The present disclosure relates to casting equipment.
Patent Literatures 1 and 2 disclose gravity tilting mold casting apparatuses. The apparatuses include upper and lower molds which can be opened, closed, and tilted, and which cast a product by pouring molten metal into the upper and lower molds by using gravity while turning and tilting the upper and lower molds closed. The apparatuses adopt an upper mold flip-up method in which the upper mold opens at approximately 90 degrees so that the upper mold shifts from a horizontal state to an erected state. The apparatus of the upper mold flip-up method is provided with an actuator in each of a flip-up mechanism, a stopper for mold closing, a tilting mechanism, a mold closing mechanism, a mold removal mechanism for each of upper and lower molds, and the like.
Patent Literature 1: Japanese Patent Application Laid-Open No. 05-318090
Patent Literature 2: Japanese Patent Application Laid-Open No. 2003-205359
Since the flip-up mechanism described above receives a large load at the time of mold closing, mold removal, and pushing out a product, the flip-up mechanism uses a high strength member with sufficient strength. In addition, since an actuator is provided in each of the flip-up mechanism, the stopper, the tilting mechanism, the mold closing mechanism, the mold removal mechanism for each of upper and lower molds, and the like, there are many actuators in the whole apparatus to form a complicated structure. Accordingly, if the upper mold flip-up method is adopted, the apparatus increases in size and weight. As a result, there is a possibility that casting equipment including an apparatus of the upper mold flip-up method may be required to secure a wide space for installation of the apparatus.
Thus, in the present technical field, it is desired to reduce a space occupied by casting equipment.
Casting equipment in accordance with one aspect of the present invention includes: a casting apparatus that forms a casting by using an upper mold and a lower mold, which can be opened, closed, and tilted, into which molten metal is poured by using gravity; a holding furnace that stores the molten metal to be used in the casting apparatus; and a pouring apparatus that transfers the molten metal to the casting apparatus from the holding furnace and pours the molten metal into the casting apparatus and the casting apparatus includes: an upper frame to which an upper mold is attached; a lower frame to which a lower mold is attached; a mold closing mechanism that is provided in the upper frame to move the upper mold up and down, or that is provided in the lower frame to move the lower mold up and down; a pair of main link members each of which has upper and lower ends that are rotatably coupled to the upper and lower frames, respectively, to be oppositely arranged, and has a central portion that is provided with a rotating shaft; a pair of auxiliary link members arranged parallel to the respective main link members, and each of which has upper and lower ends that are rotatably coupled to the upper and lower frames, respectively, to be oppositely arranged, and has a central portion that is provided with a rotating shaft; and a drive means that is provided to be coupled to the rotating shaft of one of the pair of main link members, and that tilts the upper mold and the lower mold or horizontally moves the molds away from each other, the upper frame, the lower frame, the main link member, and the auxiliary link member, constituting a parallel link mechanism.
In the casting apparatus of the casting equipment, the upper frame to which the upper mold is attached, and the lower frame to which the lower mold is attached, are coupled to each other by a left-and-right pair of the main link member and the auxiliary link member to constitute the parallel link mechanism, and the rotating shaft is provided at the central portion of each of the main link member and the auxiliary link member. Then, the drive means for tilting the upper mold and the lower mold or horizontally moving the molds away from each other is provided to be coupled to the rotating shaft of one of the pair of main link members. In addition, the upper mold or the lower mold is moved up and down by the mold closing mechanism. Accordingly, in a step of mold closing, the upper mold and the lower mold is closed by the mold closing mechanism, and in a step of tilting, the closed upper mold and lower mold are tilted by the drive means and the parallel link mechanism, and also in a step of mold removal or a step of pushing out a product, the upper mold and the lower mold opened by the mold closing mechanism are horizontally moved away from each other by the drive means and the parallel link mechanism. In this manner, a step of casting, such as mold closing, mold removal, and pushing out a product, is performed in the upper and lower frames coupled by the parallel link mechanism. In addition, force applied at the time of mold closing, mold removal, or pushing out a product, is to be received by the parallel link mechanism. As a result, as compared with an apparatus of the upper mold flip-up method, a structure for securing strength of each of members is simplified to enable the members to be reduced in weight and to be simplified. In addition, while large force is transferred to a base frame supporting the apparatus at the time of mold opening and the like in the apparatus of the upper mold flip-up method, the parallel link mechanism receives force in the casting apparatus of the casting equipment, whereby it is possible to reduce force to be transferred to the base frame supporting the apparatus. Accordingly, the base frame also can be reduced in weight and simplified. Reduction of the casting apparatus in size in this way enables a space occupied by the casting equipment to be reduced.
In one embodiment, the casting apparatus may further include a ladle attached to the lower mold, including a storage section formed inside the ladle for storing molten metal, and a pouring port connected to a receiving port of the lower mold, and wherein the pouring apparatus may pour the molten metal into the ladle when the upper mold and the lower mold are closed by the mold closing mechanism to become a mold closed state. In this case, since the molten metal is poured into the ladle when the upper mold and the lower mold become the mold closed state, it is possible to shorten time from a start of pouring the molten metal into the ladle to a start of pouring the molten metal into the upper mold and the lower mold in a tilted manner while the upper mold and the lower mold are tilted, as compared with a case where the molten metal is poured into the ladle before the upper mold and the lower mold become the mold closed state.
In another embodiment, the pouring apparatus and the casting apparatus may be communicatively connected to each other, and the casting apparatus may output information showing the mold closed state to the pouring apparatus when the upper mold and the lower mold are in the mold closed state, and then the pouring apparatus does not pour the molten metal into the ladle when receiving no information from the casting apparatus. In this way, since the pouring apparatus is configured not to pour the molten metal into the ladle when the upper mold and the lower mold are not in the mold closed state, a procedure, in which the pouring apparatus pours the molten metal in a state (posture) where the casting apparatus is ready to receive the molten metal, is obeyed to improve safety.
In yet another embodiment, the casting apparatus may further include a ladle attached to the lower mold, including a storage section formed inside the ladle for storing molten metal, and a pouring port connected to a receiving port of the lower mold, and in the casting apparatus, after the upper mold and the lower mold are opened by the mold closing mechanism, the pouring apparatus may pour the molten metal into the ladle when the upper mold is moved in a direction away from the pouring apparatus and the lower mold is moved in a direction approaching the pouring apparatus, by the drive means, to become a first separation state where the upper mold and the lower mold are horizontally separated from each other. In the first separation state, the ladle approaches the pouring apparatus as the lower mold is moved in the direction approaching the pouring apparatus. Thus, since a distance in which the pouring apparatus transfers the molten metal is shortened, a burden on the pouring apparatus is reduced.
In yet another embodiment, the pouring apparatus and the casting apparatus may be communicatively connected to each other, and the casting apparatus may output information showing the first separation state to the pouring apparatus when the upper mold and the lower mold are in the first separation state, and then the pouring apparatus does not pour the molten metal into the ladle when receiving no information from the casting apparatus. In this way, since the pouring apparatus is configured not to pour the molten metal into the ladle when the upper mold and the lower mold are not in the first separation state, a procedure, in which the pouring apparatus pours the molten metal in a state (posture) where the casting apparatus is ready to receive the molten metal, is obeyed to improve safety.
In yet another embodiment, the ladle may be attached to the lower mold while inclined in a tilt direction in which the upper mold and the lower mold are tilted. In this case, when the molten metal is poured into the upper mold and the lower mold from the ladle in a tilted manner, suction of air and an oxide film hardly occurs, thereby enabling quality of a casting to be improved.
In yet another embodiment, the pouring apparatus may start transferring the molten metal before the casting apparatus is ready to receive the molten metal. In this case, productivity is improved as compared with a case where the pouring apparatus transfers and pours the molten metal to the casting apparatus after the upper mold and the lower mold become the mold closed state or transition to the first separation state.
In yet another embodiment, the casting equipment may include a plurality of the casting apparatuses to be configured to allow the pouring apparatus to transfer and pour the molten metal to each of the plurality of casting apparatuses from the holding furnace. As described above, since each of the casting apparatuses is reduced in size, it is possible to arrange each of the casting apparatuses by reducing an interval between each other. Accordingly, a burden on the pouring apparatus can be reduced. For example, in a case where an operator operates in each of the casting apparatuses, such as a case where the operator fits a core, it is possible to reduce a burden on the operator who moves between each of the casting apparatuses.
In yet another embodiment, the pouring apparatus may include a receiving unit that receives a casting from the upper mold. After the upper mold and the lower mold are opened by the mold closing mechanism, the receiving unit may receive a casting from the upper mold when the lower mold is moved in the direction away from the pouring apparatus and the upper mold is moved in the direction approaching the pouring apparatus, by the drive means, to become a second separation state where the upper mold and the lower mold are horizontally separated from each other. In this case, since the pouring apparatus includes the receiving unit and also serves as receiving means, it is possible to further reduce a space occupied by the casting equipment as compared with a case where the receiving means is separately provided.
A variety of aspects and embodiments of the present invention enable a space occupied by casting equipment to be reduced.
Embodiments of the present invention will be described below with reference to the accompanying drawings. In description of the drawings, the same element is designated by the same reference numeral without duplicated description on the element. In addition, a dimension ratio of the drawings does not always agree with an actual ratio of a described matter. Further, each of terms of “upper”, “lower”, “left”, and “right” is a state based on a state shown in the drawings, and is shown for convenience.
With reference to
In the present embodiment, the casting equipment 100 includes three casting apparatuses 50, for example. Each of the casting apparatuses 50 is horizontally (X direction) arranged in a line, for example. The pouring apparatus 60 is arranged at a position between the casting apparatus 50 and the holding furnace 52. The core molding apparatus 54 is arranged on the opposite side of the holding furnace 52 with respect to the casting apparatus 50. The casting equipment 100 includes three core molding apparatuses 54 corresponding to the respective three casting apparatuses 50, for example. A work space for an operator is provided in a space between the casting apparatus 50 and the core molding apparatus 54. In addition, the conveyor 53 is arranged in a space between the casting apparatus 50 and the core molding apparatus 54. The conveyor 53 is arranged in the X direction along arrangement of each of the casting apparatuses 50, for example. The conveyor 53 extends to an apparatus in a downstream step, for example.
The casting apparatus 50 is so-called a gravity tilting mold casting apparatus that forms a casting by using an upper mold 1 and a lower mold 2 (refer to
The holding furnace 52 is an apparatus that stores molten metal to be used in the casting apparatus 50. The holding furnace 52 has a function of maintaining the molten metal at a prescribed temperature, for example. The holding furnace 52 may also have a function of a melting furnace for melting metal to form molten metal.
The pouring apparatus 60 is an apparatus that transfers and pours molten metal to the casting apparatus 50 from the holding furnace 52. In the present embodiment, the pouring apparatus 60 transfers and pours molten metal to each of the plurality of casting apparatuses 50 from the holding furnace 52. The pouring apparatus 60 is a robot provided with an arm 61 and a ladle 62, for example. The arm 61 has a multiple-joint structure, for example, and is capable of adopting a variety of postures in response to a signal from a controller described later. The ladle 62 is attached to a leading end of the arm 61. The arm 61 is operated to scoop molten metal in the holding furnace 52 with the ladle 62 so that the molten metal is transferred to the casting apparatus 50 to be poured into the casting apparatus 50.
The pouring apparatus 60 and the casting apparatus 50 are communicatively connected to each other. For example, the pouring apparatus 60 and the casting apparatus 50 are connected to a network, through which communication is performed according to a predetermined communication standard, to perform bidirectional transmission and reception of information.
The conveyor 53 is an apparatus for conveying a casting (a cast product) formed by the casting apparatus 50. The conveyor 53 is a belt conveyor, a slat conveyor, or the like, for example. The conveyor 53 conveys a casting, for example, to an apparatus in a downstream step.
The core molding apparatus 54 is an apparatus that injects core sand into a mold to form a core. The core molding apparatus 54 specifically includes a shell machine, a cold box molding machine, a cores and molding machine, and the like. A core formed by the core molding apparatus 54 is set at a predetermined position in the casting apparatus 50 by an operator arranged in the work space between the casting apparatus 50 and the core molding apparatus 54.
With reference to
As shown in
The base frame 17 includes a base 18, a drive side support frame 19, and a driven side support frame 20. The base 18 is a substantially plate-like member composed of a combination of a plurality of members, and is horizontally provided on an installation surface of the casting equipment 100. The drive side support frame 19 and the driven side support frame 20 are erected on the base 18 so as to face each other in a lateral direction (horizontal direction), and are fixed to the base 18. One of a pair of tilt rotation bearings 9 is provided in an upper end of the drive side support frame 19 and an upper end of the driven side support frame 20.
The upper frame 5 is arranged above the base frame 17. The upper mold 1 is attached to the upper frame 5. Specifically, the upper mold 1 is attached to a lower face of the upper frame 5 through an upper mold die base 3. The mold closing mechanism 21 for moving the upper mold 1 up and down is provided in the upper frame. Specifically, the upper frame 5 has the mold closing mechanism 21 built in, and the upper mold 1 is held by the mold closing mechanism 21 so as to be able to move up and down.
The mold closing mechanism 21 includes a mold closing cylinder 22, a left-and-right pair of guide rods 23, and a left-and-right pair of guide cylinders 24. The lower end of the mold closing cylinder 22 is attached to an upper face of the upper mold die base 3. The mold closing cylinder 22 is extended in an up-and-down direction (a vertical direction, here the Z direction) to lower the upper mold 1 through the upper mold die base 3, as well as is shortened in the up-and-down direction to raise the upper mold 1 through the upper mold die base 3. The guide rod 23 is attached to an upper face of the upper mold die base 3 through the guide cylinder 24 attached to the upper frame 5.
The lower frame 6 is arranged above the base frame 17 and below the upper frame 5. The lower mold 2 is attached to the lower frame 6. Specifically, the lower mold 2 is attached to an upper face of the lower frame 6 through a lower mold die base 4. In a state shown in each of
Each of the pair of main link members 7 has upper and lower ends that are rotatably coupled to the upper frame 5 and the lower frame 6, respectively, to be oppositely arranged, and has a central portion provided with a tilt rotating shaft 10. Specifically, the pair of main link members 7 is oppositely arranged in the lateral direction (the horizontal direction, here the X direction), and each of the main link members 7 couples the upper frame 5 and the lower frame 6 to each other. The main link member 7 is provided with the tilt rotating shaft 10 at its central portion, a main link upper rotating shaft 11 at its upper end, and a main link lower rotating shaft 12 at its lower end.
The central portion of each of the pair of main link members 7 is rotatably coupled to one of the pair of tilt rotation bearings 9 through one of the pair of tilt rotating shafts 10. The upper end of each of the pair of main link members 7 is rotatably coupled to one of a pair of side faces 5a of the upper frame 5 through one of the pair of main link upper rotating shafts 11. The lower end of each of the pair of main link members 7 is rotatably coupled to one of a pair of side faces 6a of the lower frame 6 through one of the pair of main link lower rotating shafts 12. Attachment positions of the main link member 7 to the upper frame 5 and the lower frame 6 are set so that the main link member 7 is positioned at the center of each of the upper mold 1 and the lower mold 2 in a depth direction (Y direction) orthogonal to the lateral direction and the up-and-down direction when the upper mold 1 and the lower mold 2 are closed.
Each of the pair of sub-link members 8 is arranged parallel to one of the main link members 7. The sub-link member has upper and lower ends that are rotatably coupled to the upper frame 5 and the lower frame 6, respectively, to be oppositely arranged. The sub-link member has a central portion provided with a sub-link central portion rotating shaft 15. Specifically, the pair of sub-link members 8 is oppositely arranged in the lateral direction to couple the upper frame 5 and the lower frame 6 to each other. Each of the pair of sub-link members 8 is provided with one of a pair of sub-link upper rotating shafts 13 at its upper, one of a pair of sub-link lower rotating shafts 14 at its lower ends, and one of a pair of sub-link central portion rotating shafts 15 at its central portion. Each of the pair of sub-link members 8 is provided in one of the pair of side faces 5a and one of the pair of side faces 6a so as to be parallel to one of the pair of main link members 7. Length of the sub-link member 8 is the same as length of the main link member 7. The upper frame 5, the lower frame 6, the main link member 7, and the sub-link member 8, constitute a parallel link mechanism.
Each of the upper ends of the pair of sub-link members 8 is rotatably coupled to one of the pair of side faces 5a of the upper frame 5 through one of the pair of sub-link upper rotating shafts 13. The lower end of the sub-link member 8 is rotatably coupled to one of the pair of side faces 6a of the lower frame 6 through one the pair of sub-link lower rotating shafts 14. An attachment position of the sub-link member 8 is on a side, where the ladle 25 is arranged, with respect to the main link member 7. In a state of
A rotation actuator 16 is arranged above the drive side support frame 19. The rotation actuator 16 is provided to be coupled to the tilt rotating shaft 10 of one of the pair of main link members 7. The rotation actuator 16 serves as the drive means that tilts the upper mold 1 and the lower mold 2, or that allows the molds to separate from each other in the horizontal direction. The rotation actuator 16 may be any one of electrically-operated, hydraulically-operated, and pneumatically-operated.
In this way, the upper frame 5, the lower frame 6, the main link member 7, and the sub-link member 8, constitute the parallel link mechanism, and the tilt rotating shaft 10 of the main link member 7 is held in the base frame 17 outside a left-and-right pair of parallel link mechanisms by a tilt rotation bearing 9. Then, the sub-link central portion rotating shaft 15 of the sub-link member 8 is mounted on the base frame 17, and the rotation actuator 16 is attached to the tilt rotating shaft 10 of one of the main link members 7.
The ladle 25 is attached to an upper end of a side face of the lower mold 2, the side face facing the pouring apparatus 60. The ladle 25 includes a storage section that is formed thereinside to store molten metal, and a pouring port 25a (refer to
The lower frame 6 includes a built-in pushing out cylinder 30. An upper end of the pushing out cylinder 30 is attached to a lower face of a pushing out member 31. A left-and-right pair of guide rods 32 is attached to the lower face of the pushing out member 31 through a guide cylinder 33 attached to the lower frame 6.
As with the upper mold 1, the lower mold 2 includes the built-in pushing out plate 28 to which the pair of pushing out pins 26 and the pair of return pins 27 are coupled. In the lower mold 2, there is a positional relationship in which the pushing out member 31 is raised by elongating action of the pushing out cylinder 30 to push up the pushing out plate 28, thereby allowing the pair of pushing out pins 26 and of return pins 27 to rise. The return pins 27 of the upper mold 1 and the lower mold 2 are pushed back when the molds are closed because their leading ends are pushed back by a mating face of the opposite mold or by leading ends of opposite return pins 27. Accordingly, the pushing out pins 26 coupled to the pushing out plate 28 are also pushed back. In addition, when the molds are closed, the pushing out member 31 reaches a descending end position by shortening action of the pushing out cylinder 30. The descending end is the lowest position of the lower mold 2 that can be obtained by shortening the pushing out cylinder 30.
A pair of positioning keys 35 is attached to the periphery of a lower portion of the upper mold 1. A pair of positioning key grooves 36 is attached to the periphery of an upper portion of the lower mold 2 according to the pair of positioning keys 35. When the upper mold 1 and the lower mold 2 are closed, the positioning key 35 is fitted into the positioning key groove 36. Since the positioning keys 35 and the positioning key grooves 36 allow the upper mold 1 and the lower mold 2 to be positioned in the horizontal direction, it is possible to prevent the upper mold 1 and the lower mold 2 from being displaced from each other when closed.
The central controller 70 controls the whole operation of the casting equipment 100. The central controller 70, for example, includes a communication unit 71, a central processing unit (CPU) 72, and a storage device 73.
The communication unit 71 enables communication through the network connected. The communication unit 71 is a communication device, such as a network card, for example. The communication unit 71 receives information from the operation input unit 74 and the casting apparatus controller 78, as well as transmits information to the output unit 75, the pouring apparatus controller 77, and the casting apparatus controller 78. The CPU 72 controls operation of the central controller 70. The storage device 73 includes a read only memory (ROM), a random access memory (RAM), and a hard disk, for example.
The operation input unit 74 is an input device, such as a keyboard, for example. The output unit 75 is an output device, such as a display, for example.
The pouring apparatus controller 77 controls operation of the pouring apparatus 60. The pouring apparatus controller 77 includes a communication unit, a CPU, and a storage device, which are not shown. The storage device provided in the pouring apparatus controller 77 stores jobs that define postures for, such as scooping operation, transferring operation, and pouring operation, for example. The CPU of the pouring apparatus controller 77 executes the jobs to control the postures of the arm 61. The pouring apparatus controller 77 indirectly or directly communicates with the casting apparatus controller 78 through the central controller 70. The pouring apparatus controller 77 may be configured to be able to detect the postures of the arm 61 by using a sensor (not shown). The pouring apparatus controller 77 may transmit information on the postures of the arm 61 to the central controller 70.
The casting apparatus controller 78 controls operation of the casting apparatus 50. The casting apparatus controller 78 includes a communication unit, a CPU, and a storage device, which are not shown. The casting apparatus controller 78 and the sensor 79 are provided for each of the casting apparatuses 50, for example. The storage device provided in the casting apparatus controller 78 stores jobs that define postures for, such as a mold closed state, an initial state, a first separation state, a second separation state, or the like, which will be described later, for example. The CPU of the casting apparatus controller 78 executes the jobs to control the postures of the casting apparatus 50. The sensor 79 detects a state of each of the upper mold 1 and the lower mold 2 in the casting apparatus 50 to transmit information showing the state of each of the upper mold 1 and the lower mold 2 to the casting apparatus controller 78. Specifically, the sensor 79 detects whether the upper mold 1 and the lower mold 2 are in the mold closed state, the initial state, the first separation state, the second separation state, or the like, which will be described later, to transmit information showing any one of the states to the casting apparatus controller 78.
The casting apparatus controller 78 indirectly or directly communicates with the pouring apparatus controller 77 through the central controller 70. For example, the casting apparatus controller 78 transmits information showing whether the casting apparatus 50 is in the mold closed state, the initial state, the first separation state, the second separation state, or the like, which will be described later, to the pouring apparatus controller 77.
The configuration described above enables the pouring apparatus controller 77 and the casting apparatus controller 78 to exchange information with each other according to control by the central controller 70 (or without intervention of the central controller 70) to form a casting in cooperation with each other. The central controller 70 is capable of storing operation information on the casting equipment 100 and the like in the storage device 73. The central controller 70 receives operation inputted into the operation input unit 74 by an administrator, and then outputs information corresponding to the operation to the output unit 75. In addition, a component (not shown) may be connected to the network. For example, a controller (not shown) of the core molding apparatus 54 may be connected to the network to be able to communicate with the central controller 70 or the like.
With reference to
As shown in
Subsequently, as shown in
Next, the core 34 molded by the core molding apparatus 54 is fitted in a prescribed position in the lower mold 2 (S13). Operation of fitting the core 34 is performed by an operator, for example. In the second separation state, a space above the lower mold 2 is opened as well as the ladle 25 attached to the lower mold 2 is not brought into contact with the upper mold 1. In this manner, since the space above the lower mold 2 is opened, it is possible to fit a core in the lower mold 2 in safety.
Subsequently, the casting apparatus 50 allows the rotation actuator 16 to perform the left-hand turn so that the casting apparatus 50 temporarily returns to the initial state of
Next, when the upper mold 1 and the lower mold 2 are closed to become the mold closed state, the pouring apparatus 60 (refer to
In a case where the upper mold 1 and the lower mold 2 are in the mold closed state, the casting apparatus 50 outputs information showing the mold closed state to the pouring apparatus 60. The pouring apparatus 60 does not pour the molten metal into the ladle 25 when receiving no information from the casting apparatus 50. Accordingly, even if there is a malfunction or a misoperation of the apparatus, a procedure, in which the pouring apparatus 60 pours the molten metal in a state (posture) where the casting apparatus 50 is ready to receive the molten metal, is obeyed. This kind of so-called interlock function is realized with cooperation of the sensor 79, the casting apparatus controller 78, the central controller 70, and the pouring apparatus controller 77. The interlock function may be realized without intervention of the central controller 70.
Subsequently, as shown in
After the step S18 described above is finished, a state of
Subsequently, the rotation actuator 16 is allowed to perform the right-hand turn so that the casting apparatus 50 temporarily returns to the state of
Next, as shown in
Subsequently, as shown in
At the time of mold change, first the upper mold 1 is lowered from a state shown in
As described above, the casting apparatus 50 of the casting equipment 100 includes the parallel link mechanism that is formed by coupling the upper frame 5 to which the upper mold 1 is attached, the lower frame 6 to which the lower mold 2 is attached, and the left-and-right pairs of main link members 7 and of sub-link members 8, to each other. In addition, the tilt rotating shaft 10 is provided at a central portion of the main link member 7, as well as the sub-link central portion rotating shaft 15 is provided at a central portion of the sub-link member 8. Further, the tilt rotating shaft 10 is held in the base frame 17 with the tilt rotation bearings 9 provided outside the left-and-right pair of parallel link mechanisms, as well as the sub-link central portion rotating shaft 15 is mounted on the base frame 17 and the rotation actuator 16 is attached to the tilt rotating shaft 10 on a drive side support frame 19 side.
Accordingly, all steps of casting, such as mold closing, mold removal, and pushing out a product, are performed in the upper frame 5 and the lower frame 6 coupled by the parallel link mechanisms. Since force applied at the time of mold closing, mold removal, and pushing out a product, is received by only the parallel link mechanisms, a structure for securing strength of each of members is simplified as compared with the upper mold flip-up method. As a result, each of the members can be reduced in weight and simplified.
In addition, while large force is transferred to a base frame supporting an apparatus at the time of mold opening and the like in the apparatus of the upper mold flip-up method, the parallel link mechanism receives force in the casting apparatus 50 of the casting equipment 100, whereby it is possible to reduce force to be transferred to the base frame 17 supporting the apparatus. Accordingly, the base frame 17 also can be reduced in weight and simplified. Further, as compared with the apparatus by the upper mold flip-up method, it is possible to reduce the number of actuators by using the parallel link mechanisms. Furthermore, since rising operation of the upper mold 1 enables a casting to be removed from the upper mold 1, it is possible to reduce the number of actuators. Reduction of the casting apparatus 50 in size in this way enables a space occupied by the casting equipment 100 to be reduced. Accordingly, it is possible to reduce manufacturing costs of a casting.
The casting equipment 100 includes the plurality of casting apparatuses 50, and allows the pouring apparatus 60 to transfer and pour molten metal to each of the plurality of casting apparatuses 50 from the holding furnace 52. As described above, since each of the casting apparatuses 50 is reduced in size, it is possible to arrange each of the casting apparatuses 50 by reducing an interval between each other. As a result, it is possible to reduce a burden on the pouring apparatus 60 as well as on an operator who moves between each of the casting apparatuses 50. That is, the burden of the pouring apparatus 60 is reduced because a moving distance thereof in a lateral direction in which the plurality of casting apparatuses 50 align at the time of transferring and pouring molten metal is shortened. The burden on the operator is reduced because a walking distance thereof in the lateral direction at the time of setting a core in each of the casting apparatuses 50, mold change of each of the casting apparatuses 50, and the like, is shortened. For example, if a distance between two casting apparatuses 50 arranged is shortened by 600 mm, a walking distance of the operator at the time of setting a core is shortened by 600 mm×2 (one round-trip) than previous arrangement. In a case of three casting apparatuses 50, a walking distance of the operator at the time of setting a core is shortened by 1200 mm×2 (one round-trip) than previous arrangement.
The casting apparatus 50 enables safe and easy mold change as compared with an apparatus by the upper mold flip-up method. In addition, since the upper mold 1 and the lower mold 2 slide by operation of the parallel link mechanisms, it is possible to fit a core in safety in a state where a space above the lower mold 2 is opened.
The pouring apparatus 60 pours molten metal into the ladle 25 when the upper mold 1 and the lower mold 2 become the mold closed state. Thus, it is possible to shorten time from a start of pouring the molten metal into the ladle 25 to a start of pouring the molten metal into the upper mold 1 and the lower mold 2 in a tilted manner while the upper mold 1 and the lower mold 2 are tilted, as compared with a case where the molten metal is poured into the ladle 25 before the upper mold 1 and the lower mold 2 become the mold closed state.
The casting equipment 100 includes an interlock function that is realized by the sensor 79, the casting apparatus controller 78, the central controller 70, and the pouring apparatus controller 77. Since the pouring apparatus 60 is configured not to pour the molten metal into the ladle 25 when the upper mold 1 and the lower mold 2 are not in the mold closed state, a procedure, in which the pouring apparatus 60 pours the molten metal in a state (posture) where the casting apparatus 50 is ready to receive the molten metal, is obeyed to improve safety.
The pouring apparatus 60 starts transferring the molten metal before the casting apparatus 50 is ready to receive the molten metal. Accordingly, the molten metal is fed to a position at which the molten metal can be poured into the ladle 25 before the upper mold 1 and the lower mold 2 become the mold closed state, and then the molten metal is poured into the ladle 25 when the upper mold 1 and the lower mold 2 become the mold closed state. As a result, productivity is improved as compared with a case where the pouring apparatus 60 transfers and pours the molten metal to the casting apparatus 50 after the upper mold 1 and the lower mold 2 become the mold closed state.
Casting equipment in accordance with a second embodiment has the same basic configuration as that of the casting equipment 100 in accordance with the first embodiment. The casting equipment in accordance with the second embodiment is different from the casting equipment 100 in accordance with the first embodiment in operation of the casting apparatus 50 and the pouring apparatus 60. Hereinafter, a difference between the casting equipment in accordance with the second embodiment and the casting equipment 100 in accordance with the first embodiment will be mainly described without duplicated description.
Next, the pouring apparatus 60 (refer to
In a case where the upper mold 1 and the lower mold 2 are in the first separation state, the casting apparatus 50 outputs information showing the first separation state to the pouring apparatus 60. The pouring apparatus 60 does not pour the molten metal into the ladle 25 when receiving no information from the casting apparatus 50. Accordingly, even if there is a malfunction or a misoperation of the apparatus, a procedure, in which the pouring apparatus 60 pours the molten metal in a state (posture) where the casting apparatus 50 is ready to receive the molten metal, is obeyed. This kind of so-called interlock function is realized with cooperation of the sensor 79, the casting apparatus controller 78, the central controller 70, and the pouring apparatus controller 77. The interlock function may be realized without intervention of the central controller 70.
Subsequently, the casting apparatus 50 allows the rotation actuator 16 to perform the right-hand turn so that the casting apparatus 50 returns to the initial state of
Then, as shown in
As described above, the casting equipment in accordance with the present embodiment allows the pouring apparatus 60 to pour the molten metal into the ladle 25 when the upper mold 1 and the lower mold 2 become the first separation state where the lower mold 2 is moved in the direction approaching the pouring apparatus 60 by the rotation actuator 16, after the upper mold 1 and the lower mold 2 are opened by the mold closing mechanism 21. Accordingly, as the lower mold 2 is moved in the direction approaching the pouring apparatus 60, the ladle 25 approaches the pouring apparatus 60. Thus, since a distance in which the pouring apparatus 60 transfers the molten metal is shortened, a burden on the pouring apparatus 60 is reduced.
The pouring apparatus 60 pours the molten metal into the ladle 25 when the upper mold 1 and the lower mold 2 become the first separation state after the upper mold 1 and the lower mold 2 are opened. Thus, since a distance in which the pouring apparatus 60 transfers the molten metal is shortened, a burden on the pouring apparatus 60 is reduced.
The casting equipment includes an interlock function that is realized by the sensor 79, the casting apparatus controller 78, the central controller 70, and the pouring apparatus controller 77. Since the pouring apparatus 60 is configured not to pour the molten metal into the ladle 25 when the upper mold 1 and the lower mold 2 are not in the first separation state, a procedure, in which the pouring apparatus 60 pours the molten metal in a state (posture) where the casting apparatus 50 is ready to receive the molten metal, is obeyed to improve safety.
Next, with reference to
As shown in
A casting method using the casting equipment 100A is performed as with the casting method using the casting equipment 100 up to the step S20 shown in
As described above, in the casting equipment 100A in accordance with the present embodiment, the pouring apparatus 60 includes the fork 65 to receive a casting. As a result, it is possible to further reduce a space occupied by the casting equipment 100A as compared with a case where a receiving means is separately provided.
When mold change is performed, first, the lower mold 2 is raised from a state shown in
When molten metal is poured into the ladle 25 attached in a tilted manner as described above, the ladle 25 is set to be horizontal as shown in a portion (c) in
Since the ladle 25 is attached in a tilted state as described above, when molten metal is poured into the upper mold 1 and the lower mold 2 from the ladle 25 in a tilted manner, the molten metal is poured into the upper mold 1 and the lower mold 2 from the ladle 25 through the pouring port 25a and the receiving port 2a so as to flow along the inner surface 2s of the lower mold 2. As a result, suction of air and an oxide film hardly occurs, thereby enabling quality of a casting to be improved.
Although each of the embodiments has been described above, the present invention is not limited to each of the embodiments described above. For example, instead of taking out a casting from the upper mold 1 or the lower mold 2 by using the pushing out cylinder 30, the pushing out plate 28 may be pushed by a spring. In that case, at the time of closing the upper mold 1 and the lower mold 2, since the upper mold 1 pushes down the return pin 27 of the lower mold 2 to lower the pushing out pin 26, mold closing force is offset equivalent to pushing down force of the return pin 27, however, it is possible to reduce the number of actuators.
In addition, the mold closing cylinder 22 and the pushing out cylinder 30 may be any one of electrically-operated, hydraulically-operated, and pneumatically-operated. From the viewpoint of handling molten metal, each of the cylinders may be electrically-operated, pneumatically-operated, or hydraulically-operated without using flammable hydraulic oil. Arrangement of each of the casting apparatuses 50 or 50A is not restricted if it is possible to pour molten metal by using the pouring apparatus 60 or 60A. Thus, for example, each of the casting apparatuses may be arranged in a circle so as to surround the pouring apparatus 60 or 60A. The number of each of apparatuses, such as the casting apparatuses 50 or 50A, the holding furnaces 52, the core molding apparatuses 54, and the pouring apparatuses 60 or 60A, may be one or more. In addition, operation of setting a core may be performed by a core setting robot with a multiple joint structure instead of an operator, for example.
Number | Date | Country | Kind |
---|---|---|---|
2015-082564 | Apr 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/072698 | 8/10/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/166903 | 10/20/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6942010 | Osugi | Sep 2005 | B2 |
Number | Date | Country |
---|---|---|
H09-225622 | Sep 1997 | JP |
2003-205359 | Jul 2003 | JP |
2005118783 | May 2005 | JP |
2007-54850 | Mar 2007 | JP |
2010-5649 | Jan 2010 | JP |
537939 | Jun 2003 | TW |
WO 2016103763 | Jun 2016 | WO |
Entry |
---|
International Preliminary Report on Patentability (IPRP) dated Oct. 26, 2017 that issued in WO Patent Application No. PCT/JP2015/072698. |
Number | Date | Country | |
---|---|---|---|
20170225226 A1 | Aug 2017 | US |