The present invention relates to equipment for the semi-continuous direct chill (DC) casting of sheet ingot or slabs of aluminium of different dimensions, in particular ingot or slabs for rolling thin sheet material, including a mould frame with a pair of facing side walls and a pair of facing end walls, the walls defining a mould with an upwardly open inlet for the supply of metal and a downwardly facing outlet provided with a starter block on a movable support which prior to each casting closes the downwardly facing opening and where at least one side wall and/or one end wall can be displaced to enable casting of ingots with different dimensions, the equipment further including means for cooling the metal and optionally means for flexing the mould to compensate for shrinkage.
When casting large rectangular-section ingots to be used in the production of rolled products, it is customary to impart a small amount of convex curvature to the long side walls of the mould to counteract the greater metal shrinkage (pull-in) which takes place near the middle of the wide side faces of the ingot during solidification as compared with locations near the narrow end faces of the ingot. The shrinkage (pull-in) of the metal is proportional to the extension of the non-frozen metal in the ingot after casting conditions are stabilised. During the casting of large ingots the extension of molten metal in the lengthways direction of the ingot (the sump depth) may be up to 0.8 meter or more depending on the size of the ingot.
It is primarily the casting speed that influences the extension of the mushy zone, because it is the thermal conductivity of the material that limits the cooling speed in the middle of the ingot. The amount of water that is jetted onto the ingot surface on the underside of the mould represents a cooling capacity that goes beyond the amount of heat that is transferred to the surface by heat conduction.
With regard to both metallurgy and productivity it is desirable to apply the highest casting speed possible. The casting speed is normally limited by the tendency of hot crack formation in the ingot being cast when the speed is too high.
In the initial stage of a casting operation the cooling will be slow and there will be a contraction in the ingot being cast caused by the difference in specific density between the melted and the frozen metal, together with the thermal coefficient of expansion. The metal that initially has frozen, will be of somewhat reduced shape in relation to the geometry of the casting mould. Because of the above-mentioned curvature of the widest faces of the casting mould, the ingot being cast will assume a convex shape in the initial stage of the casting operation. The convexity will gradually reduce until stable conditions with respect to the sump dept in the ingot being cast are stabilized.
The operating manual of a rolling mill specifies that the rolling surfaces should be straight (without any concavity or convexity in the rolling surfaces). To meet this requirement the casting moulds have to be designed with a curvature (flexing) of the side walls corresponding to the estimated shrinkage/contraction of the ingot to be cast.
The applicants own EP 0 796 683 B1 relates to an equipment for the casting of sheet ingot of the above kind where the side walls that are adapted for flexing and are further provided with a stiffening part at their middle region to obtain controlled stiffness and thereby optimal flexure of the mould walls versus the casting speed. This known solution is, however, not designed for casting ingots with different dimensions (size).
When casting ingots or slabs for rolling purposes, which are in the form of large metal blocks with rectangular cross sections, it is normal to employ a special mould for each ingot width and thickness. Mainly because of the close dimensional tolerances required, it is complicated and expensive to produce continuous casting moulds. As many different ingot formats are required, it is necessary but uneconomical to keep a corresponding large number of moulds in store. Besides, replacing a mould of one dimension with another mould with different dimension is demanding and time consuming.
U.S. Pat. No. 5,931,216 relates to adjustable continuous casting moulds for manufacturing continuously cast ingots of different dimensions where the object is to provide an adjustable mould which provides rapid change to the required ingot cross section based on the one and same mould. An important disadvantage with this solution is that the shape of the mould has no means to compensate for casting speed or change of dimension of the mould having in turn bad effect on ingot geometry. Further, this known mould is based on using starter blocs with fixed dimesion an design.
In the applicants own International application PCT/NO/09/00309 is shown and described a mould where the disadvantages with the above known solutions are avoided, i.e. where the walls of the mould can be easily adjusted from one dimension to another casting sheet ingots with different dimensions and where at the same time flexing of the walls is possible to compensate for different speed as well as dimension and alloy composition. However, to change to the desired mould dimension, the starter block is provided with replaceable end pieces on each of its short end sides. This solution is time consuming as the replaceable pieces need to be taken off or added to the short end sides depending on which dimension the mould is adjusted to.
With the present invention is provided a simple and inexpensive starter block solution where the dimension of the starter block is self adjusting and automatically adapts to the selected size of the mould.
The invention is characterized by the features as defined in the attached independent claim 1.
Preferred embodiments of the invention are further defined in the attached dependent claims 2-7.
The present invention will be described in further detail in the following by means of examples and with reference to the drawings, where:
The initial starting point for the basic design of the starter block according to the present invention is a mould technology solution for sheet ingot which combines both flexing and dimension adjustments of the same mould as described in the applicants own International patent application, PCT/NO/09/00309. The flexible mould principle was invented to obtain the requirements on geometry, while at the same time the adjustable mould principle was chosen to reduce the cost of casting when going from one ingot dimension to another dimension.
The most common dimensions for sheet ingot for rolling are based on 600 mm standard thickness with varying width from 1550-1850 mm and with 50 mm steps. Other dimensions may also occur such as 1950-2200 mm and with 50 mm steps.
As is shown in
For the sake of simplicity, only the end piece 10 with the recess 13, the starter block 8 and the carrier bracket 14 with the short end side 4 of the mould on the left hand side of the casting equipment are shown in the sequence diagrams.
Sequence 1) of
The above sequence shows the alignment and adjustment of the short end walls 4, 11 of the mould and starter block provide on the left hand side of the mould. The same alignment and adjustment is simultaneously done with the short end walls 4, 11 on the right hand side of the casting equipment.
During casting of a sheet ingot, water is required for cooling and is sprayed directly (direct chill, .DC) onto the cast metal as it emerges downwards. As to the end pieces 10, it is of outmost importance that there is no leakage of water into the cavity 12 of starter block prior to or in the initial casting phase, as such leakage could cause explosion and serious damages.
The starter block according to the invention may preferably, as stated above, be made of aluminium, but other suitable materials such as steel or refractory material may also be used.
To reduce friction between the end pieces 10 and base piece 6 each of the end pieces (10) may be provided with a self lubricating bronze or carbon layer. However, other means such as grease or other suitable lubricant may also be supplied to or provided between the interacting surfaces of the end pieces and the starter block base piece 6.
Number | Date | Country | Kind |
---|---|---|---|
20101443 | Oct 2010 | NO | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO2011/000293 | 10/17/2011 | WO | 00 | 6/4/2013 |