This Application is a 371 of PCT/N02018/050326 filed on Dec. 21, 2018 which, in turn, claimed the priority of Norwegian Patent Application No. 20172063 filed on Dec. 29, 2017, both applications are incorporated herein by reference.
The present invention relates to a ferrosilicon based inoculant for the manufacture of cast iron with spheroidal graphite and to a method for production of the inoculant.
Cast iron is typically produced in cupola or induction furnaces, and generally contain between 2 to 4 percent carbon. The carbon is intimately mixed with the iron and the form which the carbon takes in the solidified cast iron is very important to the characteristics and properties of the iron castings. If the carbon takes the form of iron carbide, then the cast iron is referred to as white cast iron and has the physical characteristics of being hard and brittle, which in most applications is undesirable. If the carbon takes the form of graphite, the cast iron is soft and machinable.
Graphite may occur in cast iron in the lamellar, compacted or spheroidal forms. The spheroidal shape produces the highest strength and most ductile type of cast iron.
The form that the graphite takes as well as the amount of graphite versus iron carbide, can be controlled with certain additives that promote the formation of graphite during the solidification of cast iron. These additives are referred to as nodularisers and inoculants and their addition to the cast iron as nodularisation and inoculation, respectively. In cast iron production iron carbide formation especially in thin sections is often a challenge. The formation of iron carbide is brought about by the rapid cooling of the thin sections as compared to the slower cooling of the thicker sections of the casting. The formation of iron carbide in a cast iron product is referred to in the trade as “chill”. The formation of chill is quantified by measuring “chill depth” and the power of an inoculant to prevent chill and reduce chili depth is a convenient way in which to measure and compare the power of inoculants, especially in grey irons. In nodular iron, the power of inoculants is usually measured and compared using the graphite nodule number density.
As the industry develops there is a need for stronger materials. This means more alloying with carbide promoting elements such as Cr, Mn, V, Mo, etc., and thinner casting sections and lighter design of castings. There is therefore a constant need to develop inoculants that reduce chill depth and improve machinability of grey cast irons as well as increase the number density of graphite spheroids in ductile cast irons. The exact chemistry and mechanism of inoculation and why inoculants function as they do in different cast iron melts is not completely understood, therefore a great deal of research goes into providing the industry with new and improved inoculants.
It is thought that calcium and certain other elements suppress the formation of iron carbide and promote the formation of graphite. A majority of inoculants contain calcium. The addition of these iron carbide suppressants is usually facilitated by the addition of a ferrosilicon alloy and probably the most widely used ferrosilicon alloys are the high silicon alloys containing 70 to 80% silicon and the low silicon alloy containing 45 to 55% silicon. Elements which commonly may be present in inoculants, and added to the cast iron as a ferrosilicon alloy to stimulate the nucleation of graphite in cast iron, are e.g. Ca, Ba, Sr, Al, rare earth metals (RE), Mg, Mn, Bi, Sb, Zr and Ti.
The suppression of carbide formation is associated by the nucleating properties of the inoculant. By nucleating properties it is understood the number of nuclei formed by an inoculant. A high number of nuclei formed results in an increased graphite nodule number density and thus improves the inoculation effectiveness and improves the carbide suppression. Further, a high nucleation rate may also give better resistance to fading of the inoculating effect during prolonged holding time of the molten iron after inoculation. Fading of inoculation can be explained by the coalescing and re-solution of the nuclei population which causes the total number of potential nucleation sites to be reduced.
U.S. Pat. No. 4,432,793 discloses an inoculant containing bismuth, lead and/or antimony. Bismuth, lead and/or antimony are known to have high inoculating power and to provide an increase in the number of nuclei. These elements are also known to be anti-spheroidizing elements, and the increasing presence of these elements in cast iron is known to cause degeneration of the spheroidal graphite structure of graphite. The inoculant according to U.S. Pat. No. 4,432,793 is a ferrosilicon alloy containing from 0.005% to 3% rare earths and from 0.005% to 3% of one of the metallic elements bismuth, lead and/or antimony alloyed in the ferrosilicon.
According to U.S. Pat. No. 5,733,502 the inoculants according to the said U.S. Pat. No. 4,432,793 always contain some calcium which improves the bismuth, lead and/or antimony yield at the time the alloy is produced and helping to distribute these elements homogeneously within the alloy, as these elements exhibit poor solubility in the iron-silicon phases. However, during storage the product tends to disintegrate and the granulometry tends toward an increased amount of fines. The reduction of granulometry was linked to the disintegration, caused by atmospheric moisture, of a calcium-bismuth phase collected at the grain boundaries of the inoculants. In U.S. Pat. No. 5,733,502 it was found that the binary bismuth-magnesium phases, as well as the ternary bismuth-magnesium-calcium phases, were not attacked by water. This result was only achieved for high silicon ferrosilicon alloy inoculants, for low silicon FeSi inoculants the product disintegrated during storage. The ferrosilicon-based alloy for inoculation according to U.S. Pat. No. 5,733,502 thus contains (by weight %) from 0.005-3% rare earths, 0.005-3% bismuth, lead and/or antimony, 0.3-3% calcium and 0.3-3% magnesium, wherein the Si/Fe ratio is greater than 2.
U.S. patent application No. 2015/0284830 relates to an inoculant alloy for treating thick cast-iron parts, containing between 0.005 and 3 wt % of rare earths and between 0.2 and 2 wt % Sb. Said US 2015/0284830 discovered that antimony, when allied to rare earths in a ferrosilicon-based alloy, would allow an effective inoculation, and with the spheroids stabilized, of thick parts without the drawbacks of pure antimony addition to the liquid cast-iron. The inoculant according to US 2015/0284830 is described to be typically used in the context of an inoculation of a cast-iron bath, for pre-conditioning said cast-iron as well as a nodularizer treatment. An inoculant according to US 2015/0284830 contains (by wt %) 65% Si, 1.76% Ca, 1.23% Al, 0.15% Sb, 0.16% RE, 7.9% Ba and balance iron.
From WO 95/24508 it is known a cast iron inoculant showing an increased nucleation rate. This inoculant is a ferrosilicon based inoculant containing calcium and/or strontium and/or barium, less than 4% aluminium and between 0.5 and 10% oxygen in the form of one or more metal oxides. It was, however found that the reproducibility of the number of nuclei formed using the inoculant according to WO 95/24508 was rather low. In some instances a high number of nuclei are formed in the cast iron, but in other instances the numbers of nuclei formed are rather low. The inoculant according to WO 95/24508 has for the above reason found little use in practice.
From WO 99/29911 it is known that the addition of sulphur to the inoculant of WO 95/24508 has a positive effect in the inoculation of cast iron and increases the reproducibility of nuclei.
In WO 95/24508 and WO 99/29911 iron oxides; FeO, Fe2O3 and Fe3O4, are the preferred metal oxides. Other metal oxides mentioned in these patent applications are SiO2, MnO, MgO, CaO, Al2O3, TiO2 and CaSiO3, CeO2, ZrO2. The preferred metal sulphide is selected from the group consisting of FeS, FeS2, MnS, MgS, CaS and CuS. From US application No. 2016/0047008 it is known a particulate inoculant for treating liquid cast-iron, comprising, on the one hand, support particles made of a fusible material in the liquid cast-iron, and on the other hand, surface particles made of a material that promotes the germination and the growth of graphite, disposed and distributed in a discontinuous manner at the surface of the support particles, the surface particles presenting a grain size distribution such that their diameter d50 is smaller than or equal to one-tenth of the diameter d50 of the support particles. The purpose of the inoculant in said US 2016′ is inter alia indicated for the inoculation of cast-iron parts with different thicknesses and low sensibility to the basic composition of the cast-iron.
Thus, there is a desire to provide an inoculant having improved nucleating properties and forming a high number of nuclei, which results in an increased graphite nodule number density and thus improves the inoculation effectiveness. Another desire is to provide a high performance inoculant. A further desire is to provide an inoculant which may give better resistance to fading of the inoculating effect during prolonged holding time of the molten iron after inoculation. At least some of the above desires are met with the present invention, as well as other advantages, which will become evident in the following description.
The prior art inoculant according to WO 99/29911 is considered to be a high performance inoculant, which gives a high number of nodules in ductile cast iron. It has now been found that the addition of antimony oxide and at least one of bismuth oxide, iron oxide and/or iron sulphide to the inoculant of WO 99/29911 surprisingly results in a significantly higher number of nuclei, or nodule number density, in cast irons when adding the inoculant according to the present invention to cast iron.
In a first aspect, the present invention relates to an inoculant for the manufacture of cast iron with spheroidal graphite, where said inoculant comprises a particulate ferrosilicon alloy consisting of between 40 and 80% by weight of Si; 0.02-8% by weight of Ca; 0-5% by weight of Sr; 0-12% by weight of Ba; 0-15% by weight of rare earth metal; 0-5% by weight of Mg; 0.05-5% by weight of Al; 0-10% by weight of Mn; 0-10% by weight of Ti; 0-10% by weight of Zr; the balance being Fe and incidental impurities in the ordinary amount, and where said inoculant additionally contains, by weight, based on the total weight of inoculant: 0.1 to 15% of particulate Sb2O3, and at least one of from 0.1 and 15% of particulate Bi2O3, between 0.1 and 5% of one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, or between 0.1 and 5% of one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof.
In an embodiment, the ferrosilicon alloy comprises between 45 and 60% by weight of Si. In another embodiment of the inoculant the ferrosilicon alloy comprises between 60 and 80% by weight of Si.
In an embodiment, the rare earth metals include Ce, La, Y and/or mischmetal. In an embodiment, the ferrosilicon alloy comprises up to 10% by weight of rare earth metal. In an embodiment, the ferrosilicon alloy comprises between 0.5 and 3% by weight of Ca. In an embodiment, the ferrosilicon alloy comprises between 0 and 3% by weight of Sr. In a further embodiment, the ferrosilicon alloy comprises between 0.2 and 3% by weight of Sr. In an embodiment, the ferrosilicon alloy comprises between 0 and 5% by weight of Ba. In a further embodiment, the ferrosilicon alloy comprises between 0.1 and 5% by weight of Ba. In an embodiment, the ferrosilicon alloy comprises between 0.5 and 5% by weight Al. In an embodiment, the ferrosilicon alloy comprises up to 6% by weight of Mn and/or Ti and/or Zr. In an embodiment, the ferrosilicon alloy comprises less than 1% by weight Mg.
In an embodiment, the inoculant comprises between 0.5 and 10% by weight of particulate Sb2O3.
In an embodiment, the inoculant comprises between 0.1 and 10% of particulate Bi2O3.
In an embodiment, the inoculant comprises between 0.5 and 3% of one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or between 0.5 and 3% of one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof.
In an embodiment, the total amount (sum of oxide/sulphide compounds) of the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof is up to 20% by weight, based on the total weight of the inoculant. In another embodiment the total amount of particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof is up to 15% by weight, based on the total weight of the inoculant.
In an embodiment, the inoculant is in the form of a blend or a mechanical/physical mixture of the particulate ferrosilicon alloy and the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof.
In an embodiment, the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, are present as coating compounds on the particulate ferrosilicon based alloy.
In an embodiment, the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, is/are mechanically mixed or blended with the particulate ferrosilicon based alloy, in the presence of a binder.
In an embodiment, the inoculant is in the form of agglomerates made from a mixture of the particulate ferrosilicon alloy and the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, in the presence of a binder.
In an embodiment, the inoculant is in the form of briquettes made from a mixture of the particulate ferrosilicon alloy and the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, in the presence of a binder.
In an embodiment, the particulate ferrosilicon based alloy and the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, are added separately but simultaneously to liquid cast iron.
In a second aspect the present invention relates to a method for producing an inoculant according to the present invention, the method comprises: providing a particulate base alloy comprising between 40 and 80% by weight of Si, 0.02-8% by weight of Ca; 0-5% by weight of Sr; 0-12% by weight of Ba; 0-15% by weight of rare earth metal; 0-5% by weight of Mg; 0.05-5% by weight of Al; 0-10% by weight of Mn; 0-10% by weight of Ti; 0-10% by weight of Zr; the balance being Fe and incidental impurities in the ordinary amount, and adding to the said particulate base, by weight, based on the total weight of inoculant: 0.1 to 15% of particulate Sb2O3, and at least one of from 0.1 and 15% of particulate Bi2O3, between 0.1 and 5% of one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, or between 0.1 and 5% of one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, to produce said inoculant.
In an embodiment of the method the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, are mechanically mixed or blended with the particulate base alloy.
In an embodiment of the method the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof are mechanically mixed before being mixed with the particulate base alloy.
In an embodiment of the method the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, are mechanically mixed or blended with the particulate base alloy in the presence of a binder. In a further embodiment of the method, the mechanically mixed or blended particulate base alloy, the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, in the presence of a binder, are further formed into agglomerates or briquettes.
In another aspect, the present invention related to the use of the inoculant as defined above in the manufacturing of cast iron with spheroidal graphite, by adding the inoculant to the cast iron melt prior to casting, simultaneously to casting or as an in-mould inoculant.
In an embodiment of the use of the inoculant the particulate ferrosilicon based alloy and the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, are added as a mechanical/physical mixture or a blend to the cast iron melt.
In an embodiment of the use of the inoculant the particulate ferrosilicon based alloy and the particulate Sb2O3, and the at least one of particulate Bi2O3, and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, are added separately but simultaneously to the cast iron melt.
According to the present invention a high potent inoculant is provided, for the manufacture of cast iron with spheroidal graphite. The inoculant comprises a FeSi base alloy combined with particulate antimony oxide (Sb2O3), and also comprises at least one of other particulate metal oxides and/or particulate metal sulphide chosen from: bismuth oxide (Bi2O3), iron oxide (one or more of Fe3O4, Fe2O3, FeO, or a mixture thereof) and iron sulphide (one or more of FeS, FeS2, Fe3S4, or a mixture thereof). The inoculant according to the present invention is easy to manufacture and it is easy to control and vary the amount of bismuth and antimony in the inoculant. Complicated and costly alloying steps are avoided, thus the inoculant can be manufactured at a lower cost compared to prior art inoculants containing Sb and/or Bi.
In the manufacturing process for producing ductile cast iron with spheroidal graphite the cast iron melt is normally treated with a nodulariser, e.g. by using an MgFeSi alloy, prior to the inoculation treatment. The nodularisation treatment has the objective to change the form of the graphite from flake to nodule when it is precipitating and subsequently growing. The way this is done is by changing the interface energy of the interface graphite/melt. It is known that Mg and Ce are elements that change the interface energy, Mg being more effective than Ce. When Mg is added to a base iron melt, it will first react with oxygen and sulphur, and it is only the “free magnesium” that will have a nodularising effect. The nodularisation reaction is violent and results in agitation of the melt, and it generates slag floating on the surface. The violence of the reaction will result in most of the nucleation sites for graphite that were already in the melt (introduced by the raw materials) and other inclusions being part of the slag on the top and removed. However some MgO and MgS inclusions produced during the nodularisation treatment will still be in the melt. These inclusions are not good nucleation sites as such.
The primary function of inoculation is to prevent carbide formation by introducing nucleation sites for graphite. In addition to introducing nucleation sites the inoculation also transform the MgO and MgS inclusions formed during the nodularisation treatment into nucleation sites by adding a layer (with Ca, Ba or Sr) on the inclusions.
In accordance with the present invention, the particulate FeSi base alloys should comprise from 40 to 80% by weight Si. A pure FeSi alloy is a week inoculant, but is a common alloy carrier for active elements, allowing good dispersion in the melt. Thus, there exists a variety of known FeSi alloy compositions for inoculants. Conventional alloying elements in a FeSi alloy inoculant include Ca, Ba, Sr, Al, Mg, Zr, Mn, Ti and RE (especially Ce and La). The amount of the alloying elements may vary. Normally, inoculants are designed to serve different requirements in grey, compacted and ductile iron production. The inoculant according to the present invention may comprise a FeSi base alloy with a silicon content of about 40-80% by weight. The alloying elements may comprise about 0.02-8% by weight of Ca; about 0-5% by weight of Sr; about 0-12% by weight of Ba; about 0-15% by weight of rare earth metal; about 0-5% by weight of Mg; about 0.05-5% by weight of Al; about 0-10% by weight of Mn; about 0-10% by weight of Ti; about 0-10% by weight of Zr; and the balance being Fe and incidental impurities in the ordinary amount.
The FeSi base alloy may be a high silicon alloy containing 60 to 80% silicon or a low silicon alloy containing 45 to 60% silicon. Silicon is normally present in cast iron alloys, and is a graphite stabilizing element in the cast iron, which forces carbon out of the solution and promotes the formation of graphite. The FeSi base alloy should have a particle size lying within the conventional range for inoculants, e.g. between 0.2 to 6 mm. It should be noted that smaller particle sizes, such as fines, of the FeSi alloy may also be applied in the present invention, to manufacture the inoculant. When using very small particles of the FeSi base alloy the inoculant may be in the form of agglomerates (e.g. granules) or briquettes. In order to prepare agglomerates and/or briquettes of the present inoculant, the Sb2O3 particles, and any additional particulate Bi2O3 and/or one or more of Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of FeS, FeS2, Fe3S4, or a mixture thereof, are mixed with the particulate ferrosilicon alloy by mechanical mixing or blending, in the presence of a binder, followed by agglomeration of the powder mixture according to the known methods. The binder may e.g. be a sodium silicate solution. The agglomerates may be granules with suitable product sizes, or may be crushed and screened to the required final product sizing.
A variety of different inclusions (sulphides, oxides, nitrides and silicates) can form in the liquid state. The sulphides and oxides of the group IIA-elements (Mg, Ca, Sr and Ba) have very similar crystalline phases and high melting points. The group IIA elements are known to form stable oxides in liquid iron; therefore inoculants, and nodularisers, based on these elements are known to be effective deoxidizers. Calcium is the most common trace element in ferrosilicon inoculants. In accordance with the invention, the particulate FeSi based alloy comprises between about 0.02 to about 8% by weight of calcium. In some applications it is desired to have low content of Ca in the FeSi base alloy, e.g. from 0.02 to 0.5% by weight. Compared to conventional inoculant ferrosilicon alloys containing alloyed bismuth and/or antimony, where calcium is regarded as a necessary element to improve the bismuth (and antimony) yield, there is no need for calcium for solubility purposes in the inoculants according to the present invention. In other applications the Ca content could be higher, e.g. from 0.5 to 8% by weight. A high level of Ca may increase slag formation, which is normally not desired. A plurality of inoculants comprise about 0.5 to 3% by weight of Ca in the FeSi alloy. The FeSi base alloy should comprise up to about 5% by weight of strontium. A Sr amount of 0.2-3% by weight is typically suitable. Barium may be present in an amount up to about 12% by weight in the FeSi inoculant alloy. Ba is known to give better resistance to fading of the inoculating effect during prolonged holding time of the molten iron after inoculation, and gives better efficiencies over a wider temperature range. Many FeSi alloy inoculants comprise about 0.1-5% by weight of Ba. If barium is used in conjunction with calcium the two may act together to give a greater reduction in chill than an equivalent amount of calcium.
Magnesium may be present in an amount up to about 5% by weight in the FeSi inoculant alloy. However, as Mg normally is added in the nodularisation treatment for the production of ductile iron, the amount of Mg in the inoculant may be low, e.g. up to about 0.1% by weight. Compared to conventional inoculant ferrosilicon alloys containing alloyed bismuth, where magnesium is regarded as a necessary element to stabilise the bismuth containing phases, there is no need for magnesium for stabilisation purposes in the inoculants according to the present invention.
The FeSi base alloy may comprise up to 15% by weight of rare earths metals (RE). RE includes at least Ce, La, Y and/or mischmetal. Mischmetal is an alloy of rare-earth elements, typically comprising approx. 50% Ce and 25% La, with small amounts of Nd and Pr. Lately heavier rare earth metals are often removed from the mischmetal, and the alloy composition of mischmetal may be about 65% Ce and about 35% La, and traces of heavier RE metals, such as Nd and Pr. Additions of RE are frequently used to restore the graphite nodule count and nodularity in ductile iron containing subversive elements, such as Sb, Pb, Bi, Ti etc. In some inoculants the amount of RE is up to 10% by weight. Excessive RE may in some instances lead to chunky graphite formations. Thus, in some applications the amount of RE should be lower, e.g. between 0.1-3% by weight. Preferably the RE is Ce and/or La.
Aluminium has been reported to have a strong effect as a chill reducer. Al is often combined with Ca in a FeSi alloy inoculants for the production of ductile iron. In the present invention, the Al content should be up to about 5% by weight, e.g. from 0.1-5%.
Zirconium, manganese and/or titanium are also often present in inoculants. Similar as for the above mentioned elements, the Zr, Mn and Ti play an important role in the nucleation process of the graphite, which is assumed to be formed as a result of heterogeneous nucleation events during solidification. The amount of Zr in the FeSi base alloy may be up to about 10% by weight, e.g. up to 6% by weight. The amount of Mn in the FeSi base alloy may be up to about 10% by weight, e.g. up to 6% by weight.
The amount of Ti in the FeSi base alloy may also be up to about 10% by weight, e.g. up to 6% by weight.
Antimony and bismuth are known to have high inoculating power and to provide an increase in the number of nuclei. However, the presence of small amounts of elements like Sb and/or Bi in the melt (also called subversive elements) might reduce nodularity. This negative effect can be neutralized by using Ce or other RE metal. According to the present invention, the amount of particulate Sb2O3 should be from 0.1 to 15% by weight based on the total amount of the inoculant. In some embodiments the amount of Sb2O3 is 0.1-8% by weight. A high nodule count is also observed when the inoculant contains 0.2 to 7% by weight, based on the total weight of inoculant, of particulate Sb2O3.
Introducing Sb2O3 together with the FeSi based alloy inoculant is adding a reactant to an already existing system with Mg inclusions floating around in the melt and “free” Mg. The addition of inoculant is not a violent reaction and the Sb yield (Sb/Sb2O3 remaining in the melt) is expected to be high. The Sb2O3 particles should have a small particle size, i.e. micron size (e.g. 10-150 μm) resulting in very quick melting or dissolution of the Sb2O3 particles when introduced into the cast iron melt. Advantageously, the Sb2O3 particles are physically/mechanically mixed with the particulate FeSi base alloy, and the at least one of the particulate Bi2O3 and/or one or more of Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of FeS, FeS2, Fe3S4, or a mixture thereof, prior to adding the inoculant into the cast iron melt.
Adding Sb in the form of Sb2O3 particles instead of alloying Sb with the FeSi alloy, provide several advantages. Although Sb is a powerful inoculant, the oxygen is also of importance for the performance of the inoculant. Another advantage is the good reproducibility, and flexibility, of the inoculant composition since the amount and the homogeneity of particulate Sb2O3 in the inoculant are easily controlled. The importance of controlling the amount of inoculants and having a homogenous composition of the inoculant is evident given the fact that antimony is normally added at a ppm level. Adding an inhomogeneous inoculant may result in wrong amounts of inoculating elements in the cast iron. Still another advantage is the more cost effective production of the inoculant compared to methods involving alloying antimony in a FeSi based alloy.
The amount of particulate Bi2O3, if present, should be from 0.1 to 15% by weight based on the total amount of the inoculant. In some embodiments the amount of Bi2O3 can be 0.1-10% by weight. The amount of Bi2O3 can also be from about 0.5 to about 8% by weight, based on the total weight of inoculant. The particle size of the Bi2O3 should be micron size, e.g. 1-10 μm.
Adding Bi in the form of Bi2O3 particles, if present, instead of alloying Bi with the FeSi alloy has several advantages. Bi has poor solubility in ferrosilicon alloys, therefore, the yield of added Bi metal to the molten ferrosilicon is low and thereby the cost of a Bi-containing FeSi alloy inoculant increases. Further, due to the high density of elemental Bi it may be difficult to obtain a homogeneous alloy during casting and solidification. Another difficulty is the volatile nature of Bi metal due to the low melting temperature compared to the other elements in the FeSi based inoculant Adding Bi as an oxide, if present, together with the FeSi base alloy provides an inoculant which is easy to produce with probably lower production costs compared to the traditional alloying process, wherein the amount of Bi is easily controlled and reproducible. Further, as the Bi is added as oxide, if present, instead of alloying in the FeSi alloy, it is easy to vary the composition of the inoculant, e.g. for smaller production series. Further, although Bi is known to have a high inoculating power, the oxygen is also of importance for the performance of the present inoculant, hence, providing another advantage of adding Bi as an oxide.
The total amount of one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, if present, should be from 0.1 to 5% by weight based on the total amount of the inoculant. In some embodiments the amount of one or more of Fe3O4, Fe2O3, FeO, or a mixture thereof can be 0.5-3% by weight. The amount of one or more of Fe3O4, Fe2O3, FeO, or a mixture thereof can also be from about 0.8 to about 2.5% by weight, based on the total weight of inoculant. Commercial iron oxide products for industrial applications, such as in the metallurgy field, might have a composition comprising different types of iron oxide compounds and phases. The main types of iron oxide being Fe3O4, Fe2O3, and/or FeO (including other mixed oxide phases of FeI and FeIII; iron(II,III)oxides), all which can be used in the inoculant according to the present invention. Commercial iron oxide products for industrial applications might comprise minor (insignificant) amounts of other metal oxides as impurities.
The total amount of one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, if present, should be from 0.1 to 5% by weight based on the total amount of the inoculant. In some embodiments the amount of one or more of FeS, FeS2, Fe3S4, or a mixture thereof can be 0.5-3% by weight. The amount of one or more of FeS, FeS2, Fe3S4, or a mixture thereof can also be from about 0.8 to about 2.5% by weight, based on the total weight of inoculant. Commercial iron sulphide products for industrial applications, such as in the metallurgy field, might have a composition comprising different types of iron sulphide compounds and phases. The main types of iron sulphides being FeS, FeS2 and/or Fe3S4 (iron(II, III)sulphide; FeS.Fe2S3), including non-stoichiometric phases of FeS; Fe1+xS (x>0 to 0.1) and Fe1-yS (y>0 to 0.2), all which can be used in the inoculant according to the present invention. A commercial iron sulphide product for industrial applications might comprise minor (insignificant) amounts of other metal sulphides as impurities.
One of the purposes of adding one or more of Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of FeS, FeS2, Fe3S4, or a mixture thereof into the cast iron melt is to deliberately add oxygen and sulphur into the melt, which may contribute to increase the nodule count.
It should be understood that the total amount of the Sb2O3 particles, and any of the said particulate Bi oxide, and/or Fe oxide/sulphide, should be up to about 20% by weight, based on the total weight of the inoculant. It should also be understood that the composition of the FeSi base alloy may vary within the defined ranges, and the skilled person will know that the amounts of the alloying elements add up to 100%. There exists a plurality of conventional FeSi based inoculant alloys, and the skilled person would know how to vary the FeSi base composition based on these.
The addition rate of the inoculant according to the present invention to a cast iron melt is typically from about 0.1 to 0.8% by weight. The skilled person would adjust the addition rate depending on the levels of the elements, e.g. an inoculant with high Bi and/or Sb will typically need a lower addition rate.
The present inoculant is produced by providing a particulate FeSi base alloy having the composition as defined herein, and adding to the said particulate base the particulate Sb2O3, and at least one of particulate Bi2O3 and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, to produce the present inoculant. The Sb2O3 particles and the at least one of particulate Bi2O3 and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, may be mechanically/physically mixed with the FeSi base alloy particles. Any suitable mixer for mixing/blending particulate and/or powder materials may be used. The mixing may be performed in the presence of a suitable binder, however it should be noted that the presence of a binder is not required. The Sb2O3 particles and the at least one of particulate Bi2O3 and/or one or more of particulate Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of particulate FeS, FeS2, Fe3S4, or a mixture thereof, may also be blended with the FeSi base alloy particles, providing a homogenously mixed inoculant. Blending the Sb2O3 particles, and said additional sulphide/oxide powders, with the FeSi base alloy particles, may form a stable coating on the FeSi base alloy particles. It should however be noted that mixing and/or blending the Sb2O3 particles, and any other of the said particulate oxides/sulphides, with the particulate FeSi base alloy is not mandatory for achieving the inoculating effect. The particulate FeSi base alloy and Sb2O3 particles, and any of the said particulate oxides/sulphides, may be added separately but simultaneously to the liquid cast iron. The inoculant may also be added as an in-mould inoculant. The inoculant particles of FeSi alloy, Sb2O3 particles, and any of the said particulate Bi oxide and/or Fe oxide/sulphide, if present, may also be formed to agglomerates or briquettes according to generally known methods.
The following Examples show that the addition of Sb2O3 particles and the at least one of the Bi2O3 and/or one or more of Fe3O4, Fe2O3, FeO, or a mixture thereof, and/or one or more of FeS, FeS2, Fe3S4, or a mixture thereof particles together with FeSi base alloy particles results in an increased nodule number density when the inoculant is added to cast iron, compared to an inoculant according to the prior art in WO 99/29911. A higher nodule count allows reducing the amount of inoculant necessary to achieve the desired inoculating effect.
All test samples were analysed with respect to the microstructure to determine the nodule density. The microstructure was examined in one tensile bar from each trial according to ASTM E2567-2016. Particle limit was set to >10 μm. The tensile samples were Ø28 mm cast in standard moulds according to ISO1083-2004, and were cut and prepared according to standard practice for microstructure analysis before evaluating by use of automatic image analysis software. The nodule density (also denoted nodule number density) is the number of nodules (also denoted nodule count) per mm2, abbreviated N/mm2.
The iron oxide used in the following examples, was a commercial magnetite (Fe3O4) with the specification (supplied by the producer); Fe3O4>97.0%; SiO2<1.0%. The commercial magnetite product probably included other iron oxide forms, such as Fe2O3 and FeO. The main impurity in the commercial magnetite was SiO2, as indicated above.
The iron sulphide used in the following examples, was a commercial FeS product. An analysis of the commercial product indicated presence of other iron sulphide compounds/phases in addition to FeS, and normal impurities in insignificant amounts.
Three inoculation trials were performed out of one ladle of 275 kg molten cast iron treated with magnesium by addition of 1.05 wt % MgFeSi nodularizing alloy in a tundish cover treatment ladle. 0.9 wt % steel chips were used as a cover. The MgFeSi nodularizing alloy had the following composition, in % by weight: 46.2% Si, 5.85% Mg, 1.02% Ca, 0.92% RE, 0.74% Al, the balance being iron and incidental impurities in the ordinary amount.
Three different inoculants were used. The three inoculants consisted of a ferrosilicon alloy, Inoculant A, containing, in % by weight: 74.2% Si, 0.97% Al, 0.78% Ca, 1.55% Ce, the remaining being iron and incidental impurities in the ordinary amount. To one part of Inoculant A it was added 1.2 wt % Sb2O3 and 1 wt % FeS in particulate form, and mechanically mixed to provide the inoculant of the present invention. To another part of Inoculant A it was added 1.2 wt % Sb2O3, 1 wt % FeS and 2 wt % Fe3O4, and mechanically mixed to provide the inoculant of the present invention. To another part of Inoculant A it was added 1 wt % FeS and 2 wt % Fe3O4, and mechanically mixed. This is the inoculant according to WO 99/29911.
The MgFeSi treatment temperature was 1550° C. and pouring temperatures were 1387-1355° C. Holding time from filling the pouring ladles to pouring was 1 minute for all trials. The inoculants were added to cast iron melts in an amount of 0.2 wt %.
The final cast iron chemical compositions for all treatments were within 3.5-3.7 wt % C, 2.3-2.5 wt % Si, 0.29-0.33 wt % Mn, 0.009-0.011 wt % S, 0.04-0.05 wt % Mg.
Table 1 shows an overview of the inoculants used. The amounts of antimony oxide, iron oxide and iron sulphide are the percentage of sulphide/oxide compound based on the total weight of the inoculants.
The results are shown in
Two inoculation trials were performed out of one ladle of 275 kg molten cast iron treated with magnesium by addition of 1.2-1.25 wt % MgFeSi nodularizing alloy in a tundish cover treatment ladle. 0.9 wt % steel chips were used as a cover. The MgFeSi nodularizing alloy had the following composition, in % by weight: 46% Si, 4.33% Mg, 0.69% Ca, 0.44% RE, 0.44% Al, the balance being iron and incidental impurities in the ordinary amount.
Two different inoculants were used. The two inoculants consisted of a ferrosilicon alloy, Inoculant A, having the same composition as specified in Example 1. To one part of Inoculant A it was added 1.2 wt % Sb2O3 and 1.11 wt % Bi2O3 in particulate form, and mechanically mixed to provide the inoculant of the present invention. To another part of Inoculant A it was added 1 wt % FeS and 2 wt % Fe3O4, and mechanically mixed. This is the inoculant according to WO 99/29911.
The MgFeSi treatment temperature was 1500° C. and pouring temperatures were 1398-1392° C. Holding time from filling the pouring ladles to pouring was 1 minute for all trials. The inoculants were added to cast iron melts in an amount of 0.2 wt %.
The final cast iron chemical compositions for all treatments were within 3.5-3.7 wt % C, 2.3-2.5 wt % Si, 0.29-0.33 wt % Mn, 0.009-0.011 wt % S, 0.04-0.05 wt % Mg.
Table 2 shows an overview of the inoculants used. The amounts of antimony oxide, bismuth oxide, iron oxide and iron sulphide are based on the total weight of the inoculants.
The results are shown in
Two inoculation trials were performed out of one ladle of 275 kg molten cast iron treated with magnesium by addition of 1.25 wt % MgFeSi nodularizing alloy in a tundish cover treatment ladle. The MgFeSi nodularizing alloy had the following composition by weight: 46 wt % Si, 4.33 wt % Mg, 0.69 wt % Ca, 0.44 wt % RE, 0.44 wt % Al, the balance being iron and incidental impurities in the ordinary amount.
Two different inoculants were used. The first inoculant (according to the present invention) consisted of a ferrosilicon alloy, Inoculant B, containing 68.2 wt % Si, 0.93 wt % Al, 0.95 wt % Ca, 0.94 wt % Ba, the remaining being iron and incidental impurities in the ordinary amount. To a part of Inoculant B it was added 1.2 wt % Sb2O3 and 1.11 wt % Bi2O3 in particulate form, and mechanically mixed to provide the inoculant of the present invention. The second inoculant consisted of a ferrosilicon alloy, inoculant A, having the same composition as specified in Example 1. To a part of Inoculant A it was added 1 wt % FeS and 2 wt % Fe3O4, and mechanically mixed. This is the inoculant according to WO 99/29911.
The MgFeSi treatment temperature was 1500° C. and pouring temperatures were 1390-1362° C. Holding time from filling the pouring ladles to pouring was 1 minute for all trials. The inoculants were added to cast iron melts in an amount of 0.2 wt %.
The final cast iron chemical compositions for all treatments were within 3.5-3.7 wt % C, 2.3-2.5 wt % Si, 0.29-0.33 wt % Mn, 0.009-0.011 wt % S, 0.04-0.05 wt % Mg.
Table 3 shows an overview of the inoculants used. The amounts of antimony oxide, bismuth oxide, iron oxide and iron sulphide are based on the total weight of the inoculants.
The results are shown in
A 275 kg melt was produced and treated by 1.20-1.25 wt-% MgFeSi nodulariser in a tundish cover ladle. The MgFeSi nodularizing alloy had the following composition by weight: 4.33 wt % Mg, 0.69 wt % Ca, 0.44 wt % RE, 0.44 wt % Al, 46 wt % Si, the balance being iron and incidental impurities in the ordinary amount. 0.7% by weight steel chips were used as cover. Addition rate for all inoculants were 0.2% by weight added to each pouring ladle. The nodulariser treatment temperature was 1500° C. and the pouring temperatures were 1373-1353° C. Holding time from filling the pouring ladles to pouring was 1 minute for all trials. The tensile samples were 028 mm cast in standard moulds and were cut and prepared according to standard practice before evaluating by use of automatic image analysis software.
The inoculant had a base FeSi alloy composition 74.2 wt % Si, 0.97 wt % Al, 0.78 wt % Ca, 1.55 wt % Ce, the remaining being iron and incidental impurities in the ordinary amount, herein denoted Inoculant A. A mix of particulate bismuth oxide and antimony oxide of the composition indicated in Table 4 was added to the base FeSi alloy particles (Inoculant A) and by mechanically mixing, a homogeneous mixture was obtained.
The final iron had a chemical composition of 3.74 wt % C, 2.37 wt % Si, 0.20 wt % Mn, 0.011 wt % S, 0.037 wt % Mg. All analyses were within the limits set before the trial.
The added amounts of particulate Bi2O3 and particulate Sb2O3, to the FeSi base alloy Inoculant A are shown in Table 4, together with the inoculants according to the prior art. The amounts of Bi2O3, Sb2O3, FeS and Fe3O4 are based on the total weight of the inoculants in all tests.
Having described different embodiments of the invention it will be apparent to those skilled in the art that other embodiments incorporating the concepts may be used. These and other examples of the invention illustrated above and in the accompanying drawings are intended by way of example only and the actual scope of the invention is to be determined from the following claims.
Number | Date | Country | Kind |
---|---|---|---|
20172063 | Dec 2017 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NO2018/050326 | 12/21/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/132670 | 7/4/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4432793 | Hilaire et al. | Feb 1984 | A |
5733502 | Margaria et al. | Mar 1998 | A |
20150284830 | Fay et al. | Oct 2015 | A1 |
20160047008 | Margaria et al. | Feb 2016 | A1 |
20200399724 | Ott | Dec 2020 | A1 |
20200399725 | Knustad | Dec 2020 | A1 |
20200399726 | Ott | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
1281513 | Jan 2001 | CN |
1687464 | Oct 2005 | CN |
1833041 | Sep 2006 | CN |
101525719 | Sep 2009 | CN |
102002548 | Apr 2011 | CN |
103418757 | Dec 2013 | CN |
103484749 | Jan 2014 | CN |
103898268 | Aug 2015 | CN |
105401049 | Mar 2016 | CN |
105950953 | Sep 2016 | CN |
106834588 | Jun 2017 | CN |
107354370 | Nov 2017 | CN |
107400750 | Nov 2017 | CN |
107829017 | Mar 2018 | CN |
1126037 | Aug 2001 | EP |
1639145 | Aug 2010 | EP |
2855186 | Nov 2004 | FR |
1296048 | Nov 1972 | GB |
S5943843 | Mar 1984 | JP |
2301836 | Jun 2007 | RU |
2426796 | Aug 2011 | RU |
872563 | Oct 1981 | SU |
1047969 | Oct 1983 | SU |
9524508 | Sep 1995 | WO |
9929911 | Jun 1999 | WO |
02081758 | Oct 2002 | WO |
2006068487 | Jun 2006 | WO |
2018004356 | Jan 2018 | WO |
Entry |
---|
Examination Report for Corresponding Indian Application No. 202017026693 dated Jul. 19, 2021 with English translation; 6 Pages. |
Search Report for Corresponding Chinese Application No. 201880083776.0 dated Jul. 19, 2021; 4 Pages. |
H. Horie, et al; Effect of bismuth on nodule count in spheroidal craphite iron castings with thin section; Castings, vol. 60, No. 3, Japan, 1988, p. 173-178. |
O. Tsumura, et al; Effects of rare earth elements and antimony on morphology of spheroidal graphite in heavy-walled ductile cast iron; Castings, vol. 67, No. 8, Japan, 1995, p. 540-545. |
Office Action for Corresponding Japanese Application No. 2020-536552 dated Nov. 10, 2021 and English translation; 12 pages. |
Translation of Search Report for Corresponding Russian Registration No. 2020124950/05 dated Feb. 3, 2021; 2 pages. |
Search Report for Corresponding Norwegian Application No. 20172061 (2 Pages) (dated Jul. 20, 2018). |
International Search Report and Written Opinion for Corresponding International Application No. PCT/NO2018/050324 (11 Pages) (dated Apr. 4, 2019). |
International Search Report and Written Opinion for Corresponding International Application No. PCT/NO2018/050327 (10 Pages) (dated Apr. 17, 2019). |
Search Report for Corresponding Norwegian Application No. 20172064(2 Pages) (dated Jul. 20, 2018). |
Search Report for Corresponding Taiwanese Application No. 107147351 (1 Page) (dated Oct. 15, 2019). |
International Preliminary Report on Patentability for Corresponding international Application No. PCT/NO2018/050327 (16 Pages) (dated Dec. 4, 2019). |
International Search Report and Written Opinion for Corresponding International Application No. PCT/NO2018/050325 (9 Pages) (dated Apr. 15, 2019). |
Search Report for Corresponding Norwegian Application No. 20172062 (2 Pages) (dated Jul. 20, 2018). |
Search Report for Corresponding Taiwanese Application No. 107147349 (1 Page) (dated Aug. 1, 2019). |
International Search Report and Written Opinion for Corresponding International Application No. PCT/NO2018/050326 (10 Pages) (dated Apr. 26, 2019). |
Search Report for Corresponding Norwegian Application No. 20172063 (2 Pages) (dated Jul. 20, 2018). |
Search Report for Corresponding Taiwanese Application No. 107147350 (1Page) (dated Oct. 15, 2019). |
Search Report for Corresponding Norwegian Application No. 20172065 (2 Pages) (dated Jul. 20, 2018). |
Search Report for Corresponding Taiwanese Application No. 107147348 (1 Page) (dated Oct. 15, 2019). |
International Search Report and Written Opinion for Corresponding international Application No. PCT/NO2018/050328 (10 Pages) (dated Apr. 26, 2019). |
Number | Date | Country | |
---|---|---|---|
20200340069 A1 | Oct 2020 | US |