The present patent of the invention relates to a casting for rotating electrical machines, preferably for the open drip-proofing type machines granted of fins arranged in its interior, so that to increase the heat exchange of the stator and casting with a cooling fluid, maintaining an uniform temperature distribution along the length of the stator and coils.
In rotating electrical machines, the presence of an efficient heat exchange system is fundamental for components temperature maintenance of the rotating electrical machines within normal conditions of operation specified by the project. Although the rotating electrical machines runs with high levels of yield, a portion of electrical energy when converted in mechanic energy, or vice-versa, ends up turning into thermal energy.
The removal of thermal energy in an open drip-proof rotating electrical machine, the term open drip-proof (ODP), is performed directly, i.e., through direct contact of a cooling fluid (usually air) with the machine components, mainly coil heads, stator, rotor and short circuit rings, once it is in these components that the process of converting electrical energy into thermal energy occurs. The main physical mechanism by which the thermal energy of the machine components migrates to the cooling fluid is called forced convection and basically depends on the surface in contact with the cooling fluid and on this fluid speed on the surface, being possible to obtain different combinations of these two parameters resulting in the same heat exchange coefficient.
The life time of a rotating electrical machine is proportional to the thermal aspect, once the lower the temperature, the longer the useful life of the electrical insulation system of this machine. The removal of the thermal energy from the interior of the electrical machine is performed mainly by the forced convection mechanism, which succinctly consists in increasing the cooling fluid speed over the machine components where the conversion of electrical energy into thermal energy occurs, so as to remove the greatest amount of thermal energy that is possible. However, given a series of constructive characteristics of the rotating electrical machine and of the cooling fluid properties, there is a thermal energy limit that can be removed by the forced convection mechanism of a surface, being that from this limit the outflow increment of the cooling fluid has its effect minimized or no effect at all. The increment of the cooling fluid speed is normally achieved through a ventilation system, that most of the time has the ventilation system rotor set in motion by the rotating electrical machine shaft itself. The difference of the pressure generated by the movement of the fan rotor gives rise to the cooling fluid offset, being that this movement frequently has turbulent characteristics, generating an acoustic noise of aerodynamic nature that is undesirable in most of the cases. Other common characteristic to the most of the rotating electrical machine is that the higher the machine power is, the higher the amount of thermal energy generated that needs to be removed will be. As a consequence, the greater is the necessary outflow of the cooling fluid to maintain the rotating electrical machine components temperature within desirable limits. However, when increasing the outflow of the cooling fluid, the acoustic noise level generated by the electrical machine ventilation system itself also increases.
In the open casting for drip-proof electrical rotating machines, usually few contact points are used between the casting and the stator, being that the number of points varies from four to ten. In the case of the U.S. Pat. No. 4,766,337 there are only six points. Usually, the contact points have only a structural function, i.e., to support/position the stator inside the casting. In electrical rotating machines where the ratio of the stator length by the external diameter of the stator exceeds 0.5 it is noted that, in laboratory tests, a higher elevation of temperature in the center of the stator relative to the ends. This fact occurs due to the stator ends have greater area of heat exchange, since the thermal energy can be dissipated by the cylindrical shell or by the stator face.
Still considering the U.S. Pat. No. 4,766,337, the thermal energy contained in the stator, whether it has been generated or conducted for this, is basically dissipated by the cylindrical shell surface of the same. The only way to remove the heat by the outflow of the cooling fluid passing between the casting and the external diameter of the stator is through the stator cylindrical shell surface and through the little contact area between the stator and the casting; latter, through the conduction mechanism. To minimize the problem of temperature ranging along the length of the stator, it is usually through the ventilation radial channels, either in the stator as in the rotor, as can be verified in the U.S. Pat. No. 4,766,337. Such practice results in an extra cost, besides generating significant complexity to the production process, i.e., rotating electrical machine manufactured in series or to meet a specialty. Besides the economic aspect, the presence of radial ducts can also result in increased acoustic noise, especially in cases where the coincidence of the rotor ducts occurs with the ones of the stator in the axial direction due to the aerodynamic phenomenon known as passing frequency noise.
In the US patent of the invention U.S. Pat. No. 4,839,547 it is noted that a casting with several contact points with the stator, granted of fins either in the internal part as in its external part, along its length. However, a drawback of the casting in this particular patent is the fact that the ventilation circuit is unilateral and the said casting does not contemplate a way to allow minimizing the temperature gradients occurring along the stator.
The present invention aims to increase the removal of the thermal energy from the interior of the open drip-proof rotating electrical machines type, through an increase in the number of contact points between the casting and the stator, with fins having purposely different lengths, aggregating the function of maximize the heat exchange area and standardize the temperature distribution inside the stator and coils. Thus, the novelty proposed by the present invention is directly related to the maximization of the casting heat exchange internal area together with the standardization of the temperature distribution inside the stator and coils, allowing exempt the costly steps of forming radial air flow channels in stators and rotors of rotating electrical machines.
a illustrates the cooling fluid outflow in the region between a stator and the casting of the prior art achieved through dynamic simulation of the computational fluids.
b illustrates the cooling fluid outflow in the region between the stator and the casting of the present invention achieved through dynamic simulation of the computational fluids.
a illustrates a thermographic image of the prior art engine.
b illustrates a thermographic image of the present invention engine.
According to
Contact fins (1) can have a wedge shape or the like, and they protrude radially or orthogonally, in direction to the stator (5), forming a ducts system (6) where the air outflow will pass. In these ducts (6) it becomes easier to maintain an even cooling fluid speed level, avoiding increased gradients of the cooling fluid speed (as it occurs in the concepts present in the prior art that use few contact elements, which fluid outflow is showed in
Given the nature of the ventilation system of this rotating electrical machine type to be bilateral, i.e., air inlet by front (11) and rear (12) lids seen in
In an incorporation, according to
In an incorporation, the continuous contact fins (2) show length equivalent to the casting (0), the medium length fins (3) correspond to ⅔ of the casting total length (0) e o short length fins (4) correspond to ⅓ of the casting total length (0).
According to
Based on
Analyzing the thermographic images showed in
b shows a thermographic image achieved from an open drip-proof rotating electrical machine type with the same power characteristics and of amount of thermal energy of the one shown in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/BR2011/000496 | 12/22/2011 | WO | 00 | 8/21/2014 |