Cassette for a hidden injection needle

Information

  • Patent Grant
  • 8177749
  • Patent Number
    8,177,749
  • Date Filed
    Tuesday, May 20, 2008
    16 years ago
  • Date Issued
    Tuesday, May 15, 2012
    12 years ago
Abstract
A system for injecting a fluid medicament into a patient includes a drive mechanism, and a cassette loaded with a pre-filled hypodermic syringe. When the cassette is loaded, the syringe is held firmly inside and the cassette can be selectively engaged with the drive mechanism. The drive mechanism has two motors. A first motor initially moves the hypodermic syringe from a position inside the cassette where its needle is concealed, to a position where the needle extends from the cassette for insertion into a patient for an injection. With the needle inserted, a second motor pushes the syringe stopper to expel a fluid medicament from the syringe. After an injection, the first motor withdraws the syringe back into concealment inside the cassette, to again firmly hold the syringe on the cassette. The cassette and syringe, in combination, can then be removed from the drive mechanism and discarded.
Description
FIELD OF THE INVENTION

The present invention pertains generally to systems for injecting fluid medicaments into a patient from a pre-filled hypodermic syringe. More particularly, the present invention pertains to systems wherein the needle of the hypodermic syringe remains concealed and hidden during an injection procedure. The present invention is particularly, but not exclusively, useful as a system wherein a hypodermic syringe is concealed in a cassette; wherein the cassette is engageable with a drive mechanism; and wherein the drive mechanism uses one motor to present the syringe needle for an injection, and uses another motor to expel fluid medicament through the syringe needle.


BACKGROUND OF THE INVENTION

Pre-filled hypodermic syringes provide several advantages for the home-use market. These advantages include the fact that pre-filled syringes can be prepared for each fluid medicament with the exactly required dosage. Further, they are easily operated, by merely advancing the stopper of the syringe. Aside from the costs of the particular medication that is being used, pre-filled syringes are also economically manufactured. A consequence of all this is that pre-filled syringes have commercial appeal. Nevertheless, pre-filled syringes also have a significant drawback in the marketplace. Specifically, many users are either frightened by an exposed needle or feel they are inherently incapable of performing an injection.


Because of aversions to exposed needles, as well as the many health and safety issues that may be involved, various needleless injectors and other devices have been developed for the specific purpose of concealing needles from the user. Typically, for devices where hidden or protected needles are employed, the devices are spring-operated and tend toward the use of cartridges, rather than the use of pre-filled hypodermic syringes. For example, U.S. Pub. No. 2007/0021720A1 which was filed for an invention entitled “Injector”, discloses such a device employing a variety of spring activated mechanisms. When springs are employed, however, the forces cannot be varied from application to application. This can be particularly problematic in situations where it may be desirable to use a same device, at different times, to inject different medications, with different fluid viscosities. Indeed, it may not be possible to use a same spring-loaded injector for different medications. The situation can become further complicated when consideration is given to the fact that, in a single injection procedure, the optimal force for inserting a syringe needle into a patient may be quite different from the force required to subsequently expel fluid medicament from the syringe. Furthermore, the starting force of a spring will differ from the ending force. And, this can be problematic for assuring a complete drug delivery.


In light of the above, it is an object of the present invention to provide a system using disposable cassettes that are pre-loaded with pre-filled syringes to hide the syringe needle during its use. Another object of the present invention is to provide a system for injecting fluid medicaments into a patient that uses different motors to accommodate different force requirements during an injection procedure. Still another object of the present invention is to provide a system for injecting a fluid medicament to a patient that is easy to assemble, is simple to use, and is comparatively cost effective.


SUMMARY OF THE INVENTION

In accordance with the present invention, a system for injecting fluid medicaments into a patient from a pre-filled hypodermic syringe, employs a cassette that is pre-loaded with the pre-filled syringe. For this combination, the hypodermic syringe can be loaded into the cassette during manufacture, or be subsequently loaded by a contract service provider. In either case, the syringe needle is concealed inside the cassette and hidden from the view of the end-user. Importantly, the only preparation required by the end-user (e.g. the patient that is to self-administer the fluid medicament) is to mount the cassette onto a drive mechanism.


Structurally, the system of the present invention envisions a pre-filled syringe that will have a needle, and it will have a stopper for expelling the fluid medicament from the syringe through the needle. Further, the pre-filled syringe will be firmly held on the cassette in a position where the syringe needle is concealed and hidden from view. As envisioned for the present invention, the pre-filled hypodermic syringe can be firmly held in the concealed position, in any of several different ways. These include, the use of a latching mechanism, an adhesive, or a flexible abutment.


Once the cassette has been loaded with the pre-filled hypodermic syringe, the cassette can be engaged with a drive mechanism. In detail, the drive mechanism includes two separate motors that perform two different functions. A first motor is provided for engaging the syringe in its concealed position where its needle is hidden. With this engagement, the first motor then moves the syringe and its needle from the concealed position and into an exposed position where the needle is extended for insertion into the patient. While the needle is inserted into the patient, a second motor is provided for pushing the stopper on the syringe to expel fluid medicament from the syringe. After the injection has been completed, the first motor then withdraws the syringe and its needle back into the concealed position. Importantly, after it has been withdrawn the syringe is again firmly held in the concealed position, inside the cassette. Thus, the needle remains hidden from view at all times during an injection procedure. Further, as noted above, the syringe is firmly held inside the cassette to insure the syringe needle does not inadvertently extend from the cassette.


In operation, an end-user mounts a pre-loaded cassette on the drive mechanism. The end-user then removes a protective cover from the syringe needle and positions the system at a site where an injection is to be made. A button on the system is then pushed to activate the drive mechanism for an injector procedure. After the injection has been completed, the cassette, with its now empty syringe, can be removed from the drive mechanism and discarded.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:



FIG. 1 is a perspective view of a cassette and associated drive mechanism for a system of the present invention;



FIG. 2 is an exploded perspective view of the cassette with a pre-loaded, pre-filled hypodermic syringe;



FIG. 3A is a cross-sectional view of a pre-loaded cassette, as seen along the line 3-3 in FIG. 1, with a pre-filled hypodermic syringe in a withdrawn (proximal) position;



FIG. 3B is a view of the cassette shown in FIG. 3A with the syringe in an extended (distal) position after drug delivery;



FIG. 4 is an exploded perspective view of another embodiment of a cassette for use with the present invention; and



FIG. 5 is a cross-sectional view of an alternate embodiment of a pre-loaded cassette, as seen along the line 3-3 in FIG. 1.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring initially to FIG. 1, a system for injecting a fluid medicament into a patient is shown and is generally designated 10. In detail, FIG. 1 shows the system 10 includes a cassette 12 and a drive mechanism 14. Further, the drive mechanism 14 is formed with a cradle 16 that is dimensioned to receive and hold the cassette 12 on the drive mechanism 14. It is also indicated in FIG. 1 that the drive mechanism 14 includes a first motor 18 (shown in phantom) and a second motor 20 (also shown in phantom). For purposes of the present invention, the motors 18 and 20 can be of any standard type well known in the art (e.g. a lead screw). More specifically, the motors 18 and 20 must be capable of individually exerting axially directed forces on contents of the cassette 12. These forces will need to be directed substantially along the axis 22. Activation of the motors 18 and 20 for the generation of these forces is accomplished by manipulation of the button 24.


Structurally, the cassette 12 and its interaction with associated contents are shown in FIG. 2. There it will be seen that the cassette 12 is essentially a housing 26 having hollow, tubular shaped structure. Importantly, the housing 26 is provided to hold a hypodermic syringe 28 having a needle 30 that is affixed to the distal end of its fluid chamber 32. A standard grip 34 is provided at the proximal end of the fluid chamber 32. Also, a stopper 36 is provided to expel fluid medicament from the fluid chamber 32 through the needle 30. A protective cover 38 can be provided to cover the needle 30 when system 10 is not in operational use, and a cap 40 is employed to grip the protective cover 38.


Prior to an operation of the system 10, the cassette 12 is pre-loaded. And, furthermore, the syringe 28 is pre-filled with an appropriate dose of the desired fluid medicament. Before pre-loading the cassette 12, the protective cover 38 is positioned over the needle 30 on syringe 28. The pre-filled syringe 28 is then inserted into the housing 26 through its proximal end 42. The cap 40 can then be inserted through the distal end 44 of the housing 26 to engage the cap 40 with the protective cover 38. The cassette 12 is thus pre-loaded, and it will appear substantially as shown in FIG. 1. Once it has been pre-loaded, the cassette 12 can be mounted on the drive mechanism 14 is indicated in FIG. 1. This is done by merely inserting the cassette 12 into cradle 16. During this insertion the protrusions 46a and 46b (protrusion 46b is not shown) engage with respective recesses 48a and 48b to stabilize the cassette 12 on drive mechanism 14.


An important structural aspect of the present invention is that when the pre-filled syringe 28 has been pre-loaded into the cassette 12, it will thereafter be firmly held inside the cassette 12. Specifically, it will be held in a position where the needle 30 is concealed inside the cassette 12 and thereby hidden from view. For example, FIG. 3A shows a syringe 28 being held in the housing 26 of a cassette 12 by opposed bumps 50a and 50b that are formed onto respective resilient arms 52a and. 52b. While syringe 28 is in the position shown in FIG. 3A (sometimes referred to hereinafter as the concealed position or proximal position), the syringe needle 30 is hidden inside the housing 26. Also, until, the bumps 50a and 50b have been overcome by an axial force exerted by the syringe 28 and supplied by the first motor 18, the syringe 28 will be firmly held in its concealed position. FIG. 3B then shows that when a sufficient force has been applied by the first motor 18, the syringe 28 will move from its concealed (proximal) position, and into an extended (distal) position. In this distal position, the syringe 28 is retained in the cassette 12 by stops 53a and 53b while the needle 30 extends from the housing 26 for insertion into a patient. Importantly, the first motor 18 is attached to the syringe 28 in a manner that allows the first motor 18 to retract the syringe 28 from the extended (distal) position, and thereby return the needle 30 to its concealed (proximal) position. Again, the syringe 28 will be firmly held on the housing 26 by the bumps 50a and 50b.


Although the disclosure for the present invention is directed primarily toward a dual motor system (i.e. first motor 18 and second motor 20), two motors may not be necessary. Indeed, it will be readily appreciated by a person skilled in the art that a single motor may suffice for purposes of the present invention. In such a case, however, an appropriate transmission will be required for alternating between creating forces directly on the syringe 28 or on the stopper 36. In any event, the importance of using motors for system 10, vis-à-vis springs, is to generate controllable and reliable forces for movements of the syringe 28, or for expelling fluid medicament therefrom.


An alternate construction for the cassette 12 is shown in FIG. 4. There an embodiment for the cassette 12 is seen that includes an inner sleeve 54 and an outer sleeve 56. More specifically, the inner sleeve 54 is a hollow, substantially tube-shaped structure that is formed with a lumen 58. Formed onto the outside of the inner sleeve 54 are a proximal projection 60 and a distal projection 62 that are axially aligned with each other. FIG. 4 also shows that the outer sleeve 56, like inner sleeve 54, is hollow and substantially tube-shaped. Further, the outer sleeve 56 is formed with a lumen 64 and an axially aligned slot 66. Resilient arms 68a and 68b are formed on the outer sleeve 56 and are positioned to extend in the slot 66, substantially as shown. Additionally, the resilient arms 68a and 68b are respectively formed with detents 70a and 70b and ramps 72a and 72b.


In order to load a cassette 12 having the embodiment shown in FIG. 4, the inner sleeve 54 is inserted into the lumen 64 of the outer sleeve 56. Importantly, with this insertion the proximal projection 60 on inner sleeve 54 is positioned and held in the detents 70a and 70b of the arms 68a and 68b. The hypodermic syringe 28 can then be inserted into the lumen 58 of the inner sleeve 54. This places the syringe 28 in its concealed (proximal) position on the cassette 12. Subsequently, movement of the syringe 28 from its concealed (proximal) position to its extended (distal) position is accomplished by the first motor 18. More specifically, a bar (not shown) which is operated by the first motor 18, is used to urge against the ramps 72a and 72b on arms 68a and 68b. This causes the arms 68a and 68b to spread and thereby release the proximal projection 60 from their grasp. The inner sleeve 54, with syringe 28 firmly held thereon, can then be moved in a distal direction through the lumen 64 of the outer sleeve 56. This distal movement continues until the distal projection 62 contacts the end abutment 74 of the slot 66. The syringe 28 is now in its extended (distal) position. Subsequently, the first motor 18 can withdraw the inner sleeve 54 in a proximal direction through the lumen 64 of the outer sleeve 56. This proximal movement continues until the proximal projection 60 on inner sleeve 54 again engages with the detents 70a and 70b. Thus, the syringe 28 is returned to its concealed (proximal) position inside the cassette 12.



FIG. 5 shows yet another embodiment for the cassette 12 of the present invention wherein an adhesive 76 is positioned on the cassette 12 to firmly hold the syringe 28 in its concealed (proximal) position. The adhesive 76, or a similar type of restraining element, can be used either directly between the syringe 28 and cassette 12 as shown in FIG. 5, or in some arrangement between the inner sleeve 54 and outer sleeve 56 when an embodiment as shown in FIG. 4 is employed. Alternatively, an arrangement such as disclosed in FIGS. 3A and 3B can also be used for an embodiment as shown in FIG. 4. The import here is that for an embodiment for the cassette 12 having an inner sleeve 54 and an outer sleeve 56, a structure other than the arms 68a and 68b can be used. In particular, an adhesive 76 or bumps 50a,b can be used in lieu of the arms 68a and 68b to hold the syringe 28 in its concealed (proximal) position.


In the operation of the system 10 of the present invention, a pre-loaded cassette 12 is positioned in the cradle 16 on the drive mechanism 14. This engages the syringe 28 with the drive mechanism 14. Prior to an injection, the cap 40 is removed from the system 10. More specifically, because the cap 40 is attached to the protective cover 38 over needle 30 of the syringe 28, the protective cover 38 is also removed. The system 10 is now ready for an injection.


With the system 10 positioned at an injection site (not shown), the button 24 on drive mechanism 14 is depressed. Depression of the button 24 causes the first motor 18 to engage with the syringe 28 and to move the syringe 28 from its concealed (proximal) position to its extended (distal) position. This causes the needle 30 of syringe 28 to penetrate into tissue of the patient for an injection. At this point, the second motor 20 pushes on stopper 36 to expel fluid medicament from the fluid chamber 32 of the syringe 28. After an injection has been completed, the first motor 18 is again activated. This time, however, instead of advancing the syringe 28, it withdraws the syringe 28 from the extended (distal) position to the concealed (proximal) position. The cassette 12, along with the expended syringe 28, can then be removed from the drive mechanism 14 and discarded.


While the particular Cassette for a Hidden Injection Needle as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.

Claims
  • 1. A system for injecting a fluid medicament into a patient, the system comprising: a drive mechanism;a hypodermic syringe pre-filled with the fluid medicament; anda cassette for receiving and holding the hypodermic syringe;wherein the drive mechanism comprises a cradle, a first motor, and a second motor;wherein the syringe comprises a needle, and a stopper for expelling the medicament from the syringe through the needle;wherein the first motor of the drive mechanism is for moving the syringe in the cassette between a first position and a second position when the cassette is mounted in the cradle of the drive mechanism, the first position being a proximal position for hiding the syringe needle inside the cassette, and the second position being a distal position where the needle extends from the cassette for injection of the medicament;wherein the second motor is for pushing the stopper to expel the medicament from the syringe while the syringe is in the distal position; andwherein the cassette comprises: an inner sleeve for holding the syringean outer sleeve comprising a hollow tube having a wall defining an axis, and having a first end and a second end, with the wall of the tube having a longitudinal slot extending between the first and second ends of the tube, the outer sleeve for supporting the inner sleeve during movement of the inner sleeve thereon between the proximal position and the distal position, with the inner sleeve being selectively engaged with the outer sleeve to firmly hold the inner sleeve in the proximal position, and engageable with the first motor of the drive mechanism for release of the inner sleeve from the outer sleeve and subsequent movement of the syringe with the inner sleeve between the proximal position and the distal position;a resilient arm formed on the wall of the outer sleeve with a detent formed on the arm, the arm being biased to extend the detent into the slot of the outer sleeve; anda projection extending radially outward from the inner sleeve and into the slot of the outer sleeve for selective engagement with the detent of the outer sleeve.
  • 2. A system as recited in claim 1 further comprising a pair of resilient arms, wherein the arms are opposite each other across the slot for concerted engagement with the projection on the inner sleeve.
  • 3. A system as recited in claim 1 further comprising: a protective cover positioned over the needle of the syringe; anda cap engageable with the protective cover for subsequent removal of the protective cover with the cap when the cap is removed from the outer sleeve.
  • 4. A system as recited in claim 1 further comprising an adhesive on the cassette to hold the hypodermic syringe in the proximal position for selective release therefrom, and re-engagement therewith, in response to action of the drive mechanism.
  • 5. A system as recited in claim 1 further comprising a resilient bump formed on the cassette to hold the syringe in the proximal position, and to release the syringe therefrom in response to action of the drive mechanism.
  • 6. A system for expelling a fluid medicament from a pre-filled hypodermic syringe, wherein the syringe has a needle and a stopper for expelling the medicament from the syringe through the needle, the system comprising: a cassette for holding the syringe in a first position to hide the needle,a cradle for receiving the cassette;a first motor for moving the syringe from the first position to a second position wherein the needle extends from the cassette for injection of the medicament; anda second motor for pushing the stopper to expel the medicament from the syringe while the syringe is in the second position;wherein the cassette comprises: an inner sleeve for holding the syringe;an outer sleeve for supporting the inner sleeve during movement of the inner sleeve thereon between the first position and the second position, the outer sleeve comprising a hollow tube having a wall defining an axis, and having a first end and a second end, with the wall of the tube having a longitudinal slot extending between the first and second ends of the tube; anda resilient arm formed on the wall of the outer sleeve with a detent formed on the arm, the arm being biased to extend the detent into the slot of the outer sleeve; and a projection extending radially outward from the inner sleeve and into the slot of the outer sleeve for selective engagement with the detent of the outer sleeve; andwherein the first and second motors form a drive mechanism, the inner sleeve being selectively engaged with the outer sleeve to firmly hold the inner sleeve in the first position, and engageable with the drive mechanism for release of the inner sleeve from the outer sleeve and subsequent movement of the syringe with the inner sleeve between the first position and the second position.
US Referenced Citations (189)
Number Name Date Kind
3720211 Kyrias Mar 1973 A
3964481 Gourlandt et al. Jun 1976 A
4108177 Pistor Aug 1978 A
4421107 Estes et al. Dec 1983 A
4613328 Boyd Sep 1986 A
4617016 Blomberg Oct 1986 A
4636201 Ambrose et al. Jan 1987 A
4986818 Imbert et al. Jan 1991 A
5013299 Clark May 1991 A
5024616 Ogle, II Jun 1991 A
5085641 Sarnoff et al. Feb 1992 A
5092843 Monroe et al. Mar 1992 A
5098400 Crouse et al. Mar 1992 A
5114404 Paxton et al. May 1992 A
5176643 Kramer et al. Jan 1993 A
5221268 Barton et al. Jun 1993 A
5300029 Denance Apr 1994 A
5318522 D'Antonio Jun 1994 A
5352196 Haber et al. Oct 1994 A
5354286 Mesa et al. Oct 1994 A
5425715 Dalling et al. Jun 1995 A
5456670 Neer et al. Oct 1995 A
5478316 Bitdinger et al. Dec 1995 A
5540664 Wyrick Jul 1996 A
5569190 D'Antonio Oct 1996 A
5578014 Erez et al. Nov 1996 A
5584815 Pawelka et al. Dec 1996 A
5593390 Castellano et al. Jan 1997 A
5599302 Lilley et al. Feb 1997 A
5681291 Galli Oct 1997 A
5690618 Smith et al. Nov 1997 A
5695472 Wyrick Dec 1997 A
5709662 Olive et al. Jan 1998 A
5720729 Kriesel Feb 1998 A
5728074 Castellano et al. Mar 1998 A
5746714 Salo et al. May 1998 A
5807346 Frezza Sep 1998 A
5843036 Olive et al. Dec 1998 A
5868711 Kramer et al. Feb 1999 A
5911703 Slate et al. Jun 1999 A
5919159 Lilley et al. Jul 1999 A
5921963 Erez et al. Jul 1999 A
5957897 Jeffrey Sep 1999 A
6019745 Gray Feb 2000 A
6019747 McPhee Feb 2000 A
6099503 Stradella Aug 2000 A
6149626 Bachynsky et al. Nov 2000 A
6159184 Perez et al. Dec 2000 A
6171276 Lippe et al. Jan 2001 B1
6171283 Perez et al. Jan 2001 B1
6183442 Athanasiou et al. Feb 2001 B1
6203530 Stewart, Sr. Mar 2001 B1
6210369 Wilmot et al. Apr 2001 B1
6241709 Bechtold et al. Jun 2001 B1
6270479 Bergens et al. Aug 2001 B1
6280421 Kirchhofer et al. Aug 2001 B1
6290683 Erez et al. Sep 2001 B1
6344030 Duchon et al. Feb 2002 B1
6344032 Perez et al. Feb 2002 B1
6371939 Bergens et al. Apr 2002 B2
6406456 Slate et al. Jun 2002 B1
6447482 Rønborg et al. Sep 2002 B1
6454743 Weber Sep 2002 B1
6520928 Junior Feb 2003 B1
6544234 Gabriel Apr 2003 B1
6547755 Lippe et al. Apr 2003 B1
6599272 Hjertman et al. Jul 2003 B1
6641561 Hill et al. Nov 2003 B1
6645169 Slate et al. Nov 2003 B1
6645177 Shearn Nov 2003 B1
6648858 Asbaghi Nov 2003 B2
6652483 Burk et al. Nov 2003 B2
6656163 Marshall et al. Dec 2003 B1
6656164 Smith Dec 2003 B1
6669664 Slate et al. Dec 2003 B2
6692469 Weekes et al. Feb 2004 B1
6746427 Duchon et al. Jun 2004 B2
6752787 Causey, III et al. Jun 2004 B1
6767336 Kaplan Jul 2004 B1
6770052 Hill et al. Aug 2004 B2
6796957 Carpenter et al. Sep 2004 B2
6805686 Fathallah et al. Oct 2004 B1
6808507 Roser Oct 2004 B2
6835193 Epstein et al. Dec 2004 B2
6890319 Crocker May 2005 B1
6979316 Rubin et al. Dec 2005 B1
7008399 Larsen et al. Mar 2006 B2
7011649 De La Serna et al. Mar 2006 B2
7041085 Perez et al. May 2006 B2
7066909 Peter et al. Jun 2006 B1
7094230 Flaherty et al. Aug 2006 B2
7104400 Kiehne Sep 2006 B2
7118553 Scherer Oct 2006 B2
7226450 Athanasiou et al. Jun 2007 B2
7255684 Zubry Aug 2007 B2
7273469 Chan et al. Sep 2007 B1
7290573 Py et al. Nov 2007 B2
7297135 Jeffrey Nov 2007 B2
7297136 Wyrick Nov 2007 B2
7357790 Hommann et al. Apr 2008 B2
7361160 Hommann et al. Apr 2008 B2
7370759 Hommann May 2008 B2
7381201 Gilbert et al. Jun 2008 B2
7500963 Westbye et al. Mar 2009 B2
7635348 Raven et al. Dec 2009 B2
7648483 Edwards et al. Jan 2010 B2
7654987 Hommann et al. Feb 2010 B2
7731686 Edwards et al. Jun 2010 B2
7922695 Wiegel et al. Apr 2011 B2
8012125 Fago et al. Sep 2011 B1
8052645 Slate et al. Nov 2011 B2
20010005781 Bergens et al. Jun 2001 A1
20030036725 Lavi et al. Feb 2003 A1
20030050592 Slate et al. Mar 2003 A1
20030105430 Lavi et al. Jun 2003 A1
20030236502 De La Serna et al. Dec 2003 A1
20040039336 Amark et al. Feb 2004 A1
20040054327 Gillespie Mar 2004 A1
20040068266 Delmotte Apr 2004 A1
20040116861 Trocki et al. Jun 2004 A1
20040133154 Flaherty et al. Jul 2004 A1
20040133162 Trocki et al. Jul 2004 A1
20040153008 Sharf et al. Aug 2004 A1
20040225262 Fathallah et al. Nov 2004 A1
20050027255 Lavi et al. Feb 2005 A1
20050033242 Perez et al. Feb 2005 A1
20050049561 Hommann et al. Mar 2005 A1
20050054987 Perez et al. Mar 2005 A1
20050080377 Sadowski et al. Apr 2005 A1
20050165404 Miller Jul 2005 A1
20050171476 Judson et al. Aug 2005 A1
20050171477 Rubin et al. Aug 2005 A1
20050203466 Hommann et al. Sep 2005 A1
20050209569 Ishikawa et al. Sep 2005 A1
20050277885 Scherer Dec 2005 A1
20060030819 Young et al. Feb 2006 A1
20060270985 Hommann et al. Nov 2006 A1
20070021720 Guillermo Jan 2007 A1
20070066938 Iio et al. Mar 2007 A1
20070100281 Morris et al. May 2007 A1
20070112301 Preuthun et al. May 2007 A1
20070112310 Lavi et al. May 2007 A1
20070118081 Daily et al. May 2007 A1
20070135767 Gillespie et al. Jun 2007 A1
20070142787 Scherer Jun 2007 A1
20070149925 Edwards et al. Jun 2007 A1
20070173770 Stamp Jul 2007 A1
20070197968 Pongpairochana et al. Aug 2007 A1
20070219498 Malone et al. Sep 2007 A1
20070233001 Burroughs et al. Oct 2007 A1
20070239114 Edwards et al. Oct 2007 A1
20070265568 Tsals et al. Nov 2007 A1
20080039795 Slate et al. Feb 2008 A1
20080051711 Mounce et al. Feb 2008 A1
20080051714 Moberg et al. Feb 2008 A1
20080051715 Young et al. Feb 2008 A1
20080132841 Chiwanga et al. Jun 2008 A1
20080140007 Glynn Jun 2008 A1
20080262434 Vaillancourt Oct 2008 A1
20080312602 Barrow-Williams et al. Dec 2008 A1
20090018494 Nemoto et al. Jan 2009 A1
20090018505 Arguedas et al. Jan 2009 A1
20090024112 Edwards et al. Jan 2009 A1
20090043253 Podima et al. Feb 2009 A1
20090149744 Nemoto et al. Jun 2009 A1
20090312705 Grunhut et al. Dec 2009 A1
20090322545 Gibson Dec 2009 A1
20100016795 Mcloughlin Jan 2010 A1
20100036318 Raday et al. Feb 2010 A1
20100152655 Stamp Jun 2010 A1
20100160894 Julian et al. Jun 2010 A1
20100198060 Fago et al. Aug 2010 A1
20100312195 Johansen et al. Dec 2010 A1
20110004165 Iio et al. Jan 2011 A1
20110097229 Cauley Iii et al. Apr 2011 A1
20110137286 Mudd et al. Jun 2011 A1
20110152781 Brunnberg et al. Jun 2011 A1
20110160580 Perkins et al. Jun 2011 A1
20110166512 Both et al. Jul 2011 A1
20110184383 Hasegawa Jul 2011 A1
20110190693 Takatsuka et al. Aug 2011 A1
20110190702 Stumber Aug 2011 A1
20110202011 Wozencroft Aug 2011 A1
20110224616 Slate et al. Sep 2011 A1
20110224620 Johansen et al. Sep 2011 A1
20110224621 Johansen et al. Sep 2011 A1
20110230833 Landman et al. Sep 2011 A1
20110257596 Gaudet Oct 2011 A1
20110264046 Nyholm et al. Oct 2011 A1
Foreign Referenced Citations (86)
Number Date Country
8606967 Dec 1986 WO
8703494 Jun 1987 WO
8707160 Dec 1987 WO
9118634 Dec 1991 WO
9206725 Apr 1992 WO
9208506 May 1992 WO
9221392 Dec 1992 WO
9302728 Feb 1993 WO
9313817 Jul 1993 WO
9324160 Dec 1993 WO
9325256 Dec 1993 WO
9406494 Mar 1994 WO
9521645 Aug 1995 WO
9525555 Sep 1995 WO
9531235 Nov 1995 WO
9534333 Dec 1995 WO
9600594 Jan 1996 WO
9621482 Jul 1996 WO
9626754 Sep 1996 WO
9638190 Dec 1996 WO
9707839 Mar 1997 WO
9731665 Sep 1997 WO
9813077 Apr 1998 WO
9817332 Apr 1998 WO
9821408 May 1998 WO
9917823 Apr 1999 WO
9920327 Apr 1999 WO
9921600 May 1999 WO
0002605 Jan 2000 WO
0009186 Feb 2000 WO
0024441 May 2000 WO
0025846 May 2000 WO
0100261 Jan 2001 WO
0137903 May 2001 WO
0141835 Jun 2001 WO
0189634 Nov 2001 WO
0207812 Jan 2002 WO
0249691 Jun 2002 WO
02092153 Nov 2002 WO
03006099 Jan 2003 WO
03008023 Jan 2003 WO
03047663 Jun 2003 WO
03090509 Nov 2003 WO
03103749 Dec 2003 WO
2004069303 Aug 2004 WO
2004108193 Dec 2004 WO
2005053771 Jun 2005 WO
2005070481 Aug 2005 WO
2005079440 Sep 2005 WO
2005094923 Oct 2005 WO
2006015501 Feb 2006 WO
2006017732 Feb 2006 WO
2006020609 Feb 2006 WO
2006062788 Jun 2006 WO
2006063015 Jun 2006 WO
2006086774 Aug 2006 WO
2007002053 Jan 2007 WO
2007044980 Apr 2007 WO
2007047200 Apr 2007 WO
2007053779 May 2007 WO
2007075677 Jul 2007 WO
2007099044 Sep 2007 WO
2007126851 Nov 2007 WO
2007138299 Dec 2007 WO
2007140610 Dec 2007 WO
2008021776 Feb 2008 WO
2008024810 Feb 2008 WO
2008048750 Apr 2008 WO
2008064092 May 2008 WO
2008075033 Jun 2008 WO
2008083313 Jul 2008 WO
2008093063 Aug 2008 WO
2008094984 Aug 2008 WO
2008095124 Aug 2008 WO
2008107670 Sep 2008 WO
2008139458 Nov 2008 WO
2008139460 Nov 2008 WO
2008146021 Dec 2008 WO
2009006725 Jan 2009 WO
2009019437 Feb 2009 WO
2009143255 Nov 2009 WO
2010076275 Jul 2010 WO
2010091133 Aug 2010 WO
2010100213 Sep 2010 WO
2010127449 Nov 2010 WO
2011057065 May 2011 WO
Related Publications (1)
Number Date Country
20090292246 A1 Nov 2009 US