The present invention relates to a casting mold surface treatment method, and a casting mold having a carbon film formed on its surface by this surface treatment method.
A casting technique for molding a product using a casting mold is a technique capable of producing products in large quantities with a consistent shape and quality, and is used in manufacturing products using a variety of materials. In the casting process, a die lubricant is generally applied to a molding surface of the casting mold, by which the product is released more easily when the molded product is to be removed from the casting mold. However, when casting is repeated, the material may stick to the casting mold, and removing the product from the casting mold becomes more difficult.
For example, when aluminum alloy, etc. is to be cast by a die casting method, molten aluminum is filled rapidly into a metal cavity under high pressure. Molten metal may stick to the portion of the casting mold making contact with the molten aluminum, and release resistance upon ejecting the product from the casting mold increases.
This problem can be resolved by covering the surface of the casting mold with a carbon film. The carbon film prevents the molten metal and the base material of the casting mold from making direct contact, suppressing the sticking of molten metal to the casting mold and an increase in release resistance. For example, in Patent Document 1, carbon material having fullerenes as its principal component is rubbed onto the surface of the casting mold used for aluminum die casting. This formed carbon film having fullerenes as its principal component on the surface of the casting mold reduces release resistance and prevents from sticking.
According to the technique of Patent Document 1, although the carbon film having fullerenes as its principal component and formed on the casting mold surface need not be applied each time the casting process is performed, its effectiveness in reducing the release resistance is lost after the casting has been performed a certain number of times. When the effectiveness in reducing the release resistance has been lost, a maintenance operation of re-covering the casting mold with the carbon film having fullerenes as its principal component must be performed to restore the effectiveness of releasing the casting mold. From the viewpoint of increasing production efficiency, it is preferred that maintenance is less frequent, and that the release effectiveness, i.e., the effectiveness in reducing release resistance and preventing sticking, lasts longer.
To deal with this, in the present invention, a casting mold surface treatment method is taught, which comprises applying fullerenes to a surface of a carbon film (termed “nanocarbon film” below), which covers a surface of a casting mold and contains at least one type of nanocarbon selected from the group of carbon nanocoils, carbon nanotubes and carbon nanofilaments.
When surface treating of the casting mold is performed using the surface treatment method of the present invention, the fullerenes are applied to the surface of the nanocarbon film covering the surface of the casting mold, thereby the fullerenes fills into spaces or asperities in the nanocarbon film. In the carbon film formed on the surface of the casting mold, the fullerene content at the surface side of the carbon film thus becomes greater than the fullerene content at the casting mold side. That is, more fullerenes are contained near the surface of the carbon film.
When the surface of the casting mold is covered by the carbon film containing fullerenes near the surface of the nanocarbon film, as described above, and casting is performed using this casting mold, release effectiveness can be retained longer.
Further, a surface treatment method of the present invention be termed as a casting mold surface treatment method including a nanocarbon film forming step of forming, on a surface of a casting mold, a carbon film containing at least one type of nanocarbon selected from the group of carbon nanocoils, carbon nanotubes and carbon nanofilaments, and a fullerene applying step of applying fullerenes to a surface of the nanocarbon film. That is, the surface treatment method of the present invention may include, prior to the fullerene applying step, the step of forming the carbon film containing nanocarbons on the surface of the casting mold.
According to the present invention, a carbon film with longer lasting release effectiveness can be formed on the surface of the casting mold. By making the release effectiveness last longer, maintenance of the casting mold can be reduced, and production efficiency in the casting process can be increased.
In the surface treatment method of the present invention, preferably, a casting mold whose surface has already been covered by a nanocarbon film may be obtained, and fullerenes may be further applied to this casting mold. Further, the surface treatment method may preferably include a step of forming a carbon film containing nanocarbons on the casting mold, and a step of applying fullerenes to the surface of the carbon film that contains nanocarbons.
A carbon film formed by the surface treatment method of the present invention includes fullerenes and at least one type of nanocarbon selected from the group of carbon nanocoils, carbon nanotubes and carbon nanofilaments. The carbon film formed by the surface treatment method of the present invention need not necessarily be composed only of carbon.
Fullerenes are carbon clusters having a closed shell structure, and normally have an even number of carbon atoms ranging from 60˜130. Specific examples are: C60, C70, C76, C78, C80, C82, C84, C86, C88, C90, C92, C94, C96 and higher-order carbon clusters having a greater number of carbon atoms. Apart from the above fullerenes, the fullerenes in the present invention include fullerene derivatives in which other molecules or functional groups have been chemically modified in the fullerene molecules. In the fullerene applying step, the fullerene application may be performed using a mixture of the fullerenes and other substances.
Preferred aspects of below embodiments will be listed.
1. In the fullerene applying step, a fullerene powder may be applied directly to the nanocarbon film.
2. In the nanocarbon film forming step, the nanocarbon film is formed, and a nitride film and a sulfurized film may be formed between the nanocarbon film and a treated base material.
(Release Resistance Measurement Test)
A carbon film was formed on a steel surface according to Embodiment 1 and Comparative Examples 1˜3, and the release resistance of a treated surface was measured using an automatic tension testing device Lub-Tester-U (MEC International). The Lub-Tester-U is a device in which, after a ring body 2 is positioned on a test bed 1 and molten aluminum 5 is poured into the ring body 2, as shown in
A nanocarbon film was formed on a surface of the test bed 1 by the following method. Moreover, the following method was taught in Japanese Patent Application Publication No. 2008-105082, and is a method for forming, on SKD61 steel, a carbon film (nanocarbon film) including at least one type of nanocarbon chosen from among the group of carbon nanocoils, carbon nanotubes and carbon nanofilaments.
Nanocarbon Film Forming Process:
The test bed 1 was placed in an atmospheric furnace, air was purged using a vacuum pump, then nitrogen gas (N2) was circulated to create an N2 atmosphere. Next, in accordance with the process profile shown in
In Embodiment 1, a fullerene applying process described below was further performed on the test bed 1 which had undergone the nanocarbon film forming process. Moreover, in Embodiment 1, fullerenes are applied to the surface of the nanocarbon film.
Fullerene Applying Process:
After the test bed 1 was heated once to 300° C., fullerene C60 powder was applied to the nanocarbon film formed on the surface of the test bed 1 using a cloth to which the fullerene C60 powder (nanom purple ST, manufactured by Frontier Carbon Corp.) had been applied. Sufficient fullerene powder was applied to the cloth, then the fullerene powder was applied to the entire nanocarbon film surface while pressing with an average pressure of 10˜300 g/cm2. Moreover, while the fullerene powder was being applied using the cloth, the temperature of the test bed 1 was between 100° C. and less than 300° C. Using this method, the quantity of fullerenes applied to the surface of the test bed was 1 mg/cm2.
Only the fullerene applying process described in Embodiment 1 was performed on the test bed 1 having the same material, shape, and size as Embodiment 1.
Only the nanocarbon film forming process described in Embodiment 1 was performed on the test bed 1 having the same material, shape, and size as Embodiment 1, and the fullerene applying process was not performed.
Surface treatment was performed on the test bed 1 having the same material, shape, and size as Embodiment 1, with the order of the nanocarbon film forming process and the fullerene applying process described in Embodiment 1 having been reversed. That is, first the fullerene applying process described in Embodiment 1 was performed on the test bed 1, forming the fullerene carbon film. Next, the nanocarbon film forming process described in Embodiment 1 was performed on the test bed 1 upon which the fullerene carbon film had been formed, forming the nanocarbon film on the surface of the fullerene carbon film.
Release Resistance Measurement Test:
The release resistance of the test bed 1, which had undergone surface treatment according to Embodiment 1 and Comparative Examples 1˜3, was measured using an automatic tension testing device. The ring body 2 was manufactured from SKD61, had a height of 50 mm, and had an inner diameter 70 mm and an outer diameter 90 mm at the surface making contact with the test bed 1. The inner diameter of the ring body 2 increased slightly as it rose from the surface making contact with the test bed 1. ADC12 (aluminum alloy die casting JIS H5302) was used in the molten aluminum. As shown in
In
The greater the number of moldings until a marked increase in the releasing load, the longer the releasing effect can be said to last. From the results shown in
Further, in Comparative Example 1 and Embodiment 1, the releasing load was nearly identical while the number of moldings was small (up to five), and was slightly less than in Comparative Example 2 and Comparative Example 3. It was conjectured that, since the outermost layer was covered by fullerenes in Comparative Example 1 and Embodiment 1, release resistance was reduced by the fullerenes. Further, in Comparative Example 2, although the releasing load was slightly greater than in Comparative Example 1 for a small number of moldings, the number of moldings until the releasing load increased markedly was more than twice that of Comparative Example 1. This was conjectured to be due to the nanocarbon film formed in Comparative Example 2 peeling off less readily than the carbon film, to which the fullerenes had been applied, of Comparative Example 1.
Considering the results of the release resistance measurement test of
(Sticking Test)
In Embodiment 2 and Comparative Example 4, surface treatment was performed on a molding surface of a die casting mold for casting aluminum products, as shown in
As in Embodiment 1, the nanocarbon film forming process and then the fullerene applying process were performed on the cavity surfaces 21, 22 of the fixed mold 11 and the movable mold 12, these constituting the die casting mold manufactured from SKD61 for casting a housing of a transaxle of a motor vehicle.
Only the nanocarbon film forming process described in Embodiment 1 was performed on the cavity surfaces 21, 22 of the fixed mold 11 and movable mold 12 having the same material, shape, and size as Embodiment 2, and the fullerene applying process was not performed.
Sticking Test:
The die casting mold for a housing of a transaxle of a motor vehicle, which underwent the surface treatment in Embodiment 2 and Comparative Example 4, was repeatedly used for die casting aluminum products, and then was examined to see whether molten aluminum had stuck to the die casting mold.
A conventional silicon emulsion die lubricant was applied to the cavity surfaces 21, 22 of the fixed mold 11 and the movable mold 12, then the fixed mold 11 and movable mold 12 were clamped with a clamping pressure of 2000t. In the state of
After the sticking test was repeated, of the total surface area of the cavity surface 21 of the fixed mold 11 and the cavity surface 22 of the movable mold 12, the portion of surface area where molten aluminum stuck was examined, and is shown in Table 1. The sticking area in Table 1 shows a ratio calculated using, as 1, the surface area where sticking occurred in Comparative Example 4.
As shown in Table 1, in using the die casting mold which underwent surface treatment in Embodiment 2, the sticking surface area was 0.2 that of the Comparative Example despite twice the number of shots than Comparative Example 4. That is, when using the casting mold having the carbon film created by the surface treatment method of the present invention, sticking of molten aluminum onto the casting mold during the aluminum casting could be significantly reduced.
As described above, when the casting mold surface treatment method of the present invention was performed, the effectiveness of reducing release resistance was maintained for longer, and the sticking of molten metal was inhibited. This was conjectured to be due to smoothening the unevenness of the surface by filling the fullerenes into the spaces in the nanocarbon film, and the fullerenes being trapped by the nanocarbon film. Smoothening was achieved by applying the fullerenes, which highly effectively reduce the release resistance, to the casting mold surface; this having been covered by the nanocarbon film which does not peel off readily. By lengthening the release effectiveness, the maintenance to restore the casting mold release effectiveness can be reduced, and the production efficiency in the casting process using the casting mold can be increased.
Moreover, the method of forming the nanocarbon film of the present invention is not restricted to the method using an atmospheric furnace, as in the above embodiments. Further, the method of applying the fullerenes is not restricted to the method of applying fullerene powder directly to the nanocarbon film, as in the above embodiments.
Specific examples of the present invention are described above in detail, but these examples are merely illustrative and place no limitation on the scope of the patent claims. The technology described in the patent claims also encompasses various changes and modifications to the specific examples described above.
The technical elements explained in the present specification or drawings provide technical utility either independently or through various combinations. The present invention is not limited to the combinations described at the time the claims are filed. Further, the purpose of the examples illustrated by the present specification or drawings is to satisfy multiple objectives simultaneously, and satisfying any one of those objectives gives technical utility to the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2008-198588 | Jul 2008 | JP | national |
This application is a divisional of U.S. application Ser. No. 13/056,520, filed Jan. 28, 2011, which issued as U.S. Pat. No. 8,256,493 and which is incorporated herein by reference. U.S. application Ser. No. 13/056,520 is the National Stage of PCT/JP2009/063559, filed Jul. 30, 2009 and claims priority to Japanese Patent Application 2008-198588, filed Jul. 31, 2008.
Number | Name | Date | Kind |
---|---|---|---|
8256493 | Furukawa et al. | Sep 2012 | B2 |
20080206444 | Matsuo et al. | Aug 2008 | A1 |
20090117359 | Yoshimi et al. | May 2009 | A1 |
20100215985 | Kitano | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2006 306010 | Nov 2006 | JP |
2006 327892 | Dec 2006 | JP |
2007 100210 | Apr 2007 | JP |
2007 119903 | May 2007 | JP |
2007 144499 | Jun 2007 | JP |
2007 146274 | Jun 2007 | JP |
2007 217517 | Aug 2007 | JP |
2008 105082 | May 2008 | JP |
2008 139880 | Nov 2008 | WO |
Entry |
---|
International Search Report issued Oct. 27, 2009 in PCT/JP09/063559 filed Jul. 30, 2009. |
International Preliminary Report on Patentability (English translation only) issued Aug. 18, 2010, in International Application No. PCT/JP2009/063559 (International filing date Jul. 30, 2009). |
European Search Report mailed on Apr. 4, 2012 in the corresponding application No. EP09803012.5. |
M. Monthioux, et al., “Hybrid carbon nanotubes: Strategy, progress, and perspectives”, Journal of Materials Research, vol. 21, No. 11, Nov. 2006, pp. 2774-2793. |
Number | Date | Country | |
---|---|---|---|
20120288622 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13056520 | US | |
Child | 13553136 | US |