1. Field of the Invention
This invention relates to equipment used in the drilling and completion of subterranean wells, and more specifically to equipment used in circulating fluid and in the annular placement of cement between a pipe string and an earthen borehole.
2. Background of the Related Art
Oil and gas is recoverable from geologic reservoirs by drilling a deep borehole into the earth's crust to a petroleum reservoir. Casing is a protective liner comprising many casing segments threadably coupled at the ends to form an elongated string of pipe. The casing string is made up to the desired length and cemented into the borehole by pumping a predetermined volume of cement slurry down through the bore of the casing string and into the casing—borehole annulus along a targeted interval of the borehole. The cement liner formed around the casing string reinforces the casing string, isolates the casing from corrosive elements and prevents unwanted cross-flow between geologic formations penetrated by the borehole.
Proper conditioning of the borehole prior to placement of the cement slurry improves the quality and effectiveness of the cement liner. Sustained circulation of drilling fluid down the bore of the casing string and back to the surface through the annulus suspends and removes unwanted mud filter cake, drill cuttings and other debris that, if left in the annulus, may compromise the quality of the cement liner and lead to well failure. Drillable cement wiper plugs may be used to isolate a pumped volume of cement slurry from the fluid circulated to condition and clean the borehole and to displace cement in the annulus. The drillable cement wiper plugs may be deployed into the bore of the casing string, one ahead of and one behind the cement slurry, to prevent contamination.
Unwanted delays may result from the need for rigging up cement wiper plug launching assemblies or other tools used for cement placement, and from disconnecting fluid lines and connecting cement lines that feed the cement slurry to the bore of the casing string. Prolonged static conditions prior to cement placement may allow cuttings and debris to settle and accumulate at narrow clearances in the annulus. Too often, the delay between circulating fluid to clean the annulus and placement of cement compromises the quality of the cement liner, and there is a need for minimizing or eliminating the delay in order to improve the quality of the cement liner.
Accordingly, there is a need to for a casing make up, running and circulation tool that allows transition from circulation of drilling fluid into the borehole to placement of cement without prolonged delay. There is a need for a casing make up and running tool that allows deployment of cement wiper plugs into the bore of the casing string to isolate the cement slurry from other fluids without prolonged delays for rigging up tools after landing the casing string into the wellbore and circulating the well. There is a need for a casing make-up and running tool that can rotate and reciprocate the casing string during cement placement to improve the cement liner by assuring that cement fills substantially all voids. There is a need for a casing make-up running tool that can selectively be used for fill up of the casing string or circulation of fluid to condition the borehole during casing running operations and for a tool that can transition from conditioning the borehole to the cement placement phase without removing the tool from the casing string. There is a need for a casing make-up and running tool that enables an operator to minimize the amount of time required to convert from casing running configuration to a cementation configuration.
The present invention is directed to a method and tool that satisfies the aforementioned and other needs, a casing make-up and running tool adapted for facilitating the intermittent fill up of the casing string and the circulation of fluid in a borehole during and after casing running operations, and for facilitating the lunching of cement wiper plugs and the placement of cement into a targeted interval of the annulus around the string of casing in the borehole.
The present invention is directed to a tool and system for making up and running casing joints to form a casing string, for managing fluid levels in the casing string and fluid displacement into and out of the borehole, and for cementing the casing string into a well. The system comprises a launching assembly for selectively introducing launching members, such as balls or darts, for being received into the cement wiper plug assembly to deploy cement wiper plugs into the bore of a casing string supported by the top drive. The tool comprises an apparatus for coupling to and supporting a cement wiper plug assembly for selectively launching cement wiper plugs into the proximal end of a casing string. These cement wiper plugs are selectively deployable to isolate cement slurry being pumped down the casing string from other fluids to prevent contamination of cement. The tool further comprises a vertically reciprocable top drive mounted casing running tool adapted for supporting and rotating the casing, and for receiving a flow of pressurized fluid and delivering the fluid to the bore of the casing string. The top drive may be vertically reciprocated and supported by a block and draw works coupled to a lift point secured to the body of the top drive. The top drive has a downwardly disposed output drive shaft, or quill, coupled to the motor of the top drive. The top drive rotatably supports a casing gripping assembly for gripping and vertically supporting the casing string and a fill up and circulation assembly for managing fluid and enabling cement placement.
The casing make up and running tool of the present invention comprises a launcher assembly that cooperates with a cement wiper plug assembly for selectively deploying wiper plugs into the bore of the casing string to manage the placement of cement slurry. The launcher assembly may be integral with the top drive assembly, supported by the body of the top drive, or supported by the quill of the top drive. The launcher assembly selectively and sequentially launches launching members, such as spherical balls or elongated darts, into the bore of the casing string. Each launching member launched by the launcher assembly is captured or received within a bore or receiving port of a specific wiper plug of the cement wiper plug assembly in order to deploy the wiper plug into the bore of the casing string. The launcher assembly selectively launches a launching member into the bore of the casing string either at the onset or at the conclusion of introduction of cement slurry into the bore of the casing string. Each cement wiper plug receives a mating launching member to substantially close a fluid passage in the cement wiper plug to isolate the pressure source, such as a pump, from the bore of the casing string. Upon reaching a threshold differential force on the cement wiper plug, the plug deploys to create a movable seal between the drilling fluid and cement slurry to avoid commingling of the two fluids and to displace the cement slurry into the borehole annulus to the desired location.
In addition to the launcher assembly, the casing make up and running tool of the present invention also comprises a fill up and circulation assembly to provide management and control of fluid in the borehole. In the fill up mode, the fill up and circulation assembly is used to intermittently add fluid to the bore of the casing string to manage the fluid level in the casing string and to prevent unwanted differential pressure (from the annulus into the casing string) that could, if unmanaged, collapse the casing string. In the circulation mode, an elastomer packer element of the fill up and circulation assembly engages the proximal end of the casing string to enable pressurization of the bore of the casing string to force introduced fluid down the bore of the casing string, out of the distal end of the casing string and into the annulus between the casing string and the borehole wall. By recovery of fluid displaced from the annulus at the surface, the fluid may be reconditioned and reused.
The casing make up and running tool of the present invention comprises a gripping assembly rotatably supported by the quill of the top drive that engages and grips either the internal wall or the external wall, or both, of the proximal end of the casing string. The gripping assembly may comprise a radial gripping mechanism to engage and support the casing string.
A string of casing suspended in a borehole may weigh hundreds of thousands of pounds or more, and a robust support structure, such as a derrick, is required to suspend a casing string in the borehole. The casing make-up and running tool of present invention is adapted for being supported above the borehole by a support structure, such as a derrick.
Fluid flow is provided to the top drive 3 from a pump (not shown) coupled to an inlet to the fluid hose 40. The pump discharge (not shown) and the fluid hose 40 form a portion of a fluid conduit for introducing fluid into the bore 32A of the casing string 32. The quill 5 of the top drive 3 has a bore 5A that communicates with fluid hose 40 to form a portion of the fluid conduit, which is described in more detail below. For purpose of illustration, but not by way of limitation, the following discussion and the appended drawings refer to and depict, respectively a launcher assembly having, in this embodiment, two spherical balls of different diameters. It should be understood that two different-sized darts or other launching members may be readily substituted for spherical balls while still maintaining the function of the launcher assembly, which is to selectively launch cement wiper plugs from the cement wiper plug assembly (see element 57 in
The embodiment of the casing make up and running tool of the present invention shown in
In the embodiment of the present invention shown in
In an alternate embodiment, also shown in
The fixed and the rotatable embodiments of the launcher sub 84 both are adapted to cooperate with a cement wiper plug assembly (see element 57 in
The launcher assembly 6 also comprises a cement port (see element 66 in 32A
The casing make-up and running tool of the present invention also comprises a casing gripping assembly for gripping and suspending a casing string. As shown in
As shown in
During the process of making up additional segments of casing into the casing string and lowering the casing string into the borehole, fluid must be intermittently added to the bore 32A of the casing string 32 to prevent casing damage that may result from excessive differential pressure from the annulus into the bore 32A of the casing string 32. This process, called casing fill-up, involves introducing fluid into the proximal end 46 of the casing string 32, disposing an outlet of the fluid conduit, such as a nozzle 35, within the bore 32A of the casing string 32, and by coupling the fluid conduit to a pump discharge. As new casing segments are made up into the casing string 32 and fluid within its bore 32A are introduced into the borehole, a generally offsetting volume of fluid is recovered from the annulus at the surface, conditioned to remove cuttings and debris, and reused.
A fill up and circulation assembly 29 is disposed between the launcher assembly 6 and the gripping assembly 14. The fill up and circulation assembly 29 may be used for borehole cleaning and for placing the cement slurry in the targeted interval in the annulus. This process requires pressurization of the casing string 32 by disposing a seal 30 between the proximal end 46 of the casing string 32 and the fluid conduit that supplies fluid or cement slurry to the bore 32A of the casing string 32. This enables the pump discharge to force fluid or cement slurry down the bore 32A of the casing string 32, out of the float collar (not shown) at the distal end not shown of the casing string 32) and back to the surface through the annulus. The seal 30 comprises an elastomeric circumferential packer cup seal that engages the internal wall of the casing string 32 upon sufficient insertion (as shown in
In an alternate embodiment, the launcher assembly is secured above the top drive for inserting the launching members (to launch wiper plugs from a wiper plug assembly) at a position upstream of the bore of the quill 5 of the top drive 3. In the embodiment shown in
The normal method of using the casing make-up and running tool of the present invention involves the steps of making up add-on casing segments into a casing string by gripping a casing segment with the gripping assembly 14, rotating the casing segment using the top drive 3 to threadably couple the add-on casing segment to the casing string suspended in the borehole, suspending the casing 32 from the gripping assembly 14 which is, in turn, coupled to and suspended from the top drive 3, lowering the casing string 32 into the borehole (not shown), transferring the weight of the casing string 32 to the spider (not shown) on the rig floor, using the top drive 3 and casing running tool 10 to pick up a new joint of casing, threadably connecting the new joint to the proximal end 46 of the casing string 32, filling the joint of casing with fluid, transferring the weight of the casing string 32 from the spider at the rig floor back to the top drive 3, and lowering the lengthened casing string 32 into the borehole. The process is repeated until the casing string achieves the desired length, and then a predetermined volume of cement slurry is mixed, circulated down the bore 32A of the casing string 32 and into the targeted interval of the annulus in generally the same manner used to circulate fluid. Using a check valve in the float assembly to prevent reverse flow back into the bore of casing string, the cement is held static in the targeted interval of the annulus until it sets.
Cement placement in the annulus requires cooperation of the launcher assembly 6, fill up and circulation assembly 29, the cement wiper plug assembly (see element 57 of
As shown in
As shown in
The cement wiper plug assembly 57 is optimally secured to the casing make up and running assembly of the present invention just before picking up the last joint of casing to be made up into the casing string 32 in accordance with the method described above. This structure and method provides the significant benefit of preventing delay between borehole cleaning and the placement of cement, and results in cement liners having improved integrity. The bore 55 of the cement wiper plug assembly 57 (in
The launcher assembly 6 in
Pressurization of the fluid conduit between a wiper plug having a seated launching member and the pump discharge launches the selected cement wiper plug into the bore 32A of the casing string 32 by sacrificial failure of one or more set screws (not shown) adapted for shearing failure at a threshold force to separate the selected cement wiper plug from the coupler 53.
The distal cement wiper plug 54 is first deployed by release from the storage chamber 65 of the smaller launching member, in this case a ball 44, (see
After the distal plug 54 is deployed into the bore 32A of the casing string 32, the plug descends to land on the float collar (not shown). The distal cement wiper plug 54 lands on the float collar at the distal end of the casing string 32, and the pump discharge pressure temporarily increases to open up the through bore in the distal cement wiper plug 54. Opening a through bore allows the cement slurry behind the distal cement wiper plug 54 to flow from the inside bore 32A of the casing string 32 into the annulus, and to be displaced by continued pumping back toward the surface to a predetermined level within the annulus.
After the specific volume of cement slurry is displaced into the annulus, the proximal cement wiper plug 52 lands on the distal cement wiper plug 54 at the float collar at the distal end of the casing string to again temporarily isolate the bore 32A of the casing string 32 from the annulus. Pressurization of the fluid conduit against the proximal cement wiper plug 52 indicates that the plugs have “bumped.”
The launcher assembly 6 shown in
Cement slurry may be introduced into the bore 32A of the casing string 32 in the same manner as the fluid, i.e. through the fluid hose 40, and the bore 5A of the quill 5 of the top drive. Preferably, cement slurry is introduced directly into the bore 88 of the launcher sub 84 through the cement adapter 66 shown in
The fill up and circulation assembly 29 comprises a packer cup 30 that extends radially outwardly from the outside circumference of the fill up and circulation assembly 29 to engage and seal against the inside wall of the casing string 32 when the packer cup is inserted into the proximal end 46 of the casing string 32. The fluid pumps may then be activated to pressurize the bore of the fill up and circulation tool.
Additional assemblies and devices may be coupled into the casing make up and running tool to extend the fluid conduit or to manage and conserve fluid. The mud saver valve 31 generally comprises a valve that is biased closed and can be opened by pressure to permit flow from the bore of the fill up and circulation assembly 29 to the bore of the casing string at a predetermined differential pressure. The mud saver valve 31 prevents unwanted loss of fluid from the fluid conduit when the pump is inactive and the tool is pulled out of the proximal end of the casing.
The foregoing, as well as other, objects, features, and advantages of the present invention will be more fully appreciated and understood by reference to the following drawings, specification and claims.
Those who are skilled in the art will readily perceive how to modify the present invention still further. For example, many connections illustrated have been shown as threaded, however, it should be understood that any coupling means (threads, welding, O-ring, quick disconnect, etc.) which provides a leak tight connection may be used without varying from the subject matter of the invention disclosed herein. In addition, the subject matter of the present invention would not be considered limited to a particular material of construction. Therefore, many materials of construction are contemplated by the present invention. Many possible embodiments may be made of the present invention without departing from the scope thereof, and it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense. Accordingly, the foregoing description should also be regarded as only illustrative of the invention, whose full scope is measured by the following claims.
“Gripping assembly,” as that term is used herein, includes, but is not limited to, an internal cage grip tool, an internal wedge grip tool, an external elevator having a generally circumferential internal shoulder for abutting and supporting an internally threaded sleeve received on a pipe, and an elevator having an arrangement of slips for engaging the outside surface of the casing, a side door elevator, an elevator comprising internal or external slips, and all other devices used for gripping and supporting a pipe string from above the spider that may be supported by a top drive or draw works.
The terms “comprising,” “including,” and “having,” as used in the claims and specification herein, shall indicate an open group that may include other elements not specified. The terms “a,” “an,” and the singular forms of words shall be taken to include the plural form of the same words, such that the terms mean that one or more of something is provided. For example, the phrase “an apparatus having a drive motor” should be read to describe an apparatus having one or more drive motors. The term “one” or “single” shall be used to indicate that one and only one of something is intended. Similarly, other specific integer values, such as “two,” are used when a specific number of things is intended. The terms “preferably,” “preferred,” “prefer,” “optionally,” “may,” and similar terms are used in the specification to indicate that an item, condition or step being referred to is an optional (not required) feature of the invention.
While a preferred form of the present invention has been described herein, various modifications of the apparatus and method of the invention may be made without departing from the spirit and scope of the invention, which is more fully defined in the following claims. The foregoing, as well as other, objects, features, and advantages of the present invention will be more fully appreciated and understood by reference to the following claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/512,601 filed on Aug. 29, 2006 now U.S. Pat. No. 7,370,698 which is a continuation of U.S. patent application Ser. No. 10/047,727, filed on Jan. 15, 2002 now U.S. Pat. No. 7,096,948 which is a continuation of U.S. patent application Ser. No. 09/837,447, filed on Apr. 17, 2001 now abandoned which is a continuation of U.S. patent application Ser. No. 09/206,876, filed on Dec. 8, 1998 now U.S. Pat. No. 6,279,654 which was a continuation-in-part of U.S. patent application Ser. No. 08/850,496, filed May 2, 1997, now U.S. Pat. No. 5,918,673, which was a continuation-in-part of U.S. patent application Ser. No. 08/726,112, filed Oct. 4, 1996, now U.S. Pat. No. 5,735,348.
Number | Name | Date | Kind |
---|---|---|---|
0776523 | Lukins | Dec 1904 | A |
1445680 | Guess | Feb 1923 | A |
1580352 | Ventresca | Apr 1926 | A |
1619254 | Hart | Mar 1927 | A |
1621947 | Moore | Mar 1927 | A |
1779123 | Gates | Oct 1930 | A |
2108499 | Moseley | Feb 1938 | A |
2191000 | Thomas | Feb 1940 | A |
2953406 | Young | Sep 1960 | A |
3265431 | Burner | Aug 1966 | A |
3301334 | Odgers et al. | Jan 1967 | A |
3677341 | Burns et al. | Jul 1972 | A |
3758146 | Kaercher et al. | Sep 1973 | A |
4074774 | Brown et al. | Feb 1978 | A |
4093294 | Taylor | Jun 1978 | A |
4100968 | Delano | Jul 1978 | A |
4190119 | Loftis et al. | Feb 1980 | A |
4235469 | Denny et al. | Nov 1980 | A |
4244616 | Buchalet | Jan 1981 | A |
4320915 | Abbott et al. | Mar 1982 | A |
4658915 | Goris et al. | Apr 1987 | A |
4865135 | Moses | Sep 1989 | A |
4919881 | Hankinson et al. | Apr 1990 | A |
4997042 | Jordan et al. | Mar 1991 | A |
5036927 | Willis | Aug 1991 | A |
5095988 | Bode | Mar 1992 | A |
5253710 | Carter et al. | Oct 1993 | A |
5294228 | Willis et al. | Mar 1994 | A |
5297833 | Willis et al. | Mar 1994 | A |
5551521 | Vail, III | Sep 1996 | A |
5584343 | Coone | Dec 1996 | A |
5641021 | Murray et al. | Jun 1997 | A |
5735348 | Hawkins, III | Apr 1998 | A |
5887660 | Yokley et al. | Mar 1999 | A |
5890537 | Lavaure et al. | Apr 1999 | A |
5918673 | Hawkins et al. | Jul 1999 | A |
5960881 | Allamon et al. | Oct 1999 | A |
5971079 | Mullins | Oct 1999 | A |
6010171 | Margiottiello | Jan 2000 | A |
6142545 | Penman et al. | Nov 2000 | A |
6161617 | Gjedebo | Dec 2000 | A |
6279654 | Mosing et al. | Aug 2001 | B1 |
6302199 | Hawkins et al. | Oct 2001 | B1 |
6309002 | Bouligny | Oct 2001 | B1 |
6311792 | Scott et al. | Nov 2001 | B1 |
6431626 | Bouligny | Aug 2002 | B1 |
6443241 | Juhasz et al. | Sep 2002 | B1 |
6527047 | Pietras | Mar 2003 | B1 |
6571880 | Butterfield, Jr. et al. | Jun 2003 | B1 |
6595288 | Mosing et al. | Jul 2003 | B2 |
6622796 | Pietras | Sep 2003 | B1 |
6637526 | Juhasz et al. | Oct 2003 | B2 |
6679333 | York et al. | Jan 2004 | B2 |
6688398 | Pietras | Feb 2004 | B2 |
6691801 | Juhasz et al. | Feb 2004 | B2 |
6725938 | Pietras | Apr 2004 | B1 |
6732822 | Slack et al. | May 2004 | B2 |
6742584 | Appleton | Jun 2004 | B1 |
6938709 | Juhasz et al. | Sep 2005 | B2 |
7004259 | Pietras | Feb 2006 | B2 |
7007753 | Robichaux et al. | Mar 2006 | B2 |
7021374 | Pietras | Apr 2006 | B2 |
7037356 | Ibaraki et al. | May 2006 | B2 |
7096977 | Juhasz et al. | Aug 2006 | B2 |
7128161 | Pietras | Oct 2006 | B2 |
7137454 | Pietras | Nov 2006 | B2 |
7213656 | Pietras | May 2007 | B2 |
7219744 | Pietras | May 2007 | B2 |
7287584 | Angman et al. | Oct 2007 | B2 |
7325610 | Giroux et al. | Feb 2008 | B2 |
7353880 | Pietras | Apr 2008 | B2 |
7513300 | Pietras | Apr 2009 | B2 |
20020029879 | Mosing et al. | Mar 2002 | A1 |
20040216924 | Pietras | Nov 2004 | A1 |
20050051343 | Pietras et al. | Mar 2005 | A1 |
20060000600 | Pietras | Jan 2006 | A1 |
20060118293 | Juhasz et al. | Jun 2006 | A1 |
20060124293 | Juhasz et al. | Jun 2006 | A1 |
20060124305 | Juhasz et al. | Jun 2006 | A1 |
20060124353 | Juhasz et al. | Jun 2006 | A1 |
20070107909 | Pietras | May 2007 | A1 |
20070169930 | Shahin et al. | Jul 2007 | A1 |
20080053660 | Angman | Mar 2008 | A1 |
20080185140 | Pietras | Aug 2008 | A1 |
20080202751 | Mosing et al. | Aug 2008 | A1 |
20080210063 | Slack | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
1475512 | Oct 2004 | EP |
9815809.0 | Feb 2000 | GB |
2340856 | Mar 2000 | GB |
2340859 | Mar 2000 | GB |
2345074 | Jun 2000 | GB |
2347441 | Jun 2000 | GB |
WO9618799 | Jun 1996 | WO |
WO2000005483 | Feb 2000 | WO |
WO2004053288 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080099196 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10047727 | Jan 2002 | US |
Child | 11512601 | US | |
Parent | 09837447 | Apr 2001 | US |
Child | 10047727 | US | |
Parent | 09206876 | Dec 1998 | US |
Child | 09837447 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11512601 | Aug 2006 | US |
Child | 11555391 | US | |
Parent | 08850496 | May 1997 | US |
Child | 09206876 | US | |
Parent | 08726112 | Oct 1996 | US |
Child | 08850496 | US |