Casing for a hinge attachment of a car seat and method for its manufacturing

Information

  • Patent Application
  • 20070234536
  • Publication Number
    20070234536
  • Date Filed
    October 31, 2006
    19 years ago
  • Date Published
    October 11, 2007
    18 years ago
Abstract
In a casing for a hinge attachment of a car seat and to a method for its manufacture, the height of a toothed element is significantly larger than the thickness of walls of the hinge parts and the hinge parts and the toothed element form a statically compact casing unit, which has a distinctly reduced weight and simultaneously has distinctive flexible assembling characteristics, high stability under load and high accuracy. The casing and toothed element are separately produced by fine blanking and both parts are connected through a material connection or an form-fit connection.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective exploded view of a hinge part with a toothed element produced by fine blanking and cold forming;



FIG. 2 is a perspective cross-sectional view of a hinge part with an inserted toothed element;



FIG. 3 is a cross-sectional view of a casing of a hinge attachment assembled of a first and a second hinge part;



FIG. 4 is a perspective view of a form-fit assembled hinge attachment; and



FIGS. 5
a to 5d depict possible variants of form-fit connections.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows an exploded view of a first hinge part 1 as one half of a casing and a toothed element 2 with common hinge axis A. In the depicted example, the The first hinge part 1 was produced of a blank (not shown) with a thickness d of 4 mm, by fine blanking and forming. While depicted as circular in the example, the first hinge part is not limited to such geometrical shape. The finished part has a circular edge 3, a central hole 4 for inserting a hinge axle (not shown) along a hinge axis A, a circular plane seating 5 for the toothed element 2 directly adjacent to the inner side of edge 3, a depression 6 disposed concentric with regard to the hinge axis A for forming a circular inner edge, and four ejected recesses 7, which serve for the fixing of the back of the seat to the frame by welding.


The second hinge part 8 has a substantially convergent design as the first hinge part 1, and forms the second half of the casing.


The toothed element 2 has an outer diameter corresponding to the inner diameter of the edge 3. Fine teeth 10 with a radius of for instance 0.3 mm are cut in the inner side 9 of the toothed element 2, which extend over the entire height H of the toothed element 2 and at least over one segment of the circle of element 2. Of course also the whole toothed element 2 may be equipped with teeth throughout an inner side thereof.


The toothed element 2 in this preferred embodiment, in comparison with the thickness d of the first hinge part 1, has a height which is approximately 1.7-fold bigger, and thus is dimensioned significantly stronger. Depending on the height and the width of the toothed element, respective high moments can be received and transmitted. With the use of various toothed elements 2 with different heights and widths, it becomes possible to manufacture hinge attachments with different load limits.



FIG. 2 shows the toothed element 2 inserted into the first hinge part 1. The bottom side of the toothed element 2 lies in the horizontal plane seating 5, directly adjacent to the inner side 11 of edge 3 of the first hinge part 1, and the outer side is supported by the inner side 11 of edge 3, so that the toothed element 2 is secured perpendicular to the hinge axis A. The bent off circular edge 3 thus effectively forms an abutment 12 for the toothed element 2. Because the toothed element 2 in comparison to the wall thickness d of the first hinge part 1 is dimensioned significantly stronger, the edge 3 ends approximately in the central plane ME of the toothed element 2. The edge 3 then lies at a height of the toothed element 2, which corresponds to about 45% of the height of the latter.


Along the central plane ME, the inner line 13 (inner corner) of the edge 3 is materially connected to the toothed element 2 by laser welding. Of course also other welded connections or adhesive connection are suitable. The circular welding connection 14 at the outer line 13 secures the toothed element 2 against detachment in the Y-direction or in the direction of the hinge axis A.



FIG. 3 shows the casing 15 comprised of the first hinge part 1 with a joint created by welding toothed element 2 and the second hinge part 8. The second hinge part 8 of similar design with its outer edge 3 abuts on the edge of the first hinge part 1. The edges 3 of both casing parts are encompassed by a clamp ring 16, which fixes both parts at each other by clamping.



FIG. 4 shows a form-fit connection between toothed element 2 and the abutment 12 of the hinge part 1. At the inner side of the abutment 12 extends the seating 5, which is dimensioned to provide an interference fit when toothed element 2 is inserted. To prevent twisting of the toothed element 2 in relation to the abutment 12 at the vertical wall of abutment 12, beads 18 are formed in regular distances concentrically to the hinge axis A, which when joined form-fit, lie in recesses 19 respectively placed on the outer perimeter of the toothed element 2.



FIGS. 5
a to d show possible versions of the form-fit connection between abutment 12 and toothed element 2, wherein in FIG. 5a the arrangement of bead 18 at the toothed element 2 and the respective recess 19 in abutment 12 is shown, in FIG. 5b the version of FIG. 4, in FIG. 5c is shown the alternating arrangement of form-fit connections 20 at the perimeter of abutment 12 and of toothed element 2 is shown, and in FIG. 5d the arrangement of to aligned with each other recesses 19 forming a room 22 for inserting a lock pin 21 is shown.


When assembled and under load, the toothed element 2 respectively supports against the inner wall 11 of edge 3 of the first hinge part 1 and the second hinge part 8. During transmission of the load the force is applied to the toothed element 2, so that in case of a welded connection 14 the latter is not subject to shearing forces.


Where an interference fit between toothed element 2 and abutment 12 occurs, an equal division of the applied forces is applied to the form-fit connections regularly placed on the perimeter, so that a detachment of the interference fit is safely excluded.


With the method according to the invention, a casing 15 for a hinge attachment of a car seat with a wall thickness d of 4 mm is manufacturable. At first, the basic parts 1 and 8 are made from a blanking strip or sheet by conventional fine cutting and forming. Separately, the production of the toothed element 2 is carried out also by fine blanking. The components are produced in simple fine blanking tools, which are all known and the description of which can be omitted herein.


By virtue of inserting the toothed element 2 into the hinge part 1 tailored to the dimensions of the toothed element and welding the same with the toothed element 2 or pressing the toothed element 2 into the seating 5 of the hinge part 1, an assembly suitable for hinge attachments is developed. By choosing a definite height and width of the toothed element 2 a casing 15, a hinge attachment of a car seat can be manufactured for a definite load moment.


LIST OF DRAWING REFERENCES



  • first hinge part 1

  • toothed element 2

  • edge of 1 and 83

  • hole 4

  • seating 5

  • depression 6

  • recess 7

  • second hinge part 8

  • inner side of 39

  • fine toothing 10

  • wall of 111

  • abutment 12

  • inner line of 313

  • welded connection 14

  • casing 15

  • clamp ring 16

  • interference fit 17

  • bead 18

  • recess 19

  • form-fit connection 20

  • lock pin 21

  • insertion room 22

  • hinge axle A

  • bottom FE

  • height of 2 H

  • central plane ME


Claims
  • 1-16. (canceled)
  • 17. A casing for a hinge attachment of a car seat, comprising: a first hinge part connectable to a frame of a back of the seat;a second hinge part connectable to a frame of the seat, the hinge parts including respective perpendicular edges which extend in a direction of a hinge axis, said perpendicular edges of said first and second hinge parts abutting each other at front ends thereof and thereby, being symmetrically formed with hollows therein, collectively defining a casing;a toothed element produced by fine blanking having a generally encircling shape receivable within the casing, said toothed element including toothing which extends over at least one segment of said generally encircling shape and which is radially directed to an inner side thereof; anda clamping ring holding together the edges of the hinge parts, radially inner sides of the perpendicular edges of the first and second hinge parts being formed as an inner abutment for said toothed element, the toothed element being secured at a bottom face of said toothed element by a seating of each of the first and second hinge parts lying adjacent to the perpendicular edge thereof which is formed into the wall of one of the hinge parts, and an outer side of said toothed element being fixed to the perpendicular edge through a connection peripherally extending approximately alongside a central plane of said toothed element at an inner corner of the perpendicular edge of the hinge part, which substantially secures the toothed element in the direction of the hinge axis.
  • 18. A casing according to claim 17, wherein the material connection between the perpendicular edge of the first hinge part and the toothed element is a welding connection.
  • 19. A casing according to claim 17, wherein the material connection between the perpendicular edge of the first hinge part and the toothed element is an adhesive connection.
  • 20. A casing according to claim 17, wherein the welding connection is a laser welding connection.
  • 21. A casing according to claim 17, wherein said adhesive connection is a metal adhesive connection.
  • 22. A casing according to any one of claims 17 to 19, wherein a height of the inner abutment of each of the first and second hinge parts corresponds to approximately 45% of a height of the toothed element.
  • 23. A casing according to any one of claims 17 to 19, wherein toothed elements with various heights, widths and diameters are insertable into the hinge part.
  • 24. A casing according to claim 22, wherein toothed elements with various heights, widths and diameters are insertable into the hinge part.
  • 25. A casing according to any one of claims 17-19, wherein the toothed element has a closed ring or oval shape.
  • 26. A casing according to any one of claims 17-19, wherein the first and second hinge parts have a circular or oval shape.
  • 27. A casing for a hinge attachment of a car seat, comprising: a first hinge part connectable to a frame of a back of the seat;a second hinge part connectable to a frame of the seat, the hinge parts including respective perpendicular edges which extend in a direction of a hinge axis, said perpendicular edges of said first and second hinge parts abutting each other at front ends thereof and thereby, being symmetrically formed with hollows therein, collectively defining a casing;a toothed element produced by fine blanking having a generally encircling shape receivable within the casing, said toothed element including toothing which extends over at least one segment of said generally encircling shape and which is radially directed to an inner side thereof; anda clamping ring holding together the edges of the hinge parts, radially inner sides of the perpendicular edges of the first and second hinge parts being formed as an inner abutment for said toothed element, the toothed element being secured at a bottom face of said toothed element by a seating of each of the first and second hinge parts lying adjacent to the perpendicular edge thereof which is formed into the wall of one of the hinge parts, and an outer side of said toothed element being secured in an interference fit with the seating, at least one form-fit connection being provided in the abutment and in the toothed element which prevents a twisting of the toothed element in the seating around the hinge axis.
  • 28. A device according to claim 27, wherein the form-fit connection between the abutment and toothed element includes at least one bead concentrically oriented to the hinge axis formed on an outer side of the toothed element and which to which is allocated a respective recess formed in the abutment with which the bead form-fittingly engages when the toothed element is pressed into the seating.
  • 29. A device according to claim 27, wherein the form-fit connection between the abutment and toothed element includes at least one recess concentrically oriented to the hinge axis formed on an outer side of the toothed element and which to which is allocated a respective bead formed in the abutment with which the recess form-fittingly engages when the toothed element is pressed into the seating.
  • 30. A device according to claim 27, wherein the form-fit connection between abutment and toothed element includes: at least one recess formed into each of the abutment at an inner side thereof and the toothed element at an outer side thereof; anda lock pin tailored to dimensions of the recess, wherein the recesses form a room for pressing in the lock pin when they are aligned to each other during pressing of the toothed element into the seating.
  • 31. A device according to any one of claims 27 to 30, wherein form-fit connections in regular distances are placed at a perimeter of the toothed element and the abutment.
  • 32. A device according to claim 31, wherein six of said form-fit connections are provided in total.
  • 33. A device according to any one of claims 27 to 30, wherein the form-fit connections which include a bead at the toothed element and a recess in the abutment as well as of a recess in the toothed element and a bead on the abutment are distributed in alternating fashion.
  • 34. A method for manufacturing a casing for hinge attachments of a car seat according to claim 1 or 8, wherein: the hinge parts and a toothed element are largely brought into a final shape thereof by fine blanking and forming, and matched according to respective dimensions thereof; andthe toothed element is exclusively produced as a component with various heights, widths and diameters separate from the hinge parts by fine blanking, which afterwards, with dimensions matched to the moment to be transmitted, is inserted into the hinge part and connected with it by a material or form-fit connection.
  • 35. A method according to claim 34, wherein said fine blanking and forming includes hobbing and drawing,
  • 36. A method according to claim 34, wherein the hinge part and the toothed element are materially connected, preferably by welding or adhesive bonding.
  • 37. A method according to claim 34, wherein the hinge part and the toothed element are connected through a form-fit connection, preferably by friction setting.
Priority Claims (1)
Number Date Country Kind
06090036.2 Mar 2006 EP regional