Not applicable.
Not applicable.
1. Field of the Invention
The present invention relates to caster wheels and, more particularly, to a brake for caster wheels and, most particularly, to a wheel lift and brake assembly for caster wheels. The description herein is focused on application to wheelchairs, but the invention is applicable to shopping carts, material transport containers, health or other disability-related appliances, and other applications utilizing caster wheels to improve maneuverability.
2. Background Information
Wheel chairs are widely used to contribute to the mobility of persons for whom normal walking is not practical. A number of variations have been made, including various powered and manually propelled devices. Many users of manually powered wheelchairs find it easy to maneuver on flat, hard floors, but have difficulty negotiating over even small obstacles. In wheelchairs, the weight of the user is generally borne on four wheels; the two larger diameter rear drive wheels, and the two smaller caster wheels, typically located in the front. Chair motion is controlled by muscle power applied by grasping the propulsion handrails, thereby inducing forward, reverse, or turning wheelchair motions. The large drive wheels are intended to carry much of the load, while the smaller diameter casters provide sufficient support such that the user is unlikely to tip over forward or backward. Overall structural support is provided by the tubular chair frame.
Casters enable 360-degree rotation of each caster wheel about its vertical spin axis, so that in the absence of obstacles and while operating on level surfaces, the direction taken by the wheelchair is controlled solely by the relative forces applied to the drive wheels by the hand rails. Under ideal conditions, such a wheelchair is extremely maneuverable, since the combination of two front caster wheels and two independently driven rear wheels provide motion in any direction.
However, if an obstacle such as a door threshold or elevation change in an otherwise smooth, level surface is encountered, the situation is more complicated, and the above suspension system is more difficult to use. The navigation problem is composed of two parts: (1) While all wheels require some force to overcome obstacles, small diameter wheels require larger forces to overcome obstacles. The caster wheels typically have much smaller diameters than the larger drive wheels, so as to enable a more compact footprint for the wheelchair, and to permit unfettered turning ability. However, the smaller the castor wheel diameter, the greater the difficulty in overcoming even small obstacles. (2) If an obstacle is disposed such that the caster encounters the obstacle in an oblique or off-center manner, the caster wheel may be forced to turn in an undesired direction, making navigation very difficult or impossible. Both problems are addressed by the current invention: Normal manual wheelchairs are difficult to maneuver over even small obstacles, both for when the obstacle is encountered head on, or even more seriously, obliquely!
The present invention centers on several improvements in the design of manually propelled wheelchairs that are intended to improve their ability to overcome obstacles, such as door thresholds, small changes in elevation, or other deviations from a flat floor. The inventor proposes simple modifications in the design of manual wheelchairs. The three proposed modifications are similar, in that means are provided such that as an obstacle is encountered, the obstacle is detected, and a castor spin axis brake is activated so as to resist caster rotation in the early phase of the encounter. As the obstacle is further encountered, the load is transferred to the caster wheel, the spin axis brake is automatically released, and the mechanism is returned to the starting condition. These three means are designated as “Wheelaids.” “Wheelaids” are incorporated into caster wheels. Wheelaids significantly reduce the forces necessary to surmount obstacles without materially changing the maneuverability or ease of operation of wheelchairs so equipped, and add only a little weight. Wheelaids are not intended to allow wheelchairs to negotiate curbs, stairs, or other similar obstacles. Wheelaids can also be applied to powered wheelchairs, potentially resulting in lower motor torque requirements, lighter designs, or longer cruising ranges. Three variations of wheelaids are described below. The first variation utilizes what is called a Wheelcrutch, the second variation utilizes a Secondary Raised Wheel, and the third utilizes what is called a Wheelramp. In the following discussion, the description, “larger” or “smaller,” wheel refers to the wheel diameter, not the wheel or tread width.
The invention is applicable to caster wheels and incorporates a variable pivot and a caster rotational brake. In a preferred embodiment of the invention, the caster wheel assembly having a caster-axis brake and a barrier-traversing member comprises a caster support body having a vertical caster shaft with a shaft axis therein. The vertical caster shaft is pivotally engaged within a caster shaft housing having a stator surface adjacent the caster support body. At least one caster wheel is mounted on a horizontal axle in the caster support body opposite the caster shaft, with the horizontal axle offset from the vertical axis of the caster shaft. At least one barrier-traversing member is biasedly fastened to the caster support body. The barrier-traversing member includes a barrier contact surface adjacent to and aligned in parallel with said caster wheel. The barrier contact surface extends opposite said caster wheel and preferably beyond the vertical axis of the caster shaft. A braking surface member is attached to the barrier contact member opposite the barrier contact surface and adjacent the stator surface of the caster shaft housing. In operation, the moving caster wheel assembly first contacts an obstacle with the barrier contact surface of the barrier-traversing member. The encountered obstacle begins to elevate the barrier-traversing member with little force and easily brings the attached braking surface member into contact with the stator surface of the caster support body, thereby maintaining the orientation of the caster support body and said caster wheel thereof. Then, further forward movement of the directionally restrained caster wheel assembly allows the barrier-traversing member to elevate said caster wheel, transfer the load to the caster wheel, allow the barrier-traversing member to return to it's starting position, and the caster wheel to more easily traverse the obstacle.
In a first embodiment of the invention, the caster wheel assembly includes at least one barrier-traversing member, comprising a planar section termed a “Wheelcrutch,” mounted to the caster support body holding the at least one caster wheel. The barrier contact surface of said planar section may deviate from circularity to overcome a greater range of barrier heights. A further feature includes an adjustable-length barrier-traversing member and an adjustable rim portion on the barrier-traversing member, thus permitting operational optimization for the obstacles expected to be experienced.
In a second embodiment of the invention, employing a Secondary Raised Wheel, the caster wheel assembly includes a barrier-traversing member comprising a linear actuation element and the barrier contact surface comprises at least one raised wheel on an axle mounted in the linear actuation element opposite the braking surface member. A further feature includes an adjustable length barrier-traversing member as discussed in the first embodiment, above.
A third embodiment includes a belt member, encircling both the caster wheel and the raised barrier contact wheel described above. This embodiment is termed a “Wheelramp.” A further feature includes an adjustable length barrier-traversing member, as discussed in the first and second embodiments above.
In a fourth embodiment of the invention, the caster shaft housing has a stationary portion with a vertically movable element pivotally attached thereto and held in contact with the stationary portion by a connecting spring member. The vertically movable element has a fixed stator surface opposite the stationary portion of the caster support body. A cable mount and housing secured to the caster shaft housing contains a movable pin therein penetrating the caster shaft housing to contact the vertically movable element, thereby moving the vertically movable element into contact with the braking surface member.
Nomenclature
Construction
The invention is a caster wheel assembly having a vertical axis brake and barrier-traversing member comprising a caster support body having a caster shaft with a vertical shaft axis therein. The caster shaft is pivotally engaged within a caster shaft housing having a stator surface adjacent the caster support body. At least one caster wheel is mounted on a horizontal axle in the caster support body opposite the caster shaft, with the horizontal axle offset from the vertical axis of the caster shaft. At least one barrier-traversing member is biasedly fastened to the caster support body. The barrier-traversing member includes at least one barrier contact surface adjacent to and aligned in parallel with said caster wheel. The barrier contact surface extends opposite said caster wheel and preferably forward of the vertical axis of the caster shaft. A braking surface member is attached to the barrier contact member opposite the barrier contact surface and adjacent the stator surface of the caster shaft housing. In operation, the moving caster wheel assembly first contacts an obstacle with the barrier contact surface of the barrier-traversing member. The encountered obstacle easily elevates the barrier-traversing member and attached braking surface member into contact with the stator surface of the caster support body, thereby resisting rotation of the caster support body and said caster wheel thereof. Then, further forward movement of said caster wheel assembly allows the barrier-traversing member to elevate said caster wheel, and transfer the load to the said caster wheel, thus allowing the barrier-traversing mechanism to return to its original condition and the caster wheel to more easily traverse the obstacle.
Referring now to
At least one barrier-traversing member 50 is biasedly fastened at an upper end to the caster support body 20 by a first flexure member 65, thereby providing an axis that is parallel to the axle 45. The barrier-traversing member 50 includes a barrier contact surface 55 adjacent to and aligned in parallel with said caster wheel 40. In the embodiment of
Further embodiments of the barrier-traversing member 50 include an adjustable rim 56 for the barrier contact surface 55 of the barrier-traversing member 50. The adjustable rim 56 is pivotally attached to the barrier-traversing member 50 by a pivot pin 58 and fitted with an adjustment strap and retaining bolts 57 to raise or lower the adjustment rim 56 relative to the wheel member 40. Also shown are dovetail extension elements and dovetail locking mechanism 54 securing the barrier-traversing member 50 to the flexure clamp 67 and first flexure member 65, providing further positioning variability for the barrier-traversing member 50.
In operation, the moving caster wheel assembly 10 first contacts an obstacle with the barrier contact surface 55 of the barrier-traversing member 50 that extends forward of the caster wheel 40, thereby elevating the barrier-traversing member 50 and attached braking surface member 60 into contact with the stator surface 35 of the caster shaft housing 30, and thereby resisting rotation of the caster support body 20 and said caster wheel 40 thereof. Further forward movement of the rotation-restrained caster wheel assembly 10 allows the barrier-traversing member 50 to elevate and transfer the load to said caster wheel 40, enabling the barrier-traversing member 50 (the Wheelcrutch) to return to it's starting position and more easily traverse the obstacle, without diversion of the caster wheel 40 from the direction of travel prior to contact with the obstacle.
Referring now to
A barrier-traversing member 50 is biasedly fastened at an upper end to the caster support body 20 by a first flexure member 65. The barrier-traversing member 50 is positioned opposite said caster wheel 40 and beyond the axis A-A of the caster shaft 25. The barrier-traversing member 50 includes a barrier contact surface 55 adjacent to and aligned in parallel with said caster wheel 40. In the embodiment of
A braking surface member 60 is attached to the upper end of the linear actuation element 70 opposite the barrier contact surface 55, in this embodiment the at least one wheel member 75, and adjacent the stator surface 35 of the caster shaft housing 30. Preferably, a braking surface member 60 is attached to the upper end of the linear actuation element 70 by a second flexure member 68. Preferably, a wheel ramp support 85 is pivotally connected between the axle 45 of said caster wheel 40 and the axle 80 of said raised wheel 75 of barrier-traversing member 50.
In operation, the moving caster wheel assembly 10 first contacts an obstacle with the barrier contact surface 55, the raised wheel member 75 of the barrier-traversing member 50, thereby elevating the barrier-traversing member 50, the linear actuator element 70, and attached braking surface member 60 into contact with the stator surface 35 of the caster shaft housing 30, thereby resisting rotation of the caster support body 20 and said caster wheel 40 thereof. Further forward movement of the rotation-resistant caster wheel assembly 10 allows the barrier-traversing member 50 to elevate said caster wheel 40, transferring the load to said caster wheel 40, enabling the barrier-traversing member 50 to return to it's starting position and more easily traverse the obstacle, without diversion of the caster wheel 40 from the direction of travel prior to contact with the obstacle.
Referring now to
As in the first and second embodiments of the caster wheel assembly 10, the linear actuator element 70 of the barrier-traversing member 50 includes dovetail extension elements and dovetail locking mechanism 54, to provide adjustable length, or telescoping, of the barrier-traversing member 50. This feature gives further adaptability to the caster wheel assembly 10.
A braking surface member 60 is attached to the upper end of the linear actuation element 70 opposite the barrier contact surface 55, in this embodiment the at least one wheel member 75, and adjacent the stator surface 35 of the caster shaft housing 30. Preferably, a braking surface member 60 is attached to the upper end of the linear actuation element 70 by a second flexure member 68. Preferably, a wheel ramp support 85 is pivotally connected between the axle 45 of said caster wheel 40 and the axle 80 of said raised wheel 75 of barrier-traversing member 50.
In operation, the moving caster wheel assembly 10 first contacts an obstacle with the barrier contact surface 55, the raised wheel member 75 of the barrier-traversing member 50, thereby elevating the barrier-traversing member 50, the linear actuator element 70, and attached braking surface member 60 into contact with the stator surface 35 of the caster shaft housing 30, thereby resisting rotation of the caster support body 20 and said caster wheel 40 thereof. Further forward movement of the rotation-resistant caster wheel assembly 10 allows the barrier-traversing member 50 to elevate said caster wheel 40, transferring the load to said caster wheel 40, enabling the barrier-traversing member 50 to return to it's starting position and more easily traverse the obstacle, without diversion of the caster wheel 40 from the direction of travel prior to contact with the obstacle.
In a further embodiment, the three disclosed embodiments of the caster wheel assembly 10 each include a stop mechanism (not shown) to limit downward movement of the barrier-traversing member 50. The barrier-traversing member 50, biasedly fastened at an upper end to the caster support body 20 by a first flexure member 65, includes a stop mechanism (not shown) to limit downward movement of the barrier-traversing member 50, once the barrier contact surface 55 thereof moves out of contact with the encountered obstacle.
The compound hinge assembly 100 includes a body 110 with a pair of opposed anchor blocks 115 secured thereto. A bearing shaft 120 extends through the body 110 adjacent each anchor block 115 with a washer 130 and nut 125 secured at each end of each bearing shaft 120.
The flexure clamp member 67 includes two pairs of first flexure members 65 each secured to a rigid connector plate member 69 positioned between the caster support body 20 and the barrier-traversing member 50. The length of the first flexure members 65 in this embodiment is significantly shorter than those of the embodiment shown in
Referring now to
The embodiments of
In one embodiment of the above-described braking system shown in
Alternatively, as shown in
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.
This application is a continuation-in-part of co-pending utility application Ser. No. 13/716,102, filed 15 Dec. 2012, which claims the benefit under 35 U.S.C. §119 (e) of provisional application Ser. No. 61/657,065, filed 8 Jun. 2012. application Ser. Nos. 13/716,102 and 61/657,065 are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1066754 | Rison | Jul 1913 | A |
1105379 | Schulze | Jul 1914 | A |
1739260 | Roe | Dec 1929 | A |
2123707 | Bloch | Jul 1938 | A |
2701005 | Bennett et al. | Feb 1955 | A |
2770832 | Martin | Nov 1956 | A |
3239872 | Kitrell | Mar 1966 | A |
3573877 | Locke | Apr 1971 | A |
3817548 | De Puydt et al. | Jun 1974 | A |
3827718 | Curry | Aug 1974 | A |
4098521 | Ferguson et al. | Jul 1978 | A |
4132423 | Chant | Jan 1979 | A |
4248445 | Vassar | Feb 1981 | A |
4349938 | Fontana | Sep 1982 | A |
4432425 | Nitzbert | Feb 1984 | A |
4467496 | Gregg | Aug 1984 | A |
4534433 | Burbank et al. | Aug 1985 | A |
4667365 | Martinek | May 1987 | A |
4674757 | Martin | Jun 1987 | A |
4747611 | Daugherty, Jr. | May 1988 | A |
4811966 | Singleton | Mar 1989 | A |
5228709 | Kao | Jul 1993 | A |
5482326 | Levi | Jan 1996 | A |
5562172 | Mick | Oct 1996 | A |
5899469 | Pinto et al. | May 1999 | A |
5964473 | Degonda et al. | Oct 1999 | A |
6129165 | Schaffner et al. | Oct 2000 | A |
6325398 | Banzi | Dec 2001 | B1 |
6371502 | Howlett et al. | Apr 2002 | B1 |
6668965 | Strong | Dec 2003 | B2 |
6712369 | Wu | Mar 2004 | B2 |
6752400 | Nakatsukosa et al. | Jun 2004 | B2 |
7036185 | Morndal et al. | May 2006 | B2 |
7159695 | Strong | Jan 2007 | B2 |
7406745 | Chou | Aug 2008 | B2 |
7540504 | Ehman et al. | Jun 2009 | B2 |
7621003 | Myers et al. | Nov 2009 | B2 |
7837201 | Cheng et al. | Nov 2010 | B2 |
7866430 | Kakinuma et al. | Jan 2011 | B2 |
8046871 | Yamaguchi | Nov 2011 | B2 |
8079606 | Dull et al. | Dec 2011 | B2 |
20020074747 | Helen | Jun 2002 | A1 |
20040135326 | Palmers et al. | Jul 2004 | A1 |
20060267295 | You | Nov 2006 | A1 |
20070056140 | Yamaguchi | Mar 2007 | A1 |
20090172915 | Hunziker | Jul 2009 | A1 |
20100162520 | Yamaguchi | Jul 2010 | A1 |
20100175222 | Fallshaw et al. | Jul 2010 | A1 |
20110140377 | Sullivan | Jun 2011 | A1 |
20110247173 | Nguyen et al. | Oct 2011 | A1 |
20120068423 | Otterson et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
0127929 | Feb 1988 | EP |
2145983 | Apr 1985 | GB |
8225001 | Sep 1996 | JP |
10297206 | Nov 1998 | JP |
11020401 | Jan 1999 | JP |
11091304 | Apr 1999 | JP |
2002234308 | Aug 2002 | JP |
2003094906 | Apr 2003 | JP |
2006281884 | Oct 2006 | JP |
2007230542 | Sep 2007 | JP |
WO 9001441 | Feb 1990 | WO |
WO 9840253 | Sep 1998 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 13716102 | Dec 2012 | US |
Child | 14032272 | US |