The present disclosure claims priority to PCT Patent Application No. PCT/GB2011/050707, filed Apr. 11, 2011, and GB Patent Application Nos. 1006278.4, filed Apr. 15, 2010, and 1013486.4, filed Aug. 11, 2010, each of which is incorporated herein by reference in its entirety.
The present invention relates to a cask for storing and “maturing” distilled spirits, particularly whisky (alt. whiskey).
A traditional whisky cask is a bilge-barrel shape, formed by a plurality of curved staves that result in an overall bulge when it is assembled and bound together. Such a bulge (bilge) is useful for manually rolling and controlling the direction of the cask, which may weigh 500 kg or more, on its side.
Casks for spirits can be made of any suitable material; however, whisky casks are required to be made from oak which is important for the maturation process. It is typically found that after several uses (e.g. at intervals of ten years when a new batch of spirit is introduced to the cask for maturation) the interior wood of the cask must be “rejuvenated” by flailing the surface (e.g. by wire brush) in contact with the spirit. As such an average barrel normally has a lifespan of 50 years.
The general design of whisky casks in common use, made from oak, has not changed significantly in many hundreds of years, although some attempt has been made to introduce new designs over the years. For example,
However, GB1136469 in fact describes a “cabinet” construction and not a cask in the traditional sense. The staves of the cabinet must have a jointing mechanism and rely on an elastomeric bonding agent for sealing and cohesion.
A particular problem experienced with traditional cask designs, i.e. casks that do not utilise bonding and/or sealing agents, is that when warehoused (e.g. palletised upright or high racked on their bilge; in both cases up to six levels high) the staves can be forced apart by sheer weight, causing slow loss of spirit. Loss is also observed at the area of the bung where whisky is introduced/removed from the barrel.
The present invention therefore seeks to address problems observed with traditional whisky casks and provide an alternative.
In one broad aspect there is provided a method of warehousing casks for whisky, utilising a plurality of straight walled casks and stacking same such that the walls are compressible by the weight of an adjacent cask. Preferably, the casks are oriented on their sides and with a corner edge of the cask in a 12 o'clock and/or 6 o'clock position to obtain the optimum weight distribution possible for acting on all sides of the cask.
The casks are preferably comprised of a plurality of staves bound together to form hexagonal, triangular or square/diamond prism shapes. Preferably the ends/sides are of equal length (i.e. regular hexagon, equilateral triangle, square not rectangle etc).
The method may require use of a base with a support surface to fill the gaps of the lowermost row of casks.
The advantage of these shapes is that downward force applied by the weight of stacked casks creates a compressed wall structure that will reduce spirit loss between the staves that comprise the cask walls.
Furthermore, the use of a straight stave length makes the cask easier to construct and simplifies the rejuvenation process where it is intended to remove timber that has been in contact with spirit stored in the cask.
An associated advantage found in the present invention is the space economy of stacking compared to a traditional barrel. It will be appreciated that bilge-barrel shapes, even when tightly packed and stacked together, result in significant empty and un-fillable space in a warehouse. In the present invention, multiple casks can be stacked or nestle to form a bank of like shaped casks with no gaps therebetween.
As described above, to obtain optimum compression laterally between the staves in contact with each other the casks are oriented on their sides with a corner edge of the cask wall in a downward (and/or opposing upward, 6 and/or 12 o'clock) position. For example, in the case of hexagonal casks, this results in a honeycomb end appearance when stacked, requiring a base with a support surface of a jagged shape to fill the gaps between the lowermost row of casks and the floor. In the case of a square-ended cask, stacking is performed such that there is a diamond appearance. Likewise, preferably a jagged (triangular support surface) base is provided that supports the lowermost row of casks.
In a second broad aspect there is provided a cask for whisky constructed from a plurality of straight staves bound together to form a prism-shape such that, when stacked with other like casks, it is able to result in a self compressing wall structure.
The term “bound” implies use of a high-tension strap or equivalent and, specifically, the absence of bonding or sealing agents between the staves. The avoidance of chemical agents ensures that no adverse taste can be imparted to the spirit housed by the cask during the maturation process.
Preferably the prism-shape is a hexagonal prism. The shape may also be triangular. In another form the shape may be square/diamond ended. These most preferable shapes are such that no gaps form between adjacent casks when stacked in a warehouse.
It will be apparent that a plurality of casks according to the second aspect of the invention can be utilised in a warehousing system that follows the method of the first aspect of the invention. Specifically, according to a third aspect there is provided a system of warehousing casks for whisky, utilising a plurality of casks constructed from a plurality of straight staves bound together to form a prism-shape wherein the casks are oriented on their sides and with a corner edge of the cask in a 12 o'clock and/or 6 o'clock position.
Preferably the system includes a support surface with ridges upon which a lowermost row of casks is in contact.
Stave edges may be constructed with tongue-in-groove joints to assist assembly. This is distinguished from other construction methods that require adhesives or other mechanical fasteners (e.g. bolts or screws) that may affect the taste of the stored spirit. An alternative to a tongue-in-groove joint is a convex radius mating with a matching concave radius, however, any suitable joining method could be employed.
When first filled the casks can be in a horizontal (
In the configuration illustrated by
The stack may take an overall “honeycomb” formation having one fewer cask on each successive level. In the illustrated example, there is provision to support four casks 10 on the base B, followed by three on a second level, then two, then one (although it will be noted not all ten casks in the proposed stack are illustrated).
Alternatively, a pair of side brackets could be formed on a warehouse wall or support structure to receive and stabilise a block of stacked casks 10 to maximise storage efficiency in a warehouse in the vertical direction. Referring to
It is envisaged that, once stacked, the casks may not be moved again until rejuvenation is required. Liquid can be introduced/removed from the casks via bung hole 14 in situ with the use of a tanker. Furthermore, casks can be stacked in rows, back-to-back (or, more correctly, base-to-base) with an aisle wide enough to allow access to each bung 14, e.g. by a cherry-picker.
The geometry of a system of hexagonal prisms allows a uniform distribution of forces and utilises the weight of the full casks to compress the stave joints and improve sealing. Furthermore, particularly for a cask located centrally in a back-to-back stacked cluster, the only exposed surface is one hexagonal end, minimising air flow around the cask as a whole which is associated with spirit loss.
As discussed, rejuvenation is a relatively simple (but time consuming) process where casks are dismantled, inspected and reconditioned for further use. It will be appreciated that a straight stave 17 can be flailed more easily than the curved stave of a conventional cask. Flailing normally removes wood from the substantive length, but leaves the joint channel 16 where end 12 is located. Likewise, end 12 can be flailed over its substantive surface, but not in the area where it forms a seal with the staves. Alternatively, it can simply be reversed, i.e. the once outer end surface of the cask can be turned inward when the cask is reassembled so that “fresh” wood is in contact with the maturing spirit.
As in the case of stacking hexagonal casks, the triangular shape will naturally lead to a pyramid type construction (i.e. a first layer of n casks, second layer of n−1, third of n−2 etc) if left to be self supporting. It will be appreciated that a side supporting bracket, including surfaces to engage with the exposed sidewalls of the stack can be provided to enable more space efficient packing in a vertical direction.
It should be noted that equilateral triangle-faced casks could be stacked with a flat side in a vertical orientation (with use of suitable support brackets etc at the side/base of the stack) such that bung holes 14 can all be located at an uppermost corner and, therefore, a single form of cask can be used.
It will be appreciated that other triangle variations are possible, particularly isosceles configurations, however, an equilateral triangle has a more efficient material-to-volume ratio.
It will be clear from the foregoing that the invention is embodied by a method of stacking straight-walled casks, to utilise the natural compression between units that will minimise spirit loss when packed in a warehouse for an extended time period. In this regard, a third embodiment, illustrated by
Square/diamond-ended casks as stacked according to the method of the invention, require a base B comparable to
Square/diamond casks 19 can each have a bung hole 14 in the uppermost corner (12 o'clock) when stacked as illustrated, providing similar benefits for filling as described in connection with the previous embodiments.
In general it is intended that all embodiments are able to be manufactured from available techniques and materials (i.e. oak).
The invention has the combined advantages of providing improvements to minimise loss of spirit, increase warehouse economy and improve the ease/efficiency of rejuvenation compared to more traditional barrel designs.
Number | Date | Country | Kind |
---|---|---|---|
1006278.4 | Apr 2010 | GB | national |
1013486.4 | Aug 2010 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2011/050707 | 4/11/2011 | WO | 00 | 11/28/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/128670 | 10/20/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2111884 | Cahaney | Mar 1938 | A |
3220583 | Robertson | Nov 1965 | A |
3292779 | Colella | Dec 1966 | A |
3425586 | Petters et al. | Feb 1969 | A |
3456827 | Wakeem | Jul 1969 | A |
3462038 | Morris | Aug 1969 | A |
3563408 | Bijvoet | Feb 1971 | A |
3583590 | Ferraro | Jun 1971 | A |
3765574 | Urquiza | Oct 1973 | A |
4093099 | Spooner | Jun 1978 | A |
4484688 | Smith | Nov 1984 | A |
4506796 | Thompson | Mar 1985 | A |
4703866 | Scott | Nov 1987 | A |
6325212 | Przytulla et al. | Dec 2001 | B2 |
7240609 | Berecz | Jul 2007 | B2 |
20050172817 | Berecz | Aug 2005 | A1 |
20060175333 | Johanson et al. | Aug 2006 | A1 |
20060261060 | Baez | Nov 2006 | A1 |
20070000929 | Fernandez | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
201183620 | Jan 2009 | CN |
201261566 | Jun 2009 | CN |
0007145 | Jan 1980 | EP |
0953305 | Nov 1999 | EP |
2186738 | May 2010 | EP |
24237 | Oct 1915 | GB |
890926 | Feb 1962 | GB |
Entry |
---|
International Search Report for PCT/GB2011/050707. |
Number | Date | Country | |
---|---|---|---|
20130094934 A1 | Apr 2013 | US |