end tool of
The cutters of
Reference is once again made to
In an embodiment the casing end tool does not have a regular or symmetric inner concave surface 102 profile but rather has an inner concave surface 102 with a non-axisymmetric pattern of raised bosses 140 or lands. This creates an uneven, undulating inner concave surface and thus an irregular inner profile. The point of this feature is to increase the amount of interrupted cut in the total bit body during drill out by a mill/drill bit which would present an axisymmetric face in contact with the inner concave surface 102. This will stress the center part of the tool bit body and improve fragmentation of the casing end tool during drill out. It will thus be much easier for the drill out operation to be completed. The outer convex surface 104 of the tool, on the contrary defines an axisymmetric shape.
In an alternative embodiment, the inner concave surface 102 of the casing end tool may have an axisymmetric inner profile which preferably does not match the axisymmetric face of the mill/drill bit.
At least some of the raised bosses 140 or lands provide an additional function in that they increase the thickness of the casing end tool structure at and around the ports 130. This is important to provide increased contact and support area if highly extended port sleeves 132 are used. The port sleeves 132 extend, for example, at least ¼ from the surrounding raised boss 140 or land.
In an embodiment the body of the casing end tool is nitride treated to alter the surface electrical charge to enhance bit cleaning. See, for example, U.S. Pat. No. 5,330,016, the disclosure of which is incorporated by reference.
In an embodiment the gage sections 116 of the casing end tool have a width that narrows in the uphole direction from the downhole direction. See, for example, U.S. Pat. No. 4,696,354, the disclosure of which is hereby incorporated by reference. This is not explicitly shown in
The casing end tool may incorporate one or more frangible zones or bypass ports to provide an additional passage area for the flow of cement out of the casing end tool during the cementing of the casing.
In an embodiment, the casing end tool of the present invention is operated in conjunction with non-rotating casing centralizers to improve the transmission of weight and torque to the casing end tool. See, for example, U.S. Pat. No. 5,797,455, the disclosure of which is hereby incorporated by reference.
In an embodiment, the position of some of the raised bosses/lands 140 coincides with channels 150 in the outer surface 104 that are cast into or machined into the casing end tool nose or face 152. This is shown in the cross-section of
Reference is now made to
Reference is now made to
In an embodiment, as shown in
In an embodiment, the cutters 108 on the casing bit are deployed in pairs resulting in more but shorter blade sections. See, for example, U.S. Pat. Nos. 4,714,120, the disclosure of which is hereby incorporated by reference. These blade sections are more likely to break up into smaller pieces during drill out making them easier to flush out of the hole.
In an embodiment, as shown in
In an embodiment the upper gage 116 sections of the casing end tool are set with up drill PDC cutters or other hard or superabrasive up drill cutting structure.
In a preferred embodiment, the casing bit 100 includes a PDC or other superabrasive cutting element cutting structure that is designed to be force balanced. See, for example, U.S. Pat. Nos. 4,815,342, and 5,042,596, the disclosures of which are incorporated by reference. Such force balancing is preferably designed to be within less than 10%, or less than 7%, or less than 5%, or less than 2%.
Force balancing may be performed with respect to the bit under several different (or over a range of) cutting conditions.
In an embodiment wherein the casing end tool is a reamer to be used in an existing wellbore, force balancing is accomplished by assuming incremental constriction diameters. For instance a simulated tool run of the reamer is performed assuming a 0.125″ reduction in the original hole diameter and the tool is force balanced to reflect the cutting done at the assumed constriction diameter. Afterwards further simulated tool runs are performed assuming greater reductions in the original hole size with force balancing being performed at each step. Eventually the reamer design is force balanced across a range of anticipated hole diameters so that in application of the actual reamer it will be force balanced for the actual constriction diameter that exists in the wellbore. See, U.S. Patent Application Publication No. 2010/0051349, the disclosure of which is incorporated by reference.
Reference is now made to
In any of the bladed embodiments described above, slits 190 may be cut or cast in the blades 106 between some of the cutter pockets, as shown in
In any of the embodiments described above, one or more holes 200 may be drilled or cast into the face of the casing bit (as shown in
Reference is now made to
Reference is now made to
Reference is now made to
The dotted lines 430 in
The nose assembly 402 can be cut apart into pieces from a single parent body material. These pieces 410 may then be tightly clamped together and machined to form the blades, pockets, and internal surface of the casing bit (as described herein). The outer diameter is then threaded so that the center piece can be turned in the first direction (for example, clockwise) into a mating thread 406 on the inner surface of the cylindrical sidewall portion 400. Rotation in the first direction during assembly is preferably stopped by an internal shoulder 450. When downhole drilling is performed, the forces on the cutter faces reinforce the first direction rotation and keep the nose assembly 402 locked into the tool.
The advantage of providing the multi-sectional (piece 410) nose portion assembly 402 is realized when the casing bit 100 must subsequently be drilled out. When this occurs, the mill/drill bit which is lowered into the borehole and rotated will not only begin to machine away the internal surface 102 nose assembly for the casing bit, but engagement of the mill/drill bit cutters on that internal surface 102 will put torque on the nose assembly 402 in a second direction (for example, counter-clockwise) opposite that used to reinforce threaded engagement. The nose assembly 402 will thus unscrew from cylindrical sidewall portion 400. Without the threaded clamping engagement, the nose assembly 402 will come apart into multiple pieces 410 and then be more readily broken and flushed from the borehole to complete drillout of the casing bit 100.
Reference is now made to
In
It will be understood that the cap 502 can, in a first implementation, be installed on the PDC cutter 500 after the PDC cutter has been secured to the cutter pocket of the bit body. Alternatively, in a second implementation, the cap 502 is installed on the PDC cutter 500 before securing the combined cutter-cap assembly to the cutter pocket of the bit body. Thus, the first implementation represents, for example, a retrofitting of a manufactured PDC casing bit to include a cap on desired ones of the included PDC cutters. Conversely, the second implementation represents, for example, the fabrication of a new PDC casing bit to include a capped PDC cutter at selected locations.
The cap 502 is held in place on the PDC cutter through a bonding action between the cap and the substrate 506 of the PDC cutter 500. More specifically, a portion of the cap is bonded to a portion of, or a majority of, the substrate 506 of the installed PDC cutter that is exposed outside of the casing bit body (i.e., outside of the cutter pocket). The cap 502 is attached to the PDC cutter, in one implementation, using brazing 508 to (tungsten carbide, for example) substrate 506. The thickness of the braze material 508 illustrated in
Preferably, the cap 502 is not brazed (i.e., is not attached) to the diamond table layer 504 of the PDC cutter 500. Rather, a first portion 510 of the cap over the front face of the diamond table layer 504 of the PDC cutter 500 simply rests adjacent to that face, while a second portion 512 of the cap over the substrate 506 is secured to that substrate by bonding. In this context, it is recognized that PDC diamond is not wetable with standard braze material. It is important that the diamond table 504 face of the PDC cutter 500 be protected by the cap 502 without the cap being directly bonded to the face. The second portion 512 of the cap 502 adjacent the substrate 506 of the PDC, which is brazed and attached to the substrate material, may further be attached through brazing to the bit body in an area at the back of the cutter pocket. The first portion 510 of the cap 502 may also be attached through brazing to the cutter pocket (more specifically, the base of the cutter pocket below the face of the PDC cutter). In some embodiments shorter substrate PDC cutters are used to increase the bond area of the cap at the base of the cutter pocket. In some embodiments the pocket base is configured to increase the bonding area available to the cap at the same location.
Some braze material 508 may advantageously be present between the cap 502 and the front face of the diamond table layer 504 of the PDC cutter, but this material does not serve to secure the cap to the diamond table layer. In a preferred embodiment, the braze material used to braze the cap to the cutter substrate adheres to the inner surfaces of the cap that are adjacent to the diamond table face and periphery of the PDC diamond layer. This braze material provides a thin cushioning layer to limit the transfer of impact loads to the diamond layer while the caps are in use for milling casing or casing-associated equipment. The preferred configuration which does not adhere the cap to the diamond table face is preferred as this allows the cap to break free from the cutter when no longer needed (for example, once a milling operation is completed).
In an alternative embodiment the cap can be pre-mounted on the PDC cutter using a high temperature braze material in an LS bonder as is known in the art. The pre-capped PDC cutter can then be brazed into the cutter pocket of a drill bit using known brazing methods and temperatures for brazing cutters into bits.
The casing end tool of the present invention is designed to balance the requirements of drillability with the desired drilling performance characteristics needed for efficient and economical drilling with casing. To this end the current invention incorporates new technology and technology adapted from other drilling tools but modified and enhanced to meet the challenges presented by the unique geometry, clearances, and requirements of mounting a drilling tool on casing. The casing end tool of the present invention includes features to improve casing drilling performance, improve reaming, improve drillability, reduce body erosion, and increase break up and flushing of drilled out debris.
Embodiments of the invention have been described and illustrated above. The invention is not limited to the disclosed embodiments.
This application claims priority from U.S. Provisional Patent Application No. 61/184,635 filed Jun. 5, 2009, the disclosure of which is incorporated by reference. This application is related to U.S. Provisional Patent Application Nos. 61/182,442 filed May 29, 2009 (now U.S. application Ser. No. 12/789,416, filed May 27, 2010) and 61/182,382 filed May 29, 2009 (now U.S. application Ser. No. 12/787,349, filed May 25, 2010), the disclosures of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1970761 | McVicar | Aug 1934 | A |
2136748 | Lottinger | Nov 1938 | A |
2196528 | Hughes | Apr 1940 | A |
2207920 | Hughes | Jul 1940 | A |
2215913 | Brown | Sep 1940 | A |
2331293 | Ballard | Oct 1943 | A |
2334746 | Brantly | Nov 1943 | A |
2357330 | Hyer | Sep 1944 | A |
2492794 | Goble et al. | Dec 1949 | A |
2493178 | Williams, Jr. | Jan 1950 | A |
2495439 | Brimble | Jan 1950 | A |
2642267 | Zublin | Jun 1953 | A |
2644672 | Mathews | Jul 1953 | A |
2658284 | Arps | Nov 1953 | A |
2669429 | Zublin | Feb 1954 | A |
2708105 | Williams, Jr. | May 1955 | A |
2869825 | Crawford | Jan 1959 | A |
3266577 | Turner | Aug 1966 | A |
3536150 | Stebley | Oct 1970 | A |
4101318 | Rudy | Jul 1978 | A |
4351401 | Fielder | Sep 1982 | A |
4382477 | Barr | May 1983 | A |
4478298 | Hake et al. | Oct 1984 | A |
4605343 | Hibbs, Jr. et al. | Aug 1986 | A |
4623025 | Verstraeten | Nov 1986 | A |
4696354 | King et al. | Sep 1987 | A |
4714120 | King | Dec 1987 | A |
4794986 | Langer | Jan 1989 | A |
4815342 | Brett et al. | Mar 1989 | A |
4823892 | Fuller | Apr 1989 | A |
4869330 | Tibbitts | Sep 1989 | A |
4889017 | Fuller et al. | Dec 1989 | A |
4956238 | Griffin | Sep 1990 | A |
5042596 | Brett et al. | Aug 1991 | A |
5090492 | Keith | Feb 1992 | A |
5127923 | Bunting et al. | Jul 1992 | A |
5244039 | Newton, Jr. et al. | Sep 1993 | A |
5259469 | Stjernstrom et al. | Nov 1993 | A |
5330016 | Paske et al. | Jul 1994 | A |
5346025 | Keith et al. | Sep 1994 | A |
5358026 | Simpson | Oct 1994 | A |
5441121 | Tibbitts | Aug 1995 | A |
5549171 | Mensa-Wilmot et al. | Aug 1996 | A |
5551522 | Keith et al. | Sep 1996 | A |
5582261 | Keith et al. | Dec 1996 | A |
5651421 | Newton et al. | Jul 1997 | A |
5797455 | Barron et al. | Aug 1998 | A |
5826651 | Lee et al. | Oct 1998 | A |
5887668 | Haugen et al. | Mar 1999 | A |
5979571 | Scott et al. | Nov 1999 | A |
6039127 | Myers | Mar 2000 | A |
6062326 | Strong et al. | May 2000 | A |
6063502 | Sue et al. | May 2000 | A |
6138756 | Dale | Oct 2000 | A |
6145607 | Griffin et al. | Nov 2000 | A |
6298930 | Sinor et al. | Oct 2001 | B1 |
6401820 | Kirk et al. | Jun 2002 | B1 |
6439326 | Huang et al. | Aug 2002 | B1 |
6443247 | Wardley | Sep 2002 | B1 |
6460631 | Dykstra et al. | Oct 2002 | B2 |
6464002 | Hart et al. | Oct 2002 | B1 |
6510906 | Richert et al. | Jan 2003 | B1 |
6568881 | Long | May 2003 | B2 |
6612383 | Desai et al. | Sep 2003 | B2 |
6612384 | Singh et al. | Sep 2003 | B1 |
6620308 | Gilbert | Sep 2003 | B2 |
6655481 | Findley et al. | Dec 2003 | B2 |
6659173 | Kirk et al. | Dec 2003 | B2 |
6702045 | Elsby | Mar 2004 | B1 |
6725939 | Richard | Apr 2004 | B2 |
6817633 | Brill et al. | Nov 2004 | B2 |
6845816 | Kirk et al. | Jan 2005 | B2 |
6848517 | Wardley | Feb 2005 | B2 |
7066253 | Baker | Jun 2006 | B2 |
7096982 | McKay et al. | Aug 2006 | B2 |
7117960 | Wheeler et al. | Oct 2006 | B2 |
7216727 | Wardley | May 2007 | B2 |
7322776 | Webb et al. | Jan 2008 | B2 |
7395882 | Oldham et al. | Jul 2008 | B2 |
7426969 | Azar | Sep 2008 | B2 |
7757793 | Voronin et al. | Jul 2010 | B2 |
7998573 | Qian et al. | Aug 2011 | B2 |
8074749 | Twardowski et al. | Dec 2011 | B2 |
20020170713 | Haugen et al. | Nov 2002 | A1 |
20040108739 | Beeman et al. | Jun 2004 | A1 |
20040188141 | Slaughter et al. | Sep 2004 | A1 |
20040226751 | McKay et al. | Nov 2004 | A1 |
20040228694 | Webb et al. | Nov 2004 | A1 |
20040244540 | Oldham et al. | Dec 2004 | A1 |
20040245020 | Giroux et al. | Dec 2004 | A1 |
20050103530 | Wheeler et al. | May 2005 | A1 |
20050145417 | Radford et al. | Jul 2005 | A1 |
20060070771 | McClain et al. | Apr 2006 | A1 |
20060124706 | Raybould et al. | Jun 2006 | A1 |
20070131459 | Voronin et al. | Jun 2007 | A1 |
20070175671 | Nava | Aug 2007 | A1 |
20070175672 | Eyre et al. | Aug 2007 | A1 |
20070187149 | Kristensen et al. | Aug 2007 | A1 |
20070193782 | Fang et al. | Aug 2007 | A1 |
20070246224 | Krauss et al. | Oct 2007 | A1 |
20070261890 | Cisneros | Nov 2007 | A1 |
20070277651 | Calnan et al. | Dec 2007 | A1 |
20070278017 | Shen et al. | Dec 2007 | A1 |
20070289782 | Clark et al. | Dec 2007 | A1 |
20080187403 | Ertl et al. | Aug 2008 | A1 |
20090078470 | Lyons et al. | Mar 2009 | A1 |
20090120693 | McClain et al. | May 2009 | A1 |
20090255664 | Hart et al. | Oct 2009 | A1 |
20100051349 | Ballard et al. | Mar 2010 | A1 |
20100166592 | Uno et al. | Jul 2010 | A1 |
20100282519 | Zhang et al. | Nov 2010 | A1 |
20110061941 | Twardowski et al. | Mar 2011 | A1 |
20110259604 | Oldham et al. | Oct 2011 | A1 |
20110259605 | Oldham et al. | Oct 2011 | A1 |
20110259606 | Oldham et al. | Oct 2011 | A1 |
20110259608 | Oldham et al. | Oct 2011 | A1 |
20110259643 | Oldham et al. | Oct 2011 | A1 |
20110266069 | Oldham et al. | Nov 2011 | A1 |
20110308813 | Barron et al. | Dec 2011 | A1 |
20120103694 | Twardowski et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
0418706 | Mar 1991 | EP |
1153988 | Jun 1969 | GB |
2339227 | Jan 2000 | GB |
2369633 | Jun 2002 | GB |
2429731 | Mar 2007 | GB |
WO-2010082051 | Jul 2010 | WO |
Entry |
---|
PCT International Preliminary Report on Patentability mailed Dec. 15, 2011 for PCT/US2010/037330 (7 pages). |
Hughes Christensen, “Reduce Risk, Ensure your casing gets to total depth”, EZReam, Baker Hughes Inc, 2007 (4 pages). |
“DrillShoe III, Drilling with Casing”, Weatherford International Ltd., 2005-2008 (4 pages). |
“DrillShoe II, 5-Blade Models, Drilling with Casing”, Weatherford International Ltd., 2008 (4 pages). |
“DrillShoe II, 4-Blade Models, Drilling with Casing”, Weatherford International Ltd., 2005-2007 (4 pages). |
Sinor, Allen: “Casing Drilling—Recent Advances for Drilling Challenges,” Hughes Christensen—A Baker Hughes Company, The Woodlands, TX, SPE Gulf Coast Section Jan. 10, 2001 (34 pages). |
Office Action mailed Oct. 13, 2006 for U.S. Appl. No. 10/783,720 (27 pages). |
Office Action mailed Apr. 20, 2006 for U.S. Appl. No. 10/783,720 (32 pages). |
Tarr, Brian, et al.: “Casing-while-Drilling: The Next Step Change in Well Construction,” Published in World Oil, Oct. 1999 issue (10 pages). |
Sinor, L.A., et al.: “Rotary Liner Drilling for Depleted Reservoirs,” IADC/SPE 39399, Mar. 3-6, 1998 (10 pages). |
Galloway G.: “Rotary Drilling with Casing—A field proven method of reducing wellbore construction cost,” World Oil Casing Drilling Technical Conference, Mar. 6-7, 2003 (7 pages). |
McKay, D., et al.: “New Developments in the Technology of Drilling with Casing: Utilizing a Displaceable DrillShoe Tool,” World Oil Casing Drilling Technical Conference, Mar. 6-7, 2003 (11 pages). |
PCT International Search Report and Written Opinion cited in Application No. PCT/US2010/037330, dated Aug. 5, 2010 (8 pages). |
Chinese First Office Action for 201080019941.X mailed Jul. 30, 2013 (13 pages). |
International Search Report and Written Opinion for PCT/GB2010/050046 dated Sep. 21, 2010 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20100307837 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
61184635 | Jun 2009 | US |