The field of the invention is tools that assemble and deliver tubular strings into a borehole and more particularly tools that allow circulation and movement of the string as it is assembled into the borehole.
In the past manipulation, threading and circulation of casing or tubulars was done with a variety of tools such as fill up and circulation tools that featured a seal to the inside or the outside of the tubular to be able to pump fluid as the tubular string was lowered into the borehole or to initially fill that last segment that was added to the string before running in. Typically, the handling of a joint to be added to a string was done with large and heavy casing elevators. Such tools are illustrated in U.S. Pat. Nos. 6,578,632, 5,971,079; 7,028,769; 7,665,515 and 6,173,777.
More recently systems have been developed that employ the top drive for rotation and axial movement of a tubular joint to be made up to an existing string and advanced into the borehole. These are rather complex devices that rely on cam pairs to convert rotation to axial movement of slips that cams the slips radially outwardly or inwardly to grip the inside or the outside of a tubular. They feature opposed cam pairs to allow slip actuation with bi-directional rotation and a lock position in between to allow for release. These designs are highly complex and expensive to produce and present complications that could require significant downtime for maintenance. The design is illustrated in U.S. Pat. Nos. 8,424,939 and 7,909,120.
These systems are very complex, heavy and have not been found to solve all the problems associated with making up and running a casing string and are not needed when there is not a need to rotate the casing while running, for example, where the casing strings are run in the vertical portion of the wellbore. It has also been found that using tongs to make up the casing joints as they are being run is much faster than using any of the methods referenced above.
Some of the same problems exist when running any tubular string such as drill pipe. In these cases, the makeup and break out the connections are done by special tongs, but the drill pipe or other tubular must be connected to the mud system through the top drive or mud hose. This connection is currently done by threadedly connecting the tubular to the top drive. This process does take more than 10 minutes when done on a deep water floating vessel in rough sea conditions.
When running casing many are not using the fill-up tools to fill or circulate fluid while running. It is now common to use the older method of handling a mud hose at the rig floor, inserting the end of the hose in the casing by hand and opening a valve to fill the casing. As before, this method is time-consuming and can be dangerous. There remains a need to handle the casing, fill and circulate that is not complex, heavy or dangerous. There is also a need for an improved method of filling, circulating or taking flow back while tripping drill pipe.
Other devices to assist in attaching to a tubular and cementing a well bore are illustrated in U.S. Pat. No. 4,246,967 Harris, U.S. Pat. No. 5,152,554 LaFleur, U.S. Pat. No. 5,348,351 LaFleur and U.S. Pat. No. 5,413,171 Womack. None of these devices teach lifting, manipulating or supporting the string of tubular while connected, they simply teach a method of quickly connecting to a tubular.
Grapples for borehole use are discussed in U.S. Pat. Nos. 4,127,297, 2,410,262; 2,184,681 and 7,578,348.
The present invention provides a method of automatically gripping a tubular below an upset end or coupling and releasing the tubular mechanically or with the use of pressure or other devices such as motors and or gear arrangements. The present invention connects to a traveling block and/or top drive and enables selective supporting and releasing of an “upset end” tubular (casing, tubing or drill pipe) by changing the load carrying element as well as sealing element, this allows supporting while running or pulling, filling, flow back and/or circulation.
The tubular supporting element of the invention is biased to the set position (collapsed below the upset). The bias can be created by the support element itself or by its own weight, springs or pneumatically. The support element will open as it is lowered over a tubular to allow passing over the upset portion of a tubular and collapse to latch below an upset in the tubular once the upset is above the load element. The current invention has the release system on the upper portion of the device thereby shortening the lower end to facilitate getting the tubular connection closer to the rig floor for ease of handling and connecting the next tubular member. The current invention may also have an indicator device such as a sleeve to assist in identifying whether the device is in the latched or released position. Having the release at the upper end also facilitates easy connection to the top drive to use air, hydraulics or mechanical release. The supporting element in the present invention is protected by lower entry housing and internal guide/shield members. The internal guide/shield also acts as the expanding device of the supporting member while the entry member (Bottom Sub) also acts as the primary load element for the supporting member.
Those skilled in the art will have a better understanding of the present invention from the description of the preferred embodiment and the associated drawings while recognizing that the full scope of the invention is to be found in the appended claims.
With reference now to the details of the above-described drawings, the assembly shown in
Releasing Ring 7 is attached to Releasing Ring 6 by a set of Balls 30 in mating grooves in Releasing Rings 6 and 7. This attachment allows relative rotation of the Supporting Element 4 and Releasing Ring 6 (through the “T” slot arrangement between Releasing Ring 6 and Supporting Element 4) shown more clearly in
To seal on a tubular a Seal Sub 9, which constitutes a sealing member is biased to the lower position by Spring 11, there is a Seal 26 to seal in the bore of Inner Protective Sleeve 5. Seal Sub 9 has another Seal 27 for sealing inside a tubular. Seal Sub 9 is prevented from moving down by shoulder at 28 on the interior of Inner Protective Sleeve 5.
One of the releasing assembly is shown at the external upper end of Housing 2 and is formed by Piston 13, Sleeve 12 and Cap 14. Seals are shown at 22, 23, 24, and 25. Piston 13 is attached to Rods 8 at B such that movement of the Piston 13 will move Rods 8. When pressure is applied to chamber R, Piston 13 and Rods 8 move upward causing Release Rings 6 and 7, which form a part of the releasing assembly, to pull the Supporting Element 4 upwards. This upward movement will cause the Supporting Element 4 to expand to its released position. This expansion occurs when the Supporting Element 4 at surface 19 contacts the end of Inner Protective Sleeve 5 at surface 18 and the Piston 13 raises the Supporting Element 4 to its most upward and released position. This releasing means is not attached to Housing 2 to allow it to rotate about Housing 2 should it be desirable to rotate the invention by the top drive. Chambers R and S can be attached to any pressure means available.
It is important to understand that the Supporting Element 4 can be biased to the lowest and latched position by the weight of all components Piston 13, Rods 8 Releasing Rings 6 and 7, Balls 30 and Supporting Element 4. Should additional bias be required pressure can be applied to Chamber S of “One Releasing Means”.
Surfaces 60 and 80 at the interior of the Lower Entry Housing 3 will cause the Support Element 40 to move to a position ideal for supporting a tubular at surface 19.
Those skilled in the art will realize that Surface 19 of the Supporting Element 4 can be at any angle such that Surface 19 mates exactly with the surface located below the upset of the tubular. Those skilled in the art will also realize that the angle between Surfaces 70 and 19 should be positive (angle θ) such that the Supporting Element 4 can not be released when it is supporting a tubular.
Those skilled in the art will realize that the Supporting Element 4 and Lower Entry Housing 3 can be constructed as shown in
Those skilled in the art will appreciate that the Supporting Element 4 can be made of several elements rather that the single piece illustrated in these Figures. Later in this discussion there will be mention of an Indicator Sleeve. The Indicator Sleeve could be attached to the Piston 13 and made such that it would be over the exterior of the Housing 2 so that one could determine the operational position of the Supporting Element 4, in other words “Set” (collapsed) or “Released” (expanded).
In
Tubular 15 will contact Seal Sub 9 at shoulder 28 forcing it upward against Spring 11. In addition Seal 27 will be in sealing contact with the upper end of Tubular 15 such that fluid can pass through the interior to and from the Tubular 15 and Top Drive (not shown). There exists a differential area between Inner Protective Sleeve 5 and the Tubular Sealing shoulder 28 that causes Seal Sub 9 to remain in contact with Tubular 15 when any pressure exist in the interior of the invention.
In
In this position the entire string of tubular can be manipulated by lifting or lowering, fluid can be pumped into or allowed to flow out of the tubular and when sufficient weight is being supported by the top drive the tubular can be rotated. This is a simple device that is robust, light and less expensive than other devices.
To release the device, the tubular would be supported by the slips at the rig floor, the top drive would be lowered until there is space between surface 35 of the Tubular 15 and surface 19 of the Supporting Element 4. This provides room for the Supporting Element 4 to be retracted. Pressure is then applied to chamber R which lifts Piston 13, Rods 8 Releasing Rings 6 and 7 and the Supporting Element 4. Supporting Element 4 is moved radially by the contact with surface 18 of the Inner Protective Sleeve 6 and surface 19 of the Supporting Element 4. In the released position the Supporting Element 4 is completely out of the path of the tubular and protected by the Inner Protective Sleeve 6.
With the invention attached to a Top Drive at A any method of applying a force to the Indicator Sleeve 200 which would cause it to move down would operate the Releasing Member 302 such that the Rod 8 moves up and releases the Supporting Element 4. There can be a Hydraulic or Pneumatic Cylinder attached to the Top Drive that could be actuated to supply the releasing force.
The arrangement shown in
This application claims the benefit of Provisional Patent Application No. 62/660,814 filed Apr. 20, 2018, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2184681 | Osmun et al. | Dec 1939 | A |
2410262 | Breaux | Oct 1946 | A |
4127297 | Dufrene | Nov 1978 | A |
4246967 | Harris | Jan 1981 | A |
5152554 | Lafleur et al. | Oct 1992 | A |
5348351 | Lafleur et al. | Sep 1994 | A |
5413171 | Womack | May 1995 | A |
5971079 | Mullins | Oct 1999 | A |
6173777 | Mullins | Jan 2001 | B1 |
6578632 | Mullins | Jun 2003 | B2 |
7028769 | Mullins | Apr 2006 | B2 |
7578348 | Fay | Aug 2009 | B2 |
7665515 | Mullins et al. | Feb 2010 | B2 |
7909120 | Slack | Mar 2011 | B2 |
8424939 | Slack et al. | Apr 2013 | B2 |
20080210063 | Slack | Sep 2008 | A1 |
20100101805 | Angelle | Apr 2010 | A1 |
Entry |
---|
Well Equipment International s.r.l. Brochure, WEI Elevator, 2 pages, date unknown. |
Number | Date | Country | |
---|---|---|---|
62660814 | Apr 2018 | US |