The present invention relates generally to drilling a wellbore, and more particularly to the drilling tools used at the end of a casing or liner within the wellbore. The present invention concerns drilling tools (and methods for forming drilling tools) that are attachable to a casing or liner string. In the context of the present invention, the terms casing and liner are used interchangeably.
In conventional drilling techniques, a longitudinally extending string comprising sections of drill pipe is secured to a drill bit of a larger diameter than the drill pipe. After a selected portion of the wellbore has been drilled, the drill string is removed and a string of tubular members of lesser diameter than the wellbore, known as a casing string, is placed in the wellbore. The annulus between the wall of the wellbore and the outside of the casing string is then filled with cement by pumping the cement down through a casing shoe or reamer shoe disposed at the end of the casing string. Because the drill bit is removed intact from the wellbore after drilling, it may be made of strong abrasive and erosion resistant material, such as tungsten carbide.
In an alternative technique, designed to address the inefficiencies associated with making multiple wellbore trips in the conventional drilling technique discussed above, it is now known to drill with casing. In this technique, the drilling operation employs a drill bit, termed a casing bit, which is attached to the end of the casing string. The casing bit functions not only to drill the earth formation, but also to guide the casing string into the wellbore. The casing bit remains in place during subsequent cementing of the casing in place. The casing string is thus run into the wellbore as the wellbore is being formed by the casing bit. This eliminates the need for one or more extra trips to retrieve a drill string and drill bit after reaching a target depth where cementing is desired.
In either technique, additional drilling beyond the end depth of the casing string may be required. If so, the operator must drill out the casing end tool (shoe or bit) to reach the underlying formation. This is typically accomplished with a mill bit that is specifically designed to cut through the material from which the shoe or bit is made. This has led to the development of casing end tools that are more readily drilled out. Primarily, such end tools use an aluminum alloy as the parent body material for the reamer nose or the cutting structure carrying face of the end tool. More recently, casing end tools made of alloyed steel have been commercialized and are run on casing prior to being drilled out with specially designed drill out polycrystalline diamond compact (PDC) bits that carry an additional, standalone, overexposed tungsten carbide cutting structure to accomplish the drill out. Each of the aluminum and steel casing end tools are fabricated by processes other than infiltration casting, such as machining a billet of steel.
Prior art efforts relating to casing operations are set forth below. All references discussed herein are incorporated by reference.
U.S. Pat. No. 5,373,907 to Weaver discloses a fabrication method for rotary drill bits. The rotary drill bit is fabricated using an infiltration matrix casting method that is known in the art. Hard matrix powder, which is primarily tungsten carbide, is loaded into the mold. This powder will ultimately form the body of the bit. A soft matrix powder is also loaded into the mold, such that when the drill bit is formed, the soft matrix powder provides a chamfer at the gage of the bit. This soft matrix powder may be machined in a subsequent operation.
U.S. Pat. No. 6,062,326 to Strong et al discloses a casing shoe/reamer with cutting means. The shoe/reamer has flutes (blades) that in one embodiment carry PDC cutters along the gage and across the nose of the tool. The tool is disclosed as being made either from drillable aluminum or non-drillable material. In one embodiment the nose section is designed to be segmented with the segments being hinged to the outer portion of the tool so the nose segments can be pushed out and forward prior to cementing or as part of the cementing process.
U.S. Pat. Nos. 6,401,820 and 6,659,173 to Kirk et al describe a shoe with reaming members and a nose portion of aluminum or zinc alloy to allow the nose to be drilled out.
U.S. Pat. No. 6,443,247 to Wardley describes a casing drilling shoe with an outer drilling section constructed of a hard material such as steel and an inner section constructed of a readily drillable material such as aluminum. It further includes a device for displacing the outer drilling section radially outwardly.
U.S. Pat. No. 6,848,517 to Wardley describes a drillable drill bit nozzle for use in a drill bit that is going to be drilled out.
U.S. Pat. No. 7,066,253 to Baker describes a casing shoe or reamer shoe with an outer body of relatively hard material and a nose of relatively soft material which are interlocked. A following drill bit is used to drill out the majority of the soft material leaving a sheath of the soft material in the internal circumference of the hard material.
U.S. Pat. No. 7,096,982 to McKay et al discloses a drill shoe with a body constructed of a relatively soft material which is set with blades of a relatively hard material. The blades, typically steel, are further set with PDC cutters. Once the desired depth of drilling has been achieved, a displacement element is activated to push out the soft material and bend the blades to the sidewalls of the annulus. The displacement element can then be drilled out with a following bit. McKay wants to provide a cutting structure support mechanism with the steel blades strong enough to handle drilling loads.
U.S. Pat. No. 7,117,960 to Wheeler et al describes a bit for drilling with a completion string that incorporates an integrated female non-shouldered oilfield completion string thread. The specification describes the bit as being manufactured from a material which does not allow the bit to be readily drilled.
U.S. Pat. No. 7,216,727 to Wardley discloses a casing drilling bit constructed from a relatively soft material such as aluminum, copper, or brass alloy and is coated with relatively hard material. The cutting means of the cutting members consist of fine layers or cutting elements formed from hard material.
U.S. Pat. No. 7,395,882 to Oldham et al is for “Casing and Liner Drilling Bits”. This patent teaches making such tools with an axisymmetric inner profile to be evenly addressed by a subsequent drilling bit having a corresponding axisymmetric outer profile. It also teaches using nozzles deployed with sleeves, and gage sections that extend over the casing to which the tool is attached.
U.S. Patent Application Publication No. 2007/028972 to Clark et al is for “Reaming Tool Suitable for Running on Casing or Liner and Method of Reaming”. This published application also teaches an axisymmetric inner profile and further states “ . . . the absence of blades in the nose area projecting above the face of the nose allows for an uninterrupted cut of material of the body shell in the nose, making the reaming tool PDC bit-drillable.”
U.S. Pat. No. 6,845,816 to Kirk et al teaches the use of an austemperized ductile iron (ADI) material for a centralizer. This material is more robust than aluminum and lighter than and more machinable than steel. See also, for example, ADI materials provided for sale by THDick.
Reference is also made to the Baker Hughes (Hughes Christensen) EZ Case Casing Bit System and the Weatherford International DrillShoe tools used for drilling with casing prior art devices (the disclosures of which are hereby incorporated by reference).
Various materials have been used to craft the body of the casing bit to facilitate the dill out operation. Aluminum is readily drilled out but is generally a softer material and may become gummy under the high drill out forces resulting in difficulty removing the drilled out aluminum from the wellbore. It also has a low resistance to erosion and abrasion, and cannot take the level of loading that steel is able to absorb. Alternatively, steel is more robust than aluminum, but it is much more difficult to drill out, and it is prone to damage the cutting elements of the mill bit making additional drilling with the same tool after drill out more difficult.
Casing end tools used for casing drilling and reaming or liner drill in or reaming are presented which overcome many of the previously noted shortfalls of the prior art. These tools employ advanced design and manufacturing techniques not previously practiced on casing end tools. A preferred, but non-limiting, embodiment of a casing bit is described.
In an embodiment, the casing end tool body is cast from crystalline tungsten infiltrated with a brass binder. A steel cylinder may act as a blank or casting mandrel as is known in the art. Typically a blank makes up the central body of an infiltrated drill bit. The mold is loaded with crystalline tungsten powder and an infiltration metal, typically a nickel brass alloy. The mold is then placed into a furnace with temperatures sufficient to melt the infiltration metal or binder material down into the crystalline tungsten powder. The great advantage of this embodiment is that it can take advantage of existing materials, design software, casting methods, and machine tools used in infiltration casting of drill bits.
In an embodiment, the casing end tool does not have a regular axisymmetric inner profile, but rather a non-axisymmetric pattern of raised bosses or lands creating an uneven, undulating and irregular surface (it being understood that “axisymmetric” means “exhibiting symmetry around an axis; or exhibiting cylindrical symmetry”). The point here is to increase the amount of interrupted cut during drill out (by an axisymmetric mill/drill bit) to stress the center part of the bit body and improve fragmentation during drill out. At least some of the raised bosses or lands are meant to provide increased contact and support area if highly extended port sleeves are used. During drill out the lands are contacted first by a drill out or mill bit, and thus the likelihood of break up and fragmentation of the casing bit is increased.
In certain embodiments, blade channels and/or cutter channels may be cast or cut into each exterior blade surface to increase fragmentation during drill out. Also, blind holes may be drilled or cast into the face of the casing end tool. These holes do not break into the plenum of the tool. The purpose of the channels and holes is to create interrupted cuts and fracture points across the casing end tool face to accelerate the break up and fragmentation of the end tool face during drill out. For example, the cutter channels formed on the blades of the casing end tool may enhance fragmentation such that each cutter is more likely to be broken into an individual fragment.
In an embodiment the casing end tool uses cutter back up structures. These cutter back up structures may be cast from the parent body material or may be manufactured separately and pressed, glued or brazed in. These structures may be made of steel, tungsten carbide, vanadium carbide, tungsten carbide matrix, domed superabrasive, or may be diamond impregnated segments. The cutter back up structures may be slightly overexposed, equally exposed, or underexposed in comparison to their corresponding primary cutter. The cutter back up structures may be at the same radial distance, or at a slightly greater distance, or at a slightly lesser distance from bit centerline than their corresponding primary cutter.
In an embodiment, the casing end tool includes one or more ports or sleeved ports. If sleeves are used they may be made of thin walled tungsten carbide, vanadium carbide, ceramic, or steel and may be brazed in holes formed in the casing bit body during casting. The flow through these sleeved ports may improve cleaning and drilling efficiency while reducing the incidence of bit body erosion. In an embodiment, the port sleeves may extend into the inner plenum of the casing end tool to move the active area of erosive flow away from the inner concave surface of the tool.
Reference is now made to
A typical infiltration process for casting the casing bit 100 as a matrix body drill bit begins by centering a cylinder blank 103 in a casting mold. The cylinder blank 103 of the bit is typically made of steel. This steel cylinder blank 103 acts as the blank or casting mandrel as is known in the art. Typically, a blank makes up the central body of an infiltrated drill bit. Matrix powder is then loaded into the mold. According to an embodiment of the present disclosure, the matrix powder may be crystalline tungsten powder. To enable subsequent processing to add superabrasive cutters, graphite inserts are placed in the mold as cutter displacements to create voids in which PDC cutters will be subsequently brazed to the bit body after the bit body 101 is formed.
A binder alloy is placed on top of the crystalline tungsten powder and topped with flux. The binder may be a nickel brass alloy. A lid then covers the finished mold. The entire mold is first preheated and then placed in a furnace. When the furnace reaches the melting point of the binder alloy, the binder infiltrates the crystalline tungsten powder. This creates a matrix cast of the bit body 101 that bonds with and becomes integral with the cylinder blank 103. The casting is then removed and quenched at a controlled rate. Once cooled, the mold is broken away from the casting and the casing bit 100 is subsequently processed. For example, the cutter displacements are removed and prefabricated tungsten carbide PDC cutters are brazed to the blades 106.
In this embodiment, the matrix of the binder and the crystalline tungsten may enhance the erosion resistance of the nose or face of the tool, and the bit may still be machinable and will fragment and break apart when drilled out.
Reference is made to
In an embodiment, the casing bit 100 does not have a regular or symmetric inner surface 102 profile but rather has an inner surface 102 with a non-axisymmetric pattern of raised bosses 140 or lands. This creates an uneven, undulating inner surface and thus an irregular inner profile. The point of this feature is to increase the amount of interrupted cut in the total bit body 101 during drill out by a mill/drill bit which may present an axisymmetric face in contact with the inner surface 102. The non-axisymmetric inner surface 102 will allow the drill out forces to stress smaller portions of the tool bit body 101, and thus improve fragmentation of the casing bit 100 during drill out. The outer surface 104 of the tool, on the contrary may define an axisymmetric shape.
In an alternative embodiment, the inner surface 102 of the casing end tool may have an axisymmetric inner profile which preferably does not match the axisymmetric face of the mill/drill bit.
At least some of the raised bosses 140 or lands provide an additional function in that they increase the thickness of the bit body 101 at and around the ports 130. This may provide increased contact and support area if extended port sleeves 132 are used. The port sleeves 132 may extend, for example, at least ¼ inch from the surrounding raised boss 140 or land.
The outer surface 104 of the casing bit 100 also includes channels to enhance fragmentation of the casing bit 100 during drill out. In certain embodiments, blade channels 191 may generally follow each blade 106 radially. Cutter channels 190 may run generally circumferentially and may generally correspond to each cutter 108 on the blade 106. The cutter channels 190 may cause each cutter 108 to break away from other fragments of the bit body 101 individually. The cutter channels 190 and/or the blade channels 191 may be cut or cast in the blades 106. The cutter channels may be cast in the blade 106 behind a cutter 108, in order to increase the fragmentation of the casing bit 100 during drill out.
Each blade 106 may have a blade thickness extending beyond the main portion of the bit body 101. In certain embodiments, the depth of the blade thickness may be approximately ½ inch. In certain embodiments, the depth of blade channels 191 and/or the cutter channels 190 may not extend to the full depth of the blade thickness. Rather, the channels may extend only partially through the blade 106. In certain embodiments, the channels may extend approximately half the thickness of the blade 106. This may leave approximately ¼ inch of the blade thickness at the valley of the channels. By extending the channel only partially through the thickness of the blade 106, during the drilling operation, incidences of unintentional shearing of the blade from the remainder of the bit body 101 may be reduced or eliminated.
Several approaches are incorporated in the construction of the superabrasive cutting elements for the casing bit 100 of
The cutters of
Reference is now made to
Reference is now made to
In an embodiment, as shown in
In any of the embodiments described above, one or more holes 200 may be drilled or cast into the face of the casing bit 100. These may be blind holes which do not extend to break into the plenum 134 of the tool. These blind holes 200 may create interrupted cuts and fracture points across the end tool face to accelerate the break up and fragmentation of the end tool face during drill out. Alternatively, the blind holes 200 may be provided on the inner surface. The sleeved ports are also shown in
Reference is now made to
In
It will be understood that the cap 502 can, in a first implementation, be installed on the PDC cutter 500 after the PDC cutter has been secured to the cutter pocket of the bit body. Alternatively, in a second implementation, the cap 502 is installed on the PDC cutter 500 before securing the combined cutter-cap assembly to the cutter pocket of the bit body 101. Thus, the first implementation represents, for example, a retrofitting of a manufactured PDC casing bit to include a cap on desired ones of the included PDC cutters. Conversely, the second implementation represents, for example, the fabrication of a new PDC casing bit to include a capped PDC cutter at selected locations.
The cap 502 is held in place on the PDC cutter through a bonding action between the cap and the substrate 506 of the PDC cutter 500. More specifically, a portion of the cap is bonded to a portion of, or a majority of, the substrate 506 of the installed PDC cutter that is exposed outside of the casing bit body (i.e., outside of the cutter pocket). The cap 502 is attached to the PDC cutter, in one implementation, using brazing 508 to (tungsten carbide, for example) substrate 506. The thickness of the braze material 508 illustrated in
Preferably, the cap 502 is not brazed (i.e., is not attached) to the diamond table layer 504 of the PDC cutter 500. Rather, a first portion 510 of the cap over the front face of the diamond table layer 504 of the PDC cutter 500 simply rests adjacent to that face, while a second portion 512 of the cap over the substrate 506 is secured to that substrate by bonding. In this context, it is recognized that PDC diamond is not wettable with standard braze material. It is important that the diamond table 504 face of the PDC cutter 500 be protected by the cap 502 without the cap being directly bonded to the face. The second portion 512 of the cap 502 adjacent the substrate 506 of the PDC, which is brazed and attached to the substrate material, may further be attached through brazing to the bit body 101 in an area at the back of the cutter pocket. The first portion 510 of the cap 502 may also be attached through brazing to the cutter pocket (more specifically, the base of the cutter pocket below the face of the PDC cutter). In some embodiments shorter substrate PDC cutters are used to increase the bond area of the cap at the base of the cutter pocket. In some embodiments the pocket base is configured to increase the bonding area available to the cap at the same location.
Some braze material 508 may advantageously be present between the cap 502 and the front face of the diamond table layer 504 of the PDC cutter, but this material does not serve to secure the cap to the diamond table layer. In a preferred embodiment, the braze material used to braze the cap to the cutter substrate adheres to the inner surfaces of the cap that are adjacent to the diamond table face and periphery of the PDC diamond layer. This braze material provides a thin cushioning layer to limit the transfer of impact loads to the diamond layer while the caps are in use for milling casing or casing-associated equipment. The preferred configuration which does not adhere the cap to the diamond table face is preferred as this allows the cap to break free from the cutter when no longer needed (for example, once a milling operation is completed).
In an alternative embodiment the cap can be pre-mounted on the PDC cutter using a high temperature braze material in an LS bonder as is known in the art. The pre-capped PDC cutter can then be brazed into the cutter pocket of a drill bit using known brazing methods and temperatures for brazing cutters into bits.
The casing bit of the present invention is designed to balance the requirements of drillability with the desired drilling performance characteristics needed for efficient and economical drilling with casing. To this end, the current invention incorporates new technology and technology adapted from other drilling tools but modified and enhanced to meet the challenges presented by the unique geometry, clearances, and requirements of mounting a drilling tool on casing. The casing end tool of the present invention includes features to improve casing drilling performance, improve reaming, improve drillability, reduce body erosion, and increase break up and flushing of drilled out debris.
Embodiments of the invention have been described and illustrated above. The invention is not limited to the disclosed embodiments.
This application is a continuation-in-part of prior U.S. patent application Ser. No. 12/793,489, filed on Jun. 3, 2010, which claims priority from U.S. Provisional Application for Patent No. 61/184,635, filed Jun. 5, 2009, the disclosures of both of which are hereby incorporated by reference. This application is related to U.S. Provisional Patent Application Nos. 61/182,442 filed May 29, 2009 (now U.S. application Ser. No. 12/789,416, filed May 27, 2010) and 61/182,382 filed May 29, 2009 (now U.S. application Ser. No. 12/787,349, filed May 25, 2010), the disclosures of which are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61184635 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12793489 | Jun 2010 | US |
Child | 13095746 | US |