1. Field of the Invention
The present invention relates to methods and apparatus for drilling with top drive systems. Particularly, the invention relates to methods and apparatus for adapting a top drive for use with running casing. More particularly still, the invention relates to a torque head for engaging with a tubular and rotating the same.
2. Description of the Related Art
In well completion operations, a wellbore is formed to access hydrocarbon-bearing formations by the use of drilling. Drilling is accomplished by utilizing a drill bit that is mounted on the end of a drill support member, commonly known as a drill string. To drill within the wellbore to a predetermined depth, the drill string is often rotated by a top drive or rotary table on a surface platform or rig, or by a downhole motor mounted towards the lower end of the drill string. After drilling to a predetermined depth, the drill string and drill bit are removed and a section of casing is lowered into the wellbore. An annular area is thus formed between the string of casing and the formation. The casing string is temporarily hung from the surface of the well. A cementing operation is then conducted in order to fill the annular area with cement. Using apparatus known in the art, the casing string is cemented into the wellbore by circulating cement into the annular area defined between the outer wall of the casing and the borehole. The combination of cement and casing strengthens the wellbore and facilitates the isolation of certain areas of the formation behind the casing for the production of hydrocarbons.
It is common to employ more than one string of casing in a wellbore. In this respect, one conventional method to complete a well includes drilling to a first designated depth with a drill bit on a drill string. Then, the drill string is removed and a first string of casing is run into the wellbore and set in the drilled out portion of the wellbore. Cement is circulated into the annulus behind the casing string and allowed to cure. Next, the well is drilled to a second designated depth, and a second string of casing, or liner, is run into the drilled out portion of the wellbore. The second string is set at a depth such that the upper portion of the second string of casing overlaps the lower portion of the first string of casing. The second string is then fixed, or “hung” off of the existing casing by the use of slips which utilize slip members and cones to wedgingly fix the second string of casing in the wellbore. The second casing string is then cemented. This process is typically repeated with additional casing strings until the well has been drilled to a desired depth. Therefore, two run-ins into the wellbore are required per casing string to set the casing into the wellbore. In this manner, wells are typically formed with two or more strings of casing of an ever-decreasing diameter.
As more casing strings are set in the wellbore, the casing strings become progressively smaller in diameter in order to fit within the previous casing string. In a drilling operation, the drill bit for drilling to the next predetermined depth must thus become progressively smaller as the diameter of each casing string decreases in order to fit within the previous casing string. Therefore, multiple drill bits of different sizes are ordinarily necessary for drilling in well completion operations.
Another method of performing well completion operations involves drilling with casing, as opposed to the first method of drilling and then setting the casing. In this method, the casing string is run into the wellbore along with a drill bit for drilling the subsequent, smaller diameter hole located in the interior of the existing casing string. The drill bit is operated by rotation of the drill string from the surface of the wellbore. Once the borehole is formed, the attached casing string may be cemented in the borehole. The drill bit is either removed or destroyed by the drilling of a subsequent borehole. The subsequent borehole may be drilled by a second working string comprising a second drill bit disposed at the end of a second casing that is of sufficient size to line the wall of the borehole formed. The second drill bit should be smaller than the first drill bit so that it fits within the existing casing string. In this respect, this method requires at least one run-in into the wellbore per casing string that is set into the wellbore.
It is known in the industry to use top drive systems to rotate a drill string to form a borehole. Top drive systems are equipped with a motor to provide torque for rotating the drilling string. The quill of the top drive is typically threadedly connected to an upper end of the drill pipe in order to transmit torque to the drill pipe. Top drives may also be used in a drilling with casing operation to rotate the casing.
In order to drill with casing, most existing top drives require a threaded crossover adapter to connect to the casing. This is because the quill of the top drives is not sized to connect with the threads of the casing. The crossover adapter is design to alleviate this problem. Typically, one end of the crossover adapter is designed to connect with the quill, while the other end is designed to connect with the casing.
However, the process of connecting and disconnecting a casing is time consuming. For example, each time a new casing is added, the casing string must be disconnected from the crossover adapter. Thereafter, the crossover must be threaded into the new casing before the casing string may be run. Furthermore, this process also increases the likelihood of damage to the threads, thereby increasing the potential for downtime.
There is a need, therefore, for methods and apparatus for coupling a casing to the top drive for drilling with casing operations. There is a further need for methods and apparatus for running casing with a top drive in an efficient manner. There is also a need for methods and apparatus for running casing with reduced damage to the casings.
The present invention generally relates to a method and apparatus for drilling with a top drive system. Particularly, the present invention relates to methods and apparatus for handling tubulars using a top drive system.
In one aspect, the present invention provides a tubular gripping member for use with a top drive to handle a tubular comprising a housing operatively connected to the top drive and a plurality of gripping elements radially disposed in the housing for engaging the tubular, wherein moving the housing relative the plurality of gripping elements causes the plurality of gripping elements to engage the tubular.
In another aspect, the present invention provides a method of handling a tubular comprising providing a top drive operatively connected to a gripping head. The gripping head has a housing, a plurality of gripping elements radially disposed in the housing for engaging the tubular, and a plurality of engagement members movably disposed on each of the plurality of gripping elements. The method further includes disposing the tubular within the plurality of gripping elements, moving the housing relative to the plurality of gripping elements, engaging the tubular, and pivoting the plurality of engagement members.
So that the manner in which the above recited features of the present invention, and other features contemplated and claimed herein, are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Aspects of the present invention provide a top drive adapter for gripping a casing for drilling with casing. The top drive adapter includes rotating unit for connection with the top drive to transfer torque. The top drive adapter also has a plurality of gripping elements disposed in a housing. Moving the housing axially relative to the plurality of gripping elements causes the gripping elements to apply an initial gripping pressure on the casing. The gripping elements have engagement members for contacting or gripping the casing. An axial load acting on the engagement members causes the engagement members to pivot axially and support the axial load.
The drilling rig 10 includes a traveling block 35 suspended by cables 75 above the rig floor 20. The traveling block 35 holds the top drive 50 above the rig floor 20 and may be caused to move the top drive 50 axially. The top drive 50 includes a motor 80 which is used to rotate the casing 30, 65 at various stages of the operation, such as during drilling with casing or while making up or breaking out a connection between the casings 30, 65. A railing system (not shown) is coupled to the top drive 50 to guide the axial movement of the top drive 50 and to prevent the top drive 50 from rotational movement during rotation of the casings 30, 65.
Disposed below the top drive 50 is a tubular gripping member such as a torque head 40. The torque head 40 may be utilized to grip an upper portion of the casing 30 and impart torque from the top drive to the casing 30. The torque head 40 may be coupled to an elevator 70 using one or more bails 85 to facilitate the movement of the casing 30 above the rig floor 20. Additionally, the rig 10 may include a pipe handling arm 100 to assist in aligning the tubulars 30, 65 for connection.
A housing 104 surrounds the gripping elements 105 and ensures the gripping elements 105 remain coupled to the mandrel 103. The housing 104 is actuatable by a hydraulic cylinder 110 disposed on the mandrel 103. Particularly, an upper portion of the housing 104 is coupled to the piston 111 of the hydraulic cylinder 110. Actuation of the piston 111 causes the housing 104 to move axially relative to the mandrel 103.
The gripping elements 105 are adapted to engage and retain the casing 30 once the casing 30 is inserted into the housing 104. As shown in
Referring again to
The exterior surface 132 of the gripping elements 105 is adapted to interface with the interior surface of the housing 104 to move the gripping elements 105 radially relative to the housing 104. In one embodiment, the gripping elements 105 may interface with the housing 104 using a complementary key and groove system. As shown in
In one aspect, the housing 104 may be actuated to move the keys 108 of the housing 104 and the keys 117 of the gripping element 105 into an actuated or locking position.
The abutment surfaces 123, 124 are adapted to provide a self locking function. In one embodiment, the abutment surface 123 of the gripping elements 105 is inclined slightly downward, and the abutment surface 124 of the housing 104 has a complementary incline. When the two abutment surfaces 123, 124 engage, the incline causes the gripping elements 105 to move radially toward the axial center to establish its grip on the casing 30. Preferably, the abutment surface 122 of the gripping elements 105 is angled at about ten degrees or less relative to a vertical axis. More preferably, the abutment surface 122 of the gripping elements 105 is inclined at about seven degrees or less relative to a vertical axis.
Referring to
In
While the casing is moved towards the well center, the pipe handling arm 100 is actuated to guide and align the casing 30 with the casing string 65 for connection therewith. A suitable pipe handling arm is disclosed in U.S. Pat. No. 6,591,471 issued to Hollingsworth on Jul. 15, 2003, assigned to the assignee of the present invention and incorporated by reference herein in its entirety. Another suitable pipe handling arm is disclosed in U.S. patent application Ser. No. 10/382,353, filed on Mar. 5, 2003, entitled “Positioning and Spinning Device,” which application is assigned to the same assignee of the present invention and incorporated by reference herein in its entirety. An exemplary pipe handling arm 100 includes a gripping member for engaging the casing 30 during operation. The pipe handling arm 100 is adapted and designed to move in a plane substantially parallel to the rig floor 20 to guide the casing 30 into alignment with the casing 65 in the spider 60.
After the casing is guided into alignment by the pipe handling arm 100, the torque head 40 is lowered relative to the casing 30 and positioned around the upper portion of the casing 30. As the casing 30 is inserted into the torque head 40, the coupling 32 of the casing 30 forces the gripping elements 105 to expand radially. In this respect, the keys 108 of the gripping elements 105 move into the grooves 116 of the housing 104.
To grip the casing 30, the hydraulic cylinder 110 is actuated to move the piston 111 downward. In turn, the housing 104 is lowered relative to the gripping elements 105. Initially, the lower surface 122 of the housing 104 encounters the upper surface 121 of the gripping elements 105. The incline of the upper and lower surfaces 121, 122 facilitate the movement of the gripping elements 105 out of the groove 116 and the lowering of the housing 104. Additionally, the incline also causes the gripping elements 105 to move radially to apply a gripping force on the casing 30. As shown in
During drilling operation, the casing string load will pull the casing 30 down. Due to this movement, the engagement members 106 will pivot in the slot 115 of the gripping elements 105 to clamp the casing 30. In this respect, the engagement members 106 will work as an axial free running drive. Moreover, because the engagement members 106 are all set at the same angle, each of the engagement members 106 carries an equal amount of the casing string weight. Additionally, the radial clamping force will be balanced by the housing 104. In one embodiment, when the key angle between the key 117 of the housing 104 and the key 108 of the gripping element 105 is less than seven degrees, the radial force will be distributed across the housing 104.
When the casing string load is removed, such as actuating the spider 60 to retain the casing string, the engagement members 106 will immediately release the radial force exerted on the casing 30. Thereafter, the piston is deactuated to raise the housing 104 relative to the gripping elements 105. The casing 30 may be removed when the keys 108 of the gripping elements 105 return to their respective grooves 116.
In another aspect, the torque head 40 may be used to transfer torque. In this respect, an appropriate hydraulic cylinder may be selected to apply a sufficient force to clamp the casing 30.
The outer surface of the body 235 includes a flange 242. One or more compensating cylinders 245 connect the flange 242 to the rotary unit. In this respect, the compensating cylinders 245 control the axial movement of the body 235. The compensating cylinder 245 is particularly useful during makeup or breakout of tubulars. For example, the compensating cylinder 245 may allow the body 235 to move axially to accommodate the change in axial distance between the tubulars as the threads are made. An exemplary compensating cylinder is a piston and cylinder assembly. The piston and cylinder assembly may be actuated hydraulically, pneumatically, or by any other manner known to a person of ordinary skill in the art. A suitable alternate compensating cylinder is disclosed in U.S. Pat. No. 6,056,060, which patent is herein incorporated by reference in its entirety and is assigned to the same assignee of the present invention.
A housing 204 is disposed around the windows 240 of the body 235. The housing 204 is coupled to the flange 242 using a one or more actuating cylinders 210. In this respect, the housing 204 may be raised or lowered relative to the body 235. The interior of the housing 204 includes a key and groove configuration for interfacing with the gripping element 205. In one embodiment, the key 217 includes an inclined abutment surface 224 and an inclined lower surface 222. Preferably, the transition between the lower surface 222 and the abutment surface 224 is curved to facilitate lowering of the housing 204 relative to the body 235.
A gripping element 205 is disposed in each of the windows 240 in the body 235. In one embodiment, the gripping element 205 has an exterior surface adapted to interface with the key and groove configuration of the housing 204, as shown in
The interior surface of the gripping element 205 includes one or more engagement members 206. In one embodiment, each engagement member 206 is disposed in a slot 215 formed in the interior surface of the gripping element 205. Preferably, the engagement members 206 are pivotable in the slot 215. The portion of the engagement member 206 disposed in the interior of the slot 215 may be arcuate in shape to facilitate the pivoting motion. The tubular contact surface of the engagement members 257 may be smooth or rough, or have teeth formed thereon.
In another aspect, the gripping element 205 may include a retracting mechanism to control movement of the engagement members 206. In one embodiment, an axial bore 260 is formed adjacent the interior surface of the gripping element 205. An actuating rod 265 is disposed in the bore 260 and through a recess 267 of the engagement members 206. The actuating rod 265 includes one or more supports 270 having an outer diameter larger than the recess 267 of the engagement members 206. A support 270 is positioned on the actuating rod 265 at a level below each engagement member 206 such that the engagement members 206 rest on their respective support 270.
A biasing member 275 coupled to the actuating rod 265 is disposed at an upper end of the bore 260. In the relaxed position, the biasing member 275 biases the actuating rod 265 in the upward position. In this respect, the actuating rod 265 places the engagement members 206 in the retracted position, or pivoted upward position, as shown in
In operation, the casing 230 is inserted into the body 235 of the torque head 240. At this point, the keys 208 of the gripping element 205 are disposed in their respective groove 216 in the housing 204. Additionally, the actuating rod 265 is in the upward position, thereby placing the engagement members 206 in the retracted position. As the casing 230 is inserted into the torque head 240, the coupling moves across the gripping elements 205 and forces the gripping elements 205 to move radially outward. After the coupling moves past the gripping elements 205, the biasing members 255 bias the gripping elements 205 to maintain engagement with the casing 30.
Once the casing 230 is received in the torque head 240, the actuating cylinder 210 is activated to lower the housing 204 relative to the body 235. Initially, the lower surface 222 of the housing 204 encounters the upper surface 221 of the gripping elements 205. The incline of the upper and lower surfaces 221, 222 facilitate the movement of the gripping elements 205 out of the groove 216 and the lowering of the housing 204. Additionally, the incline also causes the gripping elements 205 to move radially to apply a gripping force on the casing 30. Preferably, the gripping elements 205 move radially in a direction substantially perpendicular to the vertical axis of the casing 30. The housing 204 continues to be lowered until the abutment surfaces 223, 224 of the keys 208, 217 substantially engage each other, as shown in
To makeup the casing 230 to the casing string 65, the top drive 50 may be operated to provide torque to rotate the casing 230 relative to the casing string 65. During makeup, the compensating cylinder 245 is activated to compensate for the change in axial distance as a result of the threaded engagement. In this respect, the body 235 is allowed to move axially relative to the mandrel 203 using the spline and groove connection 237.
During drilling operation, the entire casing string load is supported by the torque head 240. Particularly, the heavier casing string load further pivots the engagement members 206 in the slot 215 of the gripping elements 205. In this respect, the casing string load is distributed among the engagement members 206, thereby allowing the torque head 240 to work as an axial free running drive. Moreover, because the engagement members 206 are all set the same angle, each of the engagement members 206 carries an equal amount of the casing string weight. Additionally, the radial clamping force will be balanced by the housing 204. In one embodiment, when the angle between the key 217 of the housing 204 and the key 208 of the gripping element 205 is less than seven degrees, the radial force will be distributed across the housing 204. In this manner, the torque head according to aspects of the present invention may be used to connect tubulars and generally used to perform tubular handling operations.
In another embodiment, the gripping element 305 may include a collar 350 on either side, instead of the upper or lower end. As shown in
In another aspect, the torque head 40 may optionally employ a circulating tool 280 to supply fluid to fill up the casing 30 and circulate the fluid. The circulating tool 220 may be connected to a lower portion of the mandrel 203 and at least partially disposed in the body 235. The circulating tool 280 includes a first end and a second end. The first end is coupled to the mandrel 203 and fluidly communicates with the top drive 50. The second end is inserted into the casing 30. A cup seal 285 is disposed on the second end interior to the casing 30. The cup seal 285 sealingly engages the inner surface of the casing 30 during operation. Particularly, fluid in the casing 30 expands the cup seal 285 into contact with the casing 30. The circulating tool 280 may also include a nozzle 288 to inject fluid into the casing 30. The nozzle 288 may also act as a mud saver adapter for connecting a mud saver valve (not shown) to the circulating tool 280.
It addition to casing, aspects of the present invention are equally suited to handle tubulars such as drill pipe, tubing, and other types of tubulars known to a person of ordinary skill in the art. Moreover, the tubular handling operations contemplated herein may include connection and disconnection of tubulars as well as running in or pulling out tubulars from the well.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
122514 | Bullock | Jan 1872 | A |
179973 | Thornton | Jul 1876 | A |
1077772 | Weathersby | Nov 1913 | A |
1185582 | Bignell | May 1916 | A |
1301285 | Leonard | Apr 1919 | A |
1342424 | Cotten | Jun 1920 | A |
1418766 | Wilson | Jun 1922 | A |
1471526 | Pickin | Oct 1923 | A |
1585069 | Youle | May 1926 | A |
1728136 | Power | Sep 1929 | A |
1777592 | Thomas | Oct 1930 | A |
1805007 | Pedley | May 1931 | A |
1825026 | Thomas | Sep 1931 | A |
1830625 | Schrock | Nov 1931 | A |
1842638 | Wigle | Jan 1932 | A |
1880218 | Simmons | Oct 1932 | A |
1917135 | Littell | Jul 1933 | A |
1981525 | Price | Nov 1934 | A |
1998833 | Crowell | Apr 1935 | A |
2017451 | Wickersham | Oct 1935 | A |
2049450 | Johnson | Aug 1936 | A |
2060352 | Stokes | Nov 1936 | A |
2105885 | Hinderliter | Jan 1938 | A |
2128430 | Pryor | Sep 1938 | A |
2167338 | Murcell | Jul 1939 | A |
2184681 | Osmun et al. | Dec 1939 | A |
2214429 | Miller | Sep 1940 | A |
2216895 | Stokes | Oct 1940 | A |
2228503 | Boyd et al. | Jan 1941 | A |
2295803 | O'Leary | Sep 1942 | A |
2305062 | Church et al. | Dec 1942 | A |
2324679 | Cox | Jul 1943 | A |
2370832 | Baker | Mar 1945 | A |
2379800 | Hare | Jul 1945 | A |
2414719 | Cloud | Jan 1947 | A |
2499630 | Clark | Mar 1950 | A |
2522444 | Grable | Sep 1950 | A |
2536458 | Munsinger | Jan 1951 | A |
2570080 | Stone | Oct 1951 | A |
2610690 | Beatty | Sep 1952 | A |
2621742 | Brown | Dec 1952 | A |
2627891 | Clark | Feb 1953 | A |
2641444 | Moon | Jun 1953 | A |
2650314 | Hennigh et al. | Aug 1953 | A |
2663073 | Bieber et al. | Dec 1953 | A |
2668689 | Cormany | Feb 1954 | A |
2692059 | Bolling, Jr. | Oct 1954 | A |
2720267 | Brown | Oct 1955 | A |
2738011 | Mabry | Mar 1956 | A |
2741907 | Genender et al. | Apr 1956 | A |
2743087 | Layne et al. | Apr 1956 | A |
2743495 | Eklund | May 1956 | A |
2764329 | Hampton | Sep 1956 | A |
2765146 | Williams | Oct 1956 | A |
2805043 | Williams | Sep 1957 | A |
2953406 | Young | Sep 1960 | A |
2965177 | Bus, Sr., et al. | Dec 1960 | A |
2978047 | DeVaan | Apr 1961 | A |
3006415 | Burns et al. | Oct 1961 | A |
3041901 | Knights | Jul 1962 | A |
3054100 | Jones | Sep 1962 | A |
3087546 | Wooley | Apr 1963 | A |
3090031 | Lord | May 1963 | A |
3102599 | Hillburn | Sep 1963 | A |
3111179 | Albers et al. | Nov 1963 | A |
3117636 | Wilcox et al. | Jan 1964 | A |
3122811 | Gilreath | Mar 1964 | A |
3123160 | Kammerer | Mar 1964 | A |
3124023 | Marquis et al. | Mar 1964 | A |
3131769 | Rochemont | May 1964 | A |
3159219 | Scott | Dec 1964 | A |
3169592 | Kammerer | Feb 1965 | A |
3191677 | Kinley | Jun 1965 | A |
3191680 | Vincent | Jun 1965 | A |
3193116 | Kenneday et al. | Jul 1965 | A |
3266582 | Homanick | Aug 1966 | A |
3353599 | Swift | Nov 1967 | A |
3380528 | Timmons | Apr 1968 | A |
3387893 | Hoever | Jun 1968 | A |
3392609 | Bartos | Jul 1968 | A |
3419079 | Current | Dec 1968 | A |
3477527 | Koot | Nov 1969 | A |
3489220 | Kinley | Jan 1970 | A |
3518903 | Ham et al. | Jul 1970 | A |
3548936 | Kilgore et al. | Dec 1970 | A |
3550684 | Cubberly, Jr. | Dec 1970 | A |
3552507 | Brown | Jan 1971 | A |
3552508 | Brown | Jan 1971 | A |
3552509 | Brown | Jan 1971 | A |
3552510 | Brown | Jan 1971 | A |
3552848 | Van Wagner | Jan 1971 | A |
3559739 | Hutchison | Feb 1971 | A |
3566505 | Martin | Mar 1971 | A |
3570598 | Johnson | Mar 1971 | A |
3575245 | Cordary et al. | Apr 1971 | A |
3602302 | Kluth | Aug 1971 | A |
3603411 | Link | Sep 1971 | A |
3603412 | Kammerer, Jr. et al. | Sep 1971 | A |
3603413 | Grill et al. | Sep 1971 | A |
3606664 | Weiner | Sep 1971 | A |
3624760 | Bodine | Nov 1971 | A |
3635105 | Dickmann et al. | Jan 1972 | A |
3638989 | Sandquist | Feb 1972 | A |
3656564 | Brown | Apr 1972 | A |
3662842 | Bromell | May 1972 | A |
3669190 | Sizer et al. | Jun 1972 | A |
3680412 | Mayer et al. | Aug 1972 | A |
3691624 | Kinley | Sep 1972 | A |
3691825 | Dyer | Sep 1972 | A |
3692126 | Rushing et al. | Sep 1972 | A |
3696332 | Dickson, Jr. et al. | Oct 1972 | A |
3700048 | Desmoulins | Oct 1972 | A |
3706347 | Brown | Dec 1972 | A |
3729057 | Werner | Apr 1973 | A |
3746330 | Taciuk | Jul 1973 | A |
3747675 | Brown | Jul 1973 | A |
3760894 | Pitifer | Sep 1973 | A |
3766991 | Brown | Oct 1973 | A |
3776320 | Brown | Dec 1973 | A |
3780883 | Brown | Dec 1973 | A |
3785193 | Kinley et al. | Jan 1974 | A |
3808916 | Porter et al. | May 1974 | A |
3838613 | Wilms | Oct 1974 | A |
3840128 | Swoboda, Jr. et al. | Oct 1974 | A |
3848684 | West | Nov 1974 | A |
3857450 | Guier | Dec 1974 | A |
3870114 | Pulk | Mar 1975 | A |
3871618 | Funk | Mar 1975 | A |
3881375 | Kelly | May 1975 | A |
3885679 | Swoboda, Jr. et al. | May 1975 | A |
3901331 | Djurovic | Aug 1975 | A |
3913687 | Gyongyosi et al. | Oct 1975 | A |
3915244 | Brown | Oct 1975 | A |
3934660 | Nelson | Jan 1976 | A |
3945444 | Knudson | Mar 1976 | A |
3947009 | Nelmark | Mar 1976 | A |
3964552 | Slator | Jun 1976 | A |
3964556 | Gearhart et al. | Jun 1976 | A |
3980143 | Swartz et al. | Sep 1976 | A |
4049066 | Richey | Sep 1977 | A |
4054332 | Bryan, Jr. | Oct 1977 | A |
4054426 | White | Oct 1977 | A |
4064939 | Marquis | Dec 1977 | A |
4077525 | Callegari et al. | Mar 1978 | A |
4082144 | Marquis | Apr 1978 | A |
4083405 | Shirley | Apr 1978 | A |
4085808 | Kling | Apr 1978 | A |
4095865 | Denison et al. | Jun 1978 | A |
4100968 | Delano | Jul 1978 | A |
4100981 | Chaffin | Jul 1978 | A |
4127927 | Hauk et al. | Dec 1978 | A |
4133396 | Tschirky | Jan 1979 | A |
4142739 | Billingsley | Mar 1979 | A |
4173457 | Smith | Nov 1979 | A |
4175619 | Davis | Nov 1979 | A |
4186628 | Bonnice | Feb 1980 | A |
4189185 | Kammerer, Jr. et al. | Feb 1980 | A |
4194383 | Huzyak | Mar 1980 | A |
4202225 | Sheldon et al. | May 1980 | A |
4221269 | Hudson | Sep 1980 | A |
4227197 | Nimmo et al. | Oct 1980 | A |
4241878 | Underwood | Dec 1980 | A |
4257442 | Claycomb | Mar 1981 | A |
4262693 | Giebeler | Apr 1981 | A |
4274777 | Scaggs | Jun 1981 | A |
4274778 | Putnam et al. | Jun 1981 | A |
4277197 | Bingham | Jul 1981 | A |
4280380 | Eshghy | Jul 1981 | A |
4281722 | Tucker et al. | Aug 1981 | A |
4287949 | Lindsey, Jr. | Sep 1981 | A |
4311195 | Mullins, II | Jan 1982 | A |
4315553 | Stallings | Feb 1982 | A |
4320915 | Abbott et al. | Mar 1982 | A |
4336415 | Walling | Jun 1982 | A |
4384627 | Ramirez-Jauregui | May 1983 | A |
4392534 | Miida | Jul 1983 | A |
4396076 | Inoue | Aug 1983 | A |
4396077 | Radtke | Aug 1983 | A |
4407378 | Thomas | Oct 1983 | A |
4408669 | Wiredal | Oct 1983 | A |
4413682 | Callihan et al. | Nov 1983 | A |
4427063 | Skinner | Jan 1984 | A |
4437363 | Haynes | Mar 1984 | A |
4440220 | McArthur | Apr 1984 | A |
4445734 | Cunningham | May 1984 | A |
4446745 | Stone et al. | May 1984 | A |
4449596 | Boyadjieff | May 1984 | A |
4460053 | Jurgens et al. | Jul 1984 | A |
4463814 | Horstmeyer et al. | Aug 1984 | A |
4466498 | Bardwell | Aug 1984 | A |
4470470 | Takano | Sep 1984 | A |
4472002 | Beney et al. | Sep 1984 | A |
4474243 | Gaines | Oct 1984 | A |
4483399 | Colgate | Nov 1984 | A |
4489793 | Boren | Dec 1984 | A |
4489794 | Boyadjieff | Dec 1984 | A |
4492134 | Reinholdt et al. | Jan 1985 | A |
4494424 | Bates | Jan 1985 | A |
4515045 | Gnatchenko et al. | May 1985 | A |
4529045 | Boyadjieff et al. | Jul 1985 | A |
4544041 | Rinaldi | Oct 1985 | A |
4545443 | Wiredal | Oct 1985 | A |
4570706 | Pugnet | Feb 1986 | A |
4580631 | Baugh | Apr 1986 | A |
4583603 | Dorleans et al. | Apr 1986 | A |
4589495 | Langer et al. | May 1986 | A |
4592125 | Skene | Jun 1986 | A |
4593584 | Neves | Jun 1986 | A |
4593773 | Skeie | Jun 1986 | A |
4595058 | Nations | Jun 1986 | A |
4604724 | Shaginian et al. | Aug 1986 | A |
4604818 | Inoue | Aug 1986 | A |
4605077 | Boyadjieff | Aug 1986 | A |
4605268 | Meador | Aug 1986 | A |
4613161 | Brisco | Sep 1986 | A |
4620600 | Persson | Nov 1986 | A |
4625796 | Boyadjieff | Dec 1986 | A |
4630691 | Hooper | Dec 1986 | A |
4646827 | Cobb | Mar 1987 | A |
4649777 | Buck | Mar 1987 | A |
4651837 | Mayfield | Mar 1987 | A |
4652195 | McArthur | Mar 1987 | A |
4655286 | Wood | Apr 1987 | A |
4667752 | Berry et al. | May 1987 | A |
4671358 | Lindsey, Jr. et al. | Jun 1987 | A |
4676310 | Scherbatskoy et al. | Jun 1987 | A |
4676312 | Mosing et al. | Jun 1987 | A |
4678031 | Blandford et al. | Jul 1987 | A |
4681158 | Pennison | Jul 1987 | A |
4681162 | Boyd | Jul 1987 | A |
4683962 | True | Aug 1987 | A |
4686873 | Lang et al. | Aug 1987 | A |
4691587 | Farrand et al. | Sep 1987 | A |
4693316 | Ringgenberg et al. | Sep 1987 | A |
4699224 | Burton | Oct 1987 | A |
4709599 | Buck | Dec 1987 | A |
4709766 | Boyadjieff | Dec 1987 | A |
4725179 | Woolslayer et al. | Feb 1988 | A |
4735270 | Fenyvesi | Apr 1988 | A |
4738145 | Vincent et al. | Apr 1988 | A |
4742876 | Barthelemy et al. | May 1988 | A |
4744426 | Reed | May 1988 | A |
4759239 | Hamilton et al. | Jul 1988 | A |
4760882 | Novak | Aug 1988 | A |
4762187 | Haney | Aug 1988 | A |
4765401 | Boyadjieff | Aug 1988 | A |
4765416 | Bjerking et al. | Aug 1988 | A |
4773689 | Wolters | Sep 1988 | A |
4775009 | Wittrisch et al. | Oct 1988 | A |
4778008 | Gonzalez et al. | Oct 1988 | A |
4781359 | Matus | Nov 1988 | A |
4788544 | Howard | Nov 1988 | A |
4791997 | Krasnov | Dec 1988 | A |
4793422 | Krasnov | Dec 1988 | A |
4800968 | Shaw et al. | Jan 1989 | A |
4806928 | Veneruso | Feb 1989 | A |
4813493 | Shaw et al. | Mar 1989 | A |
4813495 | Leach | Mar 1989 | A |
4821814 | Willis et al. | Apr 1989 | A |
4825947 | Mikolajczyk | May 1989 | A |
4832552 | Skelly | May 1989 | A |
4836064 | Slator | Jun 1989 | A |
4836299 | Bodine | Jun 1989 | A |
4842081 | Parant | Jun 1989 | A |
4843945 | Dinsdale | Jul 1989 | A |
4848469 | Baugh et al. | Jul 1989 | A |
4854386 | Baker et al. | Aug 1989 | A |
4867236 | Haney et al. | Sep 1989 | A |
4878546 | Shaw et al. | Nov 1989 | A |
4880058 | Lindsey et al. | Nov 1989 | A |
4883125 | Wilson et al. | Nov 1989 | A |
4899816 | Mine | Feb 1990 | A |
4901069 | Veneruso | Feb 1990 | A |
4904119 | Legendre et al. | Feb 1990 | A |
4909741 | Schasteen et al. | Mar 1990 | A |
4915181 | Labrosse | Apr 1990 | A |
4921386 | McArthur | May 1990 | A |
4936382 | Thomas | Jun 1990 | A |
4960173 | Cognevich et al. | Oct 1990 | A |
4962579 | Moyer et al. | Oct 1990 | A |
4962819 | Bailey et al. | Oct 1990 | A |
4962822 | Pascale | Oct 1990 | A |
4971146 | Terrell | Nov 1990 | A |
4997042 | Jordan et al. | Mar 1991 | A |
5009265 | Bailey et al. | Apr 1991 | A |
5022472 | Bailey et al. | Jun 1991 | A |
5027914 | Wilson | Jul 1991 | A |
5036927 | Willis | Aug 1991 | A |
5049020 | McArthur | Sep 1991 | A |
5052483 | Hudson | Oct 1991 | A |
5060542 | Hauk | Oct 1991 | A |
5060737 | Mohn | Oct 1991 | A |
5062756 | McArthur et al. | Nov 1991 | A |
5069297 | Krueger | Dec 1991 | A |
5074366 | Karlsson et al. | Dec 1991 | A |
5082069 | Seiler et al. | Jan 1992 | A |
5085273 | Coone | Feb 1992 | A |
5096465 | Chen et al. | Mar 1992 | A |
5107940 | Berry | Apr 1992 | A |
5109924 | Jurgens et al. | May 1992 | A |
5111893 | Kvello-Aune | May 1992 | A |
5141063 | Quesenbury | Aug 1992 | A |
RE34063 | Vincent et al. | Sep 1992 | E |
5148875 | Karlsson et al. | Sep 1992 | A |
5156213 | George et al. | Oct 1992 | A |
5160925 | Dailey et al. | Nov 1992 | A |
5168942 | Wydrinski | Dec 1992 | A |
5172765 | Sas-Jaworsky | Dec 1992 | A |
5176518 | Hordijk et al. | Jan 1993 | A |
5181571 | Mueller | Jan 1993 | A |
5186265 | Henson et al. | Feb 1993 | A |
5191932 | Seefried et al. | Mar 1993 | A |
5191939 | Stokley | Mar 1993 | A |
5197553 | Leturno | Mar 1993 | A |
6374506 | Clay | Apr 1993 | B1 |
5224540 | Streich et al. | Jul 1993 | A |
5233742 | Gray et al. | Aug 1993 | A |
5234052 | Coone et al. | Aug 1993 | A |
5245265 | Clay | Sep 1993 | A |
5251709 | Richardson | Oct 1993 | A |
5255741 | Alexander | Oct 1993 | A |
5255751 | Stogner | Oct 1993 | A |
5271468 | Streich et al. | Dec 1993 | A |
5271472 | Leturno | Dec 1993 | A |
5272925 | Henneuse et al. | Dec 1993 | A |
5282653 | LaFleur et al. | Feb 1994 | A |
5284210 | Helms et al. | Feb 1994 | A |
5285008 | Sas-Jaworsky et al. | Feb 1994 | A |
5285204 | Sas-Jaworsky | Feb 1994 | A |
5291956 | Mueller et al. | Mar 1994 | A |
5294228 | Willis et al. | Mar 1994 | A |
5297833 | Willis et al. | Mar 1994 | A |
5305830 | Wittrisch | Apr 1994 | A |
5305839 | Kalsi et al. | Apr 1994 | A |
5318122 | Murray et al. | Jun 1994 | A |
5320178 | Cornette | Jun 1994 | A |
5322127 | McNair et al. | Jun 1994 | A |
5323858 | Jones et al. | Jun 1994 | A |
5332043 | Ferguson | Jul 1994 | A |
5332048 | Underwood et al. | Jul 1994 | A |
5340182 | Busink et al. | Aug 1994 | A |
5343950 | Hale et al. | Sep 1994 | A |
5343951 | Cowan et al. | Sep 1994 | A |
5348095 | Worrall et al. | Sep 1994 | A |
5351767 | Stogner et al. | Oct 1994 | A |
5353872 | Wittrisch | Oct 1994 | A |
5354150 | Canales | Oct 1994 | A |
5355967 | Mueller et al. | Oct 1994 | A |
5361859 | Tibbitts | Nov 1994 | A |
5368113 | Schulze-Beckinghausen | Nov 1994 | A |
5375668 | Hallundbaek | Dec 1994 | A |
5379835 | Streich | Jan 1995 | A |
5386746 | Hauk | Feb 1995 | A |
5388651 | Berry | Feb 1995 | A |
5392715 | Pelrine | Feb 1995 | A |
5394823 | Lenze | Mar 1995 | A |
5402856 | Warren et al. | Apr 1995 | A |
5433279 | Tessari et al. | Jul 1995 | A |
5435400 | Smith | Jul 1995 | A |
5452923 | Smith | Sep 1995 | A |
5458209 | Hayes et al. | Oct 1995 | A |
5461905 | Penisson | Oct 1995 | A |
5472057 | Winfree | Dec 1995 | A |
5477925 | Trahan et al. | Dec 1995 | A |
5494122 | Larsen et al. | Feb 1996 | A |
5497840 | Hudson | Mar 1996 | A |
5501280 | Brisco | Mar 1996 | A |
5501286 | Berry | Mar 1996 | A |
5503234 | Clanton | Apr 1996 | A |
5520255 | Barr et al. | May 1996 | A |
5526880 | Jordan, Jr. et al. | Jun 1996 | A |
5535824 | Hudson | Jul 1996 | A |
5535838 | Keshavan et al. | Jul 1996 | A |
5540279 | Branch et al. | Jul 1996 | A |
5542472 | Pringle et al. | Aug 1996 | A |
5542473 | Pringle | Aug 1996 | A |
5546317 | Andrieu | Aug 1996 | A |
5547029 | Rubbo et al. | Aug 1996 | A |
5551521 | Vail, III | Sep 1996 | A |
5553672 | Smith, Jr. et al. | Sep 1996 | A |
5553679 | Thorp | Sep 1996 | A |
5560437 | Dickel et al. | Oct 1996 | A |
5560440 | Tibbitts | Oct 1996 | A |
5566772 | Coone et al. | Oct 1996 | A |
5575344 | Wireman | Nov 1996 | A |
5577566 | Albright et al. | Nov 1996 | A |
5582259 | Barr | Dec 1996 | A |
5584343 | Coone | Dec 1996 | A |
5588916 | Moore | Dec 1996 | A |
5613567 | Hudson | Mar 1997 | A |
5615747 | Vail, III | Apr 1997 | A |
5645131 | Trevisani | Jul 1997 | A |
5651420 | Tibbitts et al. | Jul 1997 | A |
5661888 | Hanslik | Sep 1997 | A |
5662170 | Donovan et al. | Sep 1997 | A |
5662182 | McLeod et al. | Sep 1997 | A |
5667011 | Gill et al. | Sep 1997 | A |
5667023 | Harrell et al. | Sep 1997 | A |
5667026 | Lorenz et al. | Sep 1997 | A |
5697442 | Baldridge | Dec 1997 | A |
5706894 | Hawkins, III | Jan 1998 | A |
5706905 | Barr | Jan 1998 | A |
5711382 | Hansen et al. | Jan 1998 | A |
5717334 | Vail, III et al. | Feb 1998 | A |
5720356 | Gardes | Feb 1998 | A |
5730471 | Schulze-Beckinghausen et al. | Mar 1998 | A |
5732776 | Tubel et al. | Mar 1998 | A |
5735348 | Hawkins, III | Apr 1998 | A |
5735351 | Helms | Apr 1998 | A |
5743344 | McLeod et al. | Apr 1998 | A |
5746276 | Stuart | May 1998 | A |
5765638 | Taylor | Jun 1998 | A |
5772514 | Moore | Jun 1998 | A |
5785132 | Richardson et al. | Jul 1998 | A |
5785134 | McLeod et al. | Jul 1998 | A |
5787978 | Carter et al. | Aug 1998 | A |
5791410 | Castille et al. | Aug 1998 | A |
5794703 | Newman et al. | Aug 1998 | A |
5803191 | Mackintosh | Sep 1998 | A |
5803666 | Keller | Sep 1998 | A |
5813456 | Milner et al. | Sep 1998 | A |
5823264 | Ringgenberg | Oct 1998 | A |
5826651 | Lee et al. | Oct 1998 | A |
5828003 | Thomeer et al. | Oct 1998 | A |
5829520 | Johnson | Nov 1998 | A |
5833002 | Holcombe | Nov 1998 | A |
5836395 | Budde | Nov 1998 | A |
5836409 | Vail, III | Nov 1998 | A |
5839330 | Stokka | Nov 1998 | A |
5839515 | Yuan et al. | Nov 1998 | A |
5839519 | Spedale, Jr. | Nov 1998 | A |
5842149 | Harrell et al. | Nov 1998 | A |
5842530 | Smith et al. | Dec 1998 | A |
5845722 | Makohl et al. | Dec 1998 | A |
5850877 | Albright et al. | Dec 1998 | A |
5860474 | Stoltz et al. | Jan 1999 | A |
5878815 | Collins | Mar 1999 | A |
5887655 | Haugen et al. | Mar 1999 | A |
5887668 | Haugen et al. | Mar 1999 | A |
5890537 | Lavaure et al. | Apr 1999 | A |
5890549 | Sprehe | Apr 1999 | A |
5894897 | Vail, III | Apr 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5908049 | Williams et al. | Jun 1999 | A |
5909768 | Castille et al. | Jun 1999 | A |
5913337 | Williams et al. | Jun 1999 | A |
5921285 | Quigley et al. | Jul 1999 | A |
5921332 | Spedale, Jr. | Jul 1999 | A |
5931231 | Mock | Aug 1999 | A |
5947213 | Angle et al. | Sep 1999 | A |
5950742 | Caraway | Sep 1999 | A |
5954131 | Sallwasser | Sep 1999 | A |
5957225 | Sinor | Sep 1999 | A |
5960881 | Allamon et al. | Oct 1999 | A |
5971079 | Mullins | Oct 1999 | A |
5971086 | Bee et al. | Oct 1999 | A |
5984007 | Yuan et al. | Nov 1999 | A |
5988273 | Monjure et al. | Nov 1999 | A |
6000472 | Albright et al. | Dec 1999 | A |
6012529 | Mikolajczyk et al. | Jan 2000 | A |
6024169 | Haugen | Feb 2000 | A |
6026911 | Angle et al. | Feb 2000 | A |
6035953 | Rear | Mar 2000 | A |
6056060 | Abrahamsen et al. | May 2000 | A |
6059051 | Jewkes et al. | May 2000 | A |
6059053 | McLeod | May 2000 | A |
6061000 | Edwards | May 2000 | A |
6062326 | Strong et al. | May 2000 | A |
6065550 | Gardes | May 2000 | A |
6070500 | Dlask et al. | Jun 2000 | A |
6070671 | Cumming et al. | Jun 2000 | A |
6079498 | Lima et al. | Jun 2000 | A |
6079509 | Bee et al. | Jun 2000 | A |
6082461 | Newman et al. | Jul 2000 | A |
6089323 | Newman et al. | Jul 2000 | A |
6098717 | Bailey et al. | Aug 2000 | A |
6119772 | Pruet | Sep 2000 | A |
6135208 | Gano et al. | Oct 2000 | A |
6142545 | Penman et al. | Nov 2000 | A |
6155360 | McLeod | Dec 2000 | A |
6158531 | Vail, III | Dec 2000 | A |
6161617 | Gjedebo | Dec 2000 | A |
6170573 | Brunet et al. | Jan 2001 | B1 |
6172010 | Argillier et al. | Jan 2001 | B1 |
6173777 | Mullins | Jan 2001 | B1 |
6179055 | Sallwasser et al. | Jan 2001 | B1 |
6182776 | Asberg | Feb 2001 | B1 |
6186233 | Brunet | Feb 2001 | B1 |
6189616 | Gano et al. | Feb 2001 | B1 |
6189621 | Vail, III | Feb 2001 | B1 |
6196336 | Fincher et al. | Mar 2001 | B1 |
6199641 | Downie et al. | Mar 2001 | B1 |
6202764 | Ables et al. | Mar 2001 | B1 |
6206112 | Dickinson, III et al. | Mar 2001 | B1 |
6216533 | Woloson et al. | Apr 2001 | B1 |
6217258 | Yamamoto et al. | Apr 2001 | B1 |
6220117 | Butcher | Apr 2001 | B1 |
6223823 | Head | May 2001 | B1 |
6227587 | Terral | May 2001 | B1 |
6234257 | Ciglenec et al. | May 2001 | B1 |
6237684 | Bouligny, Jr. et al. | May 2001 | B1 |
6263987 | Vail, III | Jul 2001 | B1 |
6273189 | Gissler et al. | Aug 2001 | B1 |
6275938 | Bond et al. | Aug 2001 | B1 |
6276450 | Seneviratne | Aug 2001 | B1 |
6279654 | Mosing et al. | Aug 2001 | B1 |
6290432 | Exley et al. | Sep 2001 | B1 |
6296066 | Terry et al. | Oct 2001 | B1 |
6305469 | Coenen et al. | Oct 2001 | B1 |
6309002 | Bouligny | Oct 2001 | B1 |
6311792 | Scott et al. | Nov 2001 | B1 |
6315051 | Ayling | Nov 2001 | B1 |
6325148 | Trahan et al. | Dec 2001 | B1 |
6334376 | Torres | Jan 2002 | B1 |
6343649 | Beck et al. | Feb 2002 | B1 |
6347674 | Bloom et al. | Feb 2002 | B1 |
6349764 | Adams et al. | Feb 2002 | B1 |
6357485 | Quigley et al. | Mar 2002 | B2 |
6359569 | Beck et al. | Mar 2002 | B2 |
6360633 | Pietras | Mar 2002 | B2 |
6367552 | Scott et al. | Apr 2002 | B1 |
6367566 | Hill | Apr 2002 | B1 |
6371203 | Frank et al. | Apr 2002 | B2 |
6374924 | Hanton et al. | Apr 2002 | B1 |
6378627 | Tubel et al. | Apr 2002 | B1 |
6378630 | Ritorto et al. | Apr 2002 | B1 |
6378633 | Moore et al. | Apr 2002 | B1 |
6390190 | Mullins | May 2002 | B2 |
6392317 | Hall et al. | May 2002 | B1 |
6397946 | Vail, III | Jun 2002 | B1 |
6405798 | Barrett et al. | Jun 2002 | B1 |
6408943 | Schultz et al. | Jun 2002 | B1 |
6412554 | Allen et al. | Jul 2002 | B1 |
6412574 | Wardley et al. | Jul 2002 | B1 |
6419014 | Meek et al. | Jul 2002 | B1 |
6419033 | Hahn et al. | Jul 2002 | B1 |
6427776 | Hoffman et al. | Aug 2002 | B1 |
6429784 | Beique et al. | Aug 2002 | B1 |
6431626 | Bouligny | Aug 2002 | B1 |
6443241 | Juhasz et al. | Sep 2002 | B1 |
6443247 | Wardley | Sep 2002 | B1 |
6446723 | Ramons et al. | Sep 2002 | B1 |
6457532 | Simpson | Oct 2002 | B1 |
6458471 | Lovato et al. | Oct 2002 | B2 |
6464004 | Crawford et al. | Oct 2002 | B1 |
6464011 | Tubel | Oct 2002 | B2 |
6484818 | Alft et al. | Nov 2002 | B2 |
6497280 | Beck et al. | Dec 2002 | B2 |
6527047 | Pietras | Mar 2003 | B1 |
6527064 | Hallundbaek | Mar 2003 | B1 |
6527493 | Kamphorst et al. | Mar 2003 | B1 |
6536520 | Snider et al. | Mar 2003 | B1 |
6536522 | Birckhead et al. | Mar 2003 | B2 |
6536993 | Strong et al. | Mar 2003 | B2 |
6538576 | Schultz et al. | Mar 2003 | B1 |
6540025 | Scott et al. | Apr 2003 | B2 |
6543552 | Melcalfe et al. | Apr 2003 | B1 |
6547017 | Vail, III | Apr 2003 | B1 |
6553825 | Boyd | Apr 2003 | B1 |
6554064 | Restarick et al. | Apr 2003 | B1 |
6585040 | Hanton et al. | Jul 2003 | B2 |
6591471 | Hollingsworth et al. | Jul 2003 | B1 |
6595288 | Mosing et al. | Jul 2003 | B2 |
6619402 | Amory et al. | Sep 2003 | B1 |
6622796 | Pietras | Sep 2003 | B1 |
6634430 | Dawson et al. | Oct 2003 | B2 |
6637526 | Juhasz et al. | Oct 2003 | B2 |
6648075 | Badrak et al. | Nov 2003 | B2 |
6651737 | Bouligny et al. | Nov 2003 | B2 |
6655460 | Bailey et al. | Dec 2003 | B2 |
6666274 | Hughes | Dec 2003 | B2 |
6668684 | Allen et al. | Dec 2003 | B2 |
6668937 | Murray | Dec 2003 | B1 |
6679333 | York et al. | Jan 2004 | B2 |
6688394 | Ayling | Feb 2004 | B1 |
6688398 | Pietras | Feb 2004 | B2 |
6691801 | Juhasz et al. | Feb 2004 | B2 |
6698595 | Norell et al. | Mar 2004 | B2 |
6702040 | Sensenig | Mar 2004 | B1 |
6708769 | Haugen et al. | Mar 2004 | B2 |
6715430 | Choi et al. | Apr 2004 | B2 |
6719071 | Moyes | Apr 2004 | B1 |
6725924 | Davidson et al. | Apr 2004 | B2 |
6725938 | Pietras | Apr 2004 | B1 |
6732822 | Slack et al. | May 2004 | B2 |
6742584 | Appleton | Jun 2004 | B1 |
6742596 | Haugen | Jun 2004 | B2 |
6742606 | Metcalfe et al. | Jun 2004 | B2 |
6745834 | Davis et al. | Jun 2004 | B2 |
6752211 | Dewey et al. | Jun 2004 | B2 |
6776233 | Meehan | Aug 2004 | B2 |
6832656 | Cameron | Dec 2004 | B2 |
6832658 | Keast | Dec 2004 | B2 |
6837313 | Hosie et al. | Jan 2005 | B2 |
6840322 | Haynes | Jan 2005 | B2 |
6848517 | Wardley | Feb 2005 | B2 |
6854533 | Galloway | Feb 2005 | B2 |
6857486 | Chitwood et al. | Feb 2005 | B2 |
6857487 | Galloway | Feb 2005 | B2 |
6868906 | Vail, III et al. | Mar 2005 | B1 |
6877553 | Cameron | Apr 2005 | B2 |
6892835 | Shahin et al. | May 2005 | B2 |
6896075 | Haugen et al. | May 2005 | B2 |
6899186 | Galloway et al. | May 2005 | B2 |
6899772 | Buytaert et al. | May 2005 | B1 |
6907934 | Kauffman et al. | Jun 2005 | B2 |
7096977 | Juhasz et al. | Aug 2006 | B2 |
7100698 | Kracik et al. | Sep 2006 | B2 |
20010042625 | Appleton | Nov 2001 | A1 |
20020029878 | Victor | Mar 2002 | A1 |
20020040787 | Cook et al. | Apr 2002 | A1 |
20020066556 | Goode et al. | Jun 2002 | A1 |
20020108748 | Keyes | Aug 2002 | A1 |
20020170720 | Haugen | Nov 2002 | A1 |
20020189863 | Wardley | Dec 2002 | A1 |
20030029641 | Meehan | Feb 2003 | A1 |
20030056991 | Hahn et al. | Mar 2003 | A1 |
20030070841 | Merecka et al. | Apr 2003 | A1 |
20030111267 | Pia | Jun 2003 | A1 |
20030141111 | Pia | Jul 2003 | A1 |
20030146023 | Pia | Aug 2003 | A1 |
20030155159 | Slack et al. | Aug 2003 | A1 |
20030164251 | Tulloch | Sep 2003 | A1 |
20030164276 | Snider et al. | Sep 2003 | A1 |
20030173073 | Snider et al. | Sep 2003 | A1 |
20030173090 | Cook et al. | Sep 2003 | A1 |
20030217865 | Simpson et al. | Nov 2003 | A1 |
20030221519 | Haugen et al. | Dec 2003 | A1 |
20040003490 | Shahin et al. | Jan 2004 | A1 |
20040003944 | Vincent et al. | Jan 2004 | A1 |
20040011534 | Simonds et al. | Jan 2004 | A1 |
20040060697 | Tilton et al. | Apr 2004 | A1 |
20040069500 | Haugen | Apr 2004 | A1 |
20040108142 | Vail, III | Jun 2004 | A1 |
20040112603 | Galloway et al. | Jun 2004 | A1 |
20040112646 | Vail | Jun 2004 | A1 |
20040118613 | Vail | Jun 2004 | A1 |
20040118614 | Galloway et al. | Jun 2004 | A1 |
20040123984 | Vail | Jul 2004 | A1 |
20040124010 | Galloway et al. | Jul 2004 | A1 |
20040124011 | Gledhill et al. | Jul 2004 | A1 |
20040124015 | Vaile et al. | Jul 2004 | A1 |
20040129456 | Vail | Jul 2004 | A1 |
20040140128 | Vail | Jul 2004 | A1 |
20040144547 | Koithan et al. | Jul 2004 | A1 |
20040173358 | Haugen | Sep 2004 | A1 |
20040216892 | Giroux et al. | Nov 2004 | A1 |
20040216924 | Pietras et al. | Nov 2004 | A1 |
20040216925 | Metcalfe et al. | Nov 2004 | A1 |
20040221997 | Giroux et al. | Nov 2004 | A1 |
20040226751 | McKay et al. | Nov 2004 | A1 |
20040244992 | Carter et al. | Dec 2004 | A1 |
20040245020 | Giroux et al. | Dec 2004 | A1 |
20040251025 | Giroux et al. | Dec 2004 | A1 |
20040251050 | Shahin et al. | Dec 2004 | A1 |
20040251055 | Shahin et al. | Dec 2004 | A1 |
20040262013 | Tilton et al. | Dec 2004 | A1 |
20050000691 | Giroux et al. | Jan 2005 | A1 |
20050051343 | Pietras et al. | Mar 2005 | A1 |
20050096846 | Koithan et al. | May 2005 | A1 |
20050098352 | Beierbach et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
2 496 102 | Apr 2000 | CA |
2 307 386 | Nov 2000 | CA |
2 335 192 | Nov 2001 | CA |
3 213 464 | Oct 1983 | DE |
3 523 221 | Feb 1987 | DE |
3 918 132 | Dec 1989 | DE |
4 133 802 | Oct 1992 | DE |
0 087 373 | Aug 1983 | EP |
0 162 000 | Nov 1985 | EP |
0 171 144 | Feb 1986 | EP |
0 235 105 | Sep 1987 | EP |
0 265 344 | Apr 1988 | EP |
0 285 386 | Oct 1988 | EP |
0 426 123 | May 1991 | EP |
0 462 618 | Dec 1991 | EP |
0 474 481 | Mar 1992 | EP |
0479583 | Apr 1992 | EP |
0 525 247 | Feb 1993 | EP |
0 554 568 | Aug 1993 | EP |
0 589 823 | Mar 1994 | EP |
0 659 975 | Jun 1995 | EP |
0 790 386 | Aug 1997 | EP |
0 881 354 | Apr 1998 | EP |
0 571 045 | Aug 1998 | EP |
0 961 007 | Dec 1999 | EP |
0 962 384 | Dec 1999 | EP |
1 006 260 | Jun 2000 | EP |
1 050 661 | Nov 2000 | EP |
1148206 | Oct 2001 | EP |
1 256 691 | Nov 2002 | EP |
2053088 | Jul 1970 | FR |
2741907 | Jun 1997 | FR |
2 841 293 | Dec 2003 | FR |
540 027 | Oct 1941 | GB |
709 365 | May 1954 | GB |
716 761 | Oct 1954 | GB |
7 928 86 | Apr 1958 | GB |
8 388 33 | Jun 1960 | GB |
881 358 | Nov 1961 | GB |
9 977 21 | Jul 1965 | GB |
1 277 461 | Jun 1972 | GB |
1 306 568 | Mar 1973 | GB |
1 448 304 | Sep 1976 | GB |
1 469 661 | Apr 1977 | GB |
1 582 392 | Jan 1981 | GB |
2 053 088 | Feb 1981 | GB |
2 115 940 | Sep 1983 | GB |
2 170 528 | Aug 1986 | GB |
2 201 912 | Sep 1988 | GB |
2 216 926 | Oct 1989 | GB |
2 223 253 | Apr 1990 | GB |
2 224 481 | Sep 1990 | GB |
2 240 799 | Aug 1991 | GB |
2 275 486 | Apr 1993 | GB |
2 294 715 | Aug 1996 | GB |
2 313 860 | Feb 1997 | GB |
2 320 270 | Jun 1998 | GB |
2 324 108 | Oct 1998 | GB |
2 333 542 | Jul 1999 | GB |
2 335 217 | Sep 1999 | GB |
2 345 074 | Jun 2000 | GB |
2 347 445 | Sep 2000 | GB |
2 348 223 | Sep 2000 | GB |
2 349 401 | Sep 2000 | GB |
2 350 137 | Nov 2000 | GB |
2 357 101 | Jun 2001 | GB |
2 357 530 | Jun 2001 | GB |
2 352 747 | Jul 2001 | GB |
2 365 463 | Feb 2002 | GB |
2 372 271 | Aug 2002 | GB |
2 372 765 | Sep 2002 | GB |
2 381 809 | May 2003 | GB |
2 382 361 | May 2003 | GB |
2 386 626 | Sep 2003 | GB |
2 389 130 | Dec 2003 | GB |
2001-1733349 | Jun 2001 | JP |
WO90-06418 | Jun 1990 | WO |
WO91-16520 | Oct 1991 | WO |
WO92-01139 | Jan 1992 | WO |
WO92-18743 | Oct 1992 | WO |
WO92-20899 | Nov 1992 | WO |
WO93-07358 | Apr 1993 | WO |
WO93-24728 | Dec 1993 | WO |
WO95-10686 | Apr 1995 | WO |
WO96-18799 | Jun 1996 | WO |
WO96-28635 | Sep 1996 | WO |
WO97-05360 | Feb 1997 | WO |
WO97-08418 | Mar 1997 | WO |
WO9801651 | Jan 1998 | WO |
WO98-05844 | Feb 1998 | WO |
WO98-09053 | Mar 1998 | WO |
WO98-11322 | Mar 1998 | WO |
WO98-32948 | Jul 1998 | WO |
WO98-55730 | Dec 1998 | WO |
WO99-04135 | Jan 1999 | WO |
WO99-11902 | Mar 1999 | WO |
WO99-23354 | May 1999 | WO |
WO99-24689 | May 1999 | WO |
WO99-35368 | Jul 1999 | WO |
WO99-37881 | Jul 1999 | WO |
WO99-41485 | Aug 1999 | WO |
WO99-50528 | Oct 1999 | WO |
WO99-58810 | Nov 1999 | WO |
WO99-64713 | Dec 1999 | WO |
WO 0004269 | Jan 2000 | WO |
WO 00-05483 | Feb 2000 | WO |
WO 00-08293 | Feb 2000 | WO |
WO 0009853 | Feb 2000 | WO |
WO 00-11309 | Mar 2000 | WO |
WO 00-11310 | Mar 2000 | WO |
WO 00-11311 | Mar 2000 | WO |
WO 00-28188 | May 2000 | WO |
WO 00-37766 | Jun 2000 | WO |
WO 00-37771 | Jun 2000 | WO |
WO 00-39429 | Jul 2000 | WO |
WO 00-39430 | Jul 2000 | WO |
WO 0041467 | Jul 2000 | WO |
WO 00-46484 | Aug 2000 | WO |
WO 00-50730 | Aug 2000 | WO |
WO 0052297 | Sep 2000 | WO |
WO 00-66879 | Nov 2000 | WO |
WO 01-12946 | Feb 2001 | WO |
WO 0133033 | May 2001 | WO |
WO 01-46550 | Jun 2001 | WO |
WO 0159253 | Aug 2001 | WO |
WO 01-79650 | Oct 2001 | WO |
WO 0179652 | Oct 2001 | WO |
WO 01-81708 | Nov 2001 | WO |
WO 01-83932 | Nov 2001 | WO |
WO 01-94738 | Dec 2001 | WO |
WO 01-94739 | Dec 2001 | WO |
WO 0214649 | Feb 2002 | WO |
WO 02-44601 | Jun 2002 | WO |
WO 02-081863 | Oct 2002 | WO |
WO 02-086287 | Oct 2002 | WO |
WO 03006790 | Jan 2003 | WO |
WO 03-074836 | Sep 2003 | WO |
WO 03-087525 | Oct 2003 | WO |
WO 2004022903 | Mar 2004 | WO |
WO 2004079155 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050257933 A1 | Nov 2005 | US |