This specification pertains to the casting of brake rotors with cooling vents and embedded inserts. More specifically, this specification pertains to an arrangement of cores that enable sand casting of pairs of such brake members.
There is interest in the manufacture of brake rotors that are vented for cooling and contain sound damping inserts. Such rotors are often used for braking of vehicle wheels.
In many embodiments such brake rotors have a round hub for attachment to a vehicle wheel and a radially outwardly extending rotor portion attached to the central hub. In vehicle operation the hub and rotor rotate about a central axis coincident with the rotational axis of the wheel to which they are attached. The rotor is shaped like an annular disk with an annular body, extending radially from the hub, that has two flat, parallel, annular faces (sometimes called “cheeks”) and a circumferential end surface. One cheek of the rotor is on the hub side of the brake rotor structure and the other cheek is the rotor surface on the opposite side of the rotor body. In a braking operation, pads of friction material are pressed tightly against the then rotating cheeks of the rotor to stop rotation of the rotor and attached wheel. Such braking friction produces heat in the rotor and mechanical vibrations. Sometimes the vibrations result in high frequency noise (typically brake squeal).
In some rotor designs the rotor body is solid, but in many rotors the body portion contains several generally radially extending, transverse vanes defining intervening air ducts for air cooling of frictional heat produced in the rotor body during braking. The vanes are formed generally centrally of the rotor body to leave one or two outboard durable body thicknesses for braking pressure applied against the cheek surfaces. In order to suppress brake squeal it is desired to provide an annular, typically flat insert piece in one or both rotor body portions outboard of the vanes. It is also desired to cast rotor material around the noise damping insert body so as to form suitable noise damping (typically by coulomb friction damping) surface regions between contiguous faces of the enclosing cast rotor metal and the insert material.
By way of example and as an illustration, annular insert plates may be steel stampings, with or without a coating of particulate material, for frictional contact with the engaging inner face surfaces of the cast rotor material. And the rotor and hub may be formed of a suitable cast iron composition.
It has been a challenge to devise a practical and economical method of manufacturing such noise damped, vented brake rotors with vanes for cooling and inserts for vibration damping. This specification provides an assembly of cores, typically three specially designed and complementary resin-bonded sand cores, that enables sand casting of pairs of such rotors. An assembly of cores is also provided that enables sand casting of more than two rotors at the same time.
In accordance with an embodiment of this invention, a sand mold casting process is provided for casting of a pair (or multiple pairs) of vented brake rotors with inserts embedded in the vane-containing rotor bodies of the castings. For purposes of description of a brake rotor and the disclosed casting process, it is assumed that when a brake rotor is attached to a vehicle corner, the hub portion of the brake rotor lies outwardly (outboard) on the rotational axis of the wheel and the annular rotor body lies inboard of the hub along the rotational axis of the wheel. Each brake rotor has internal vanes between outboard and inboard rotor body portions. The outboard and inboard body portions have outer faces that will be engaged by brake pads in vehicle operation and inner faces that merge with the air passage defining vanes. An insert for coulomb friction damping may be enclosed within either or both of the rotor body portions. In the following illustration, a particle coated, steel insert is enclosed within the inboard rotor body.
In this illustrative embodiment, a multiple-part (typically two-part) sand mold is prepared with complementary facing (e.g., cope and drag) mold bodies each having casting cavity surfaces that define the outboard (hub-side) surfaces of two facing, side-by-side brake rotors. The mold bodies also define the outboard face of the hub and the outboard rotor cheek faces of the two rotors. A three-part sand core assembly is constructed to lay between the facing mold cavity surfaces and to define the inboard side of each rotor. The sand mold may be arranged in a horizontal or vertical attitude for metal casting.
Two of the sand cores may be identical. They may be shaped to be assembled face-to-face, and termed “rib-cores” in this specification for convenient reference. Each assembled rib core is shaped to define the following inboard surfaces on one of the pair of cast rotors: the inboard face of the rotor hub, the inner face of the outboard rotor body, the vanes for venting the rotor body (hence the “rib core”), the inner face of the inboard rotor body, and tab supports for a cast-in-place damping insert. The third sand core is of annular shape and further shaped to lie between radially outer portions of the facing rib-cores. This core is aptly described as a “splitter core” and it defines outer cheek faces of the inboard rotor bodies. The cores are further shaped to support a sound damping insert between each rib core and an interposed splitter core.
In the assembly of the cores for casting, a sound damping insert is placed on each side of the splitter core and inside the facing and sandwiching rib cores. The assembled three core bodies and inserts may be clamped together and positioned between the facing mold bodies. The mold pieces may be provided and arranged with molten metal flow passages for horizontal or vertical attitude of the parts to be cast. The assembly permits simultaneous casting of one or more pairs of similar or identical insert-containing, noise damped, vented brake rotors.
Other objects and advantages of this invention will be apparent from a description of illustrative preferred embodiments which follows with reference to the following drawing figures.
In this illustrative embodiment of the invention a representative brake rotor is shown. A method is disclosed for simultaneously casting one or more pairs of such rotors in a sand mold using a set of three resin bonded sand cores for each pair of rotors.
Referring to
Brake rotor 10 comprises a hub 12 and a rotor 14. Hub 12 comprises a radial hub surface 18 providing an attachment interface to a vehicle wheel, and an axial hub surface 20 that is connected at one side to rotor 14. Typically, the brake rotor is carried on wheel bearing studs and the wheel is also carried on the bearing studs. Hub 12 is typically bolted to the wheel although bolt holes are not illustrated in
Rotor 14 comprises an outboard annular rotor body 22 and an inboard annular rotor body 24 that sandwich several radial vanes 26. Radial vanes 26 may have a curved (or partially spiral) configuration. When brake rotor 10 is rotating with the vehicle wheel to which it is attached, air is pumped by centrifugal force from the radial interior of rotor bodies 22, 24 through air flow spaces 28 between and bounded by radial vanes 26, outboard rotor body 22, and inboard rotor body 24. Brake rotor 10 also comprises one or more inserts for sound damping. In vane-containing brake rotor 10, such an insert may be located in one of the rotor bodies 22, 24, or both. In this embodiment of the disclosure, an annular sound damping insert 30 is enclosed within inboard rotor body 24. Annular sound damping insert 30 has parallel, radially extending side faces for columbic frictional engagement with the surrounding cast metal of inboard rotor body 24. Sound damping insert 30 also comprises a plurality of radial tabs 32 distributed uniformly around its outer circumferential surface for use in the casting of rotor metal as will be described. In
Sand mold and coring arrangement 40 comprises cope 42 and drag 44. The cavity defining surfaces of cope 42 and drag 44 may be substantially identical when two identical brake rotors 10 are being cast with one brake rotor being formed, as illustrated, in each of the cope 42 and drag 44.
Supported within and between cope 42 and drag 44 molds is a combination of two identical and facing rib cores (upper rib core 48 in
Each of the cores 48, 50, 52 is round and when the cores are assembled as illustrated in
Reference may also be made to
As stated, rib cores 48, 50 have the same shape because they are being used to cast like brake rotors 10. Accordingly, a description of rib cores will be made with reference to rib core 48 as illustrated in
Rib core 48 is round and its upper side 60 has a hub-shaping portion 62 for defining the inboard surfaces of radial hub surface 18 and axial hub surface 20 in the casting of brake rotor 10. Hub shaping portion 62 has a central portion 70 for defining the axial opening in brake rotor 10. Surface 63 of rib core 48 defines the inboard surface of outboard annular rotor body 22 and has holes 64 for forming radial vanes 26 in brake rotor 10. The peripheral edge 66 of rib core 48 lies against an inner surface of a cope 42 or drag 44 mold member. An inner circular edge 68 of rib core 48 cooperates with the respective mold member to define the round outer edge surface of outboard annular rotor body 22.
In-gates for the admission of molten metal (not shown) may be formed in surface 84 between radial extensions 82. When the sand mold and core arrangement 40 are in a horizontal position as illustrated in
An oblique view of a surface 90 of splitter core 52 is presented as
Thus, a pair of like rib cores 48, 50 and a complementary splitter core 52 are shaped to hold two annular sound damping inserts, like inserts 30 in
In the above embodiment the core assembly was designed to hold a pair of sound damping inserts for casting into the inboard annular rotor bodies of two like brake rotors. But the core assembly may also be adapted for incorporating the insert in the outboard annular rotor body or in both inboard and outboard rotor bodies of the sand mold-cast, vented brake rotor shapes.
In another embodiment (not shown), more than two rib cores with inserts can be assembled having a splitter core to produce more than two sound damped rotors. For example, the cope 42 and drag 44 molds may be constructed and arranged to support two sets of facing rib cores 48, 50. A splitter core 52 is sandwiched between each set of facing rib cores 48, 50. In this manner, four sound damped rotors may be produced simultaneously. In other embodiments, the cope 42 and drag 44 molds may support any suitable number of sets of facing rib cores in a similar repeating arrangement.
Practices of the invention have been shown by examples that are presented as illustrations and not limitations of the invention.
This application claims priority based on provisional application 60/956,422, titled “Casting Noise-Damped, Vented Brake Rotors with Embedded Inserts,” filed Aug. 17, 2007 and which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
974024 | Carter | Oct 1910 | A |
1484421 | Thomspon | Feb 1924 | A |
1989211 | Norton | Jan 1935 | A |
2012838 | Tilden | Aug 1935 | A |
2026878 | Farr | Jan 1936 | A |
2288438 | Dach | Jun 1942 | A |
2603316 | Pierce | Jul 1952 | A |
2978793 | Lamson et al. | Apr 1961 | A |
3085391 | Hatfield et al. | Apr 1963 | A |
3127959 | Wengrowski | Apr 1964 | A |
3147828 | Hunsaker | Sep 1964 | A |
3292746 | Robinette | Dec 1966 | A |
3378115 | Stephens, III | Apr 1968 | A |
3425523 | Robinette | Feb 1969 | A |
3509973 | Kimata | May 1970 | A |
3575270 | Wagenfuhrer et al. | Apr 1971 | A |
3774472 | Mitchell | Nov 1973 | A |
3841448 | Norton, Jr. | Oct 1974 | A |
3975894 | Suzuki | Aug 1976 | A |
4049085 | Blunier | Sep 1977 | A |
4072219 | Hahm et al. | Feb 1978 | A |
4195713 | Hagbjer et al. | Apr 1980 | A |
4250950 | Buxmann et al. | Feb 1981 | A |
4278153 | Venkatu | Jul 1981 | A |
4338758 | Hagbjer | Jul 1982 | A |
4379501 | Hagiwara et al. | Apr 1983 | A |
4475634 | Flaim et al. | Oct 1984 | A |
4523666 | Murray | Jun 1985 | A |
4529079 | Albertson | Jul 1985 | A |
4905299 | Ferraiuolo et al. | Feb 1990 | A |
5004078 | Oono et al. | Apr 1991 | A |
5025547 | Sheu et al. | Jun 1991 | A |
5083643 | Hummel et al. | Jan 1992 | A |
5115891 | Raitzer et al. | May 1992 | A |
5139117 | Melinat | Aug 1992 | A |
5143184 | Snyder et al. | Sep 1992 | A |
5183632 | Kluchi et al. | Feb 1993 | A |
5184662 | Quick et al. | Feb 1993 | A |
5184663 | Oono et al. | Feb 1993 | A |
5259486 | Deane | Nov 1993 | A |
5310025 | Anderson | May 1994 | A |
5416962 | Passarella | May 1995 | A |
5417313 | Matsuzaki et al. | May 1995 | A |
5509510 | Ihm | Apr 1996 | A |
5530213 | Hartsock et al. | Jun 1996 | A |
5582231 | Siak et al. | Dec 1996 | A |
5620042 | Ihm | Apr 1997 | A |
5660251 | Nishizawa et al. | Aug 1997 | A |
5789066 | DeMare et al. | Aug 1998 | A |
5819882 | Reynolds et al. | Oct 1998 | A |
5855257 | Wickert et al. | Jan 1999 | A |
5862892 | Conley | Jan 1999 | A |
5878843 | Saum | Mar 1999 | A |
5927447 | Dickerson | Jul 1999 | A |
5965249 | Sutton et al. | Oct 1999 | A |
6047794 | Nishizawa | Apr 2000 | A |
6073735 | Botsch et al. | Jun 2000 | A |
6112865 | Wickert et al. | Sep 2000 | A |
6206150 | Hill | Mar 2001 | B1 |
6216827 | Ichiba et al. | Apr 2001 | B1 |
6223866 | Giacomazza | May 2001 | B1 |
6231456 | Rennie et al. | May 2001 | B1 |
6241055 | Daudi | Jun 2001 | B1 |
6241056 | Cullen et al. | Jun 2001 | B1 |
6283258 | Chen et al. | Sep 2001 | B1 |
6302246 | Naumann et al. | Oct 2001 | B1 |
6357557 | DiPonio | Mar 2002 | B1 |
6405839 | Ballinger et al. | Jun 2002 | B1 |
6465110 | Boss et al. | Oct 2002 | B1 |
6481545 | Yano et al. | Nov 2002 | B1 |
6505716 | Daudi et al. | Jan 2003 | B1 |
6507716 | Nomura et al. | Jan 2003 | B2 |
6543518 | Bend et al. | Apr 2003 | B1 |
6648055 | Haug et al. | Nov 2003 | B1 |
6799664 | Connolly | Oct 2004 | B1 |
6880681 | Koizumi et al. | Apr 2005 | B2 |
6890218 | Patwardhan et al. | May 2005 | B2 |
6899158 | Matuura et al. | May 2005 | B2 |
6932917 | Golden et al. | Aug 2005 | B2 |
6945309 | Frait et al. | Sep 2005 | B2 |
7066235 | Huang | Jun 2006 | B2 |
7112749 | DiPaola et al. | Sep 2006 | B2 |
7178795 | Huprikar et al. | Feb 2007 | B2 |
7293755 | Miyahara et al. | Nov 2007 | B2 |
7594568 | Hanna et al. | Sep 2009 | B2 |
7604098 | Dessouki et al. | Oct 2009 | B2 |
7644750 | Schroth et al. | Jan 2010 | B2 |
7775332 | Hanna et al. | Aug 2010 | B2 |
7836938 | Agarwal et al. | Nov 2010 | B2 |
20020084156 | Ballinger et al. | Jul 2002 | A1 |
20020104721 | Schaus et al. | Aug 2002 | A1 |
20030037999 | Tanaka et al. | Feb 2003 | A1 |
20030127297 | Smith et al. | Jul 2003 | A1 |
20030141154 | Rancourt et al. | Jul 2003 | A1 |
20030213658 | Baba | Nov 2003 | A1 |
20040031581 | Herreid et al. | Feb 2004 | A1 |
20040045692 | Redemske | Mar 2004 | A1 |
20040074712 | Quaglia et al. | Apr 2004 | A1 |
20040084260 | Hoyte et al. | May 2004 | A1 |
20040242363 | Kohno et al. | Dec 2004 | A1 |
20050011628 | Frait et al. | Jan 2005 | A1 |
20050150222 | Kalish et al. | Jul 2005 | A1 |
20050183909 | Rau, III et al. | Aug 2005 | A1 |
20050193976 | Suzuki et al. | Sep 2005 | A1 |
20060076200 | Dessouki et al. | Apr 2006 | A1 |
20060243547 | Keller | Nov 2006 | A1 |
20070039710 | Newcomb | Feb 2007 | A1 |
20070056815 | Hanna et al. | Mar 2007 | A1 |
20070062664 | Schroth et al. | Mar 2007 | A1 |
20070062768 | Hanna et al. | Mar 2007 | A1 |
20070142149 | Kleber | Jun 2007 | A1 |
20070166425 | Utsugi | Jul 2007 | A1 |
20070235270 | Miskinis et al. | Oct 2007 | A1 |
20070298275 | Carter et al. | Dec 2007 | A1 |
20080099289 | Hanna et al. | May 2008 | A1 |
20080185249 | Schroth et al. | Aug 2008 | A1 |
20090032569 | Sachdev et al. | Feb 2009 | A1 |
20090107787 | Walker et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
428319 | Jan 1967 | CH |
200510113784.X | Oct 2005 | CN |
20051113784 | Oct 2005 | CN |
1757948 | Apr 2006 | CN |
2863313 | Jan 2007 | CN |
24 46 938 | Apr 1976 | DE |
2446938 | Apr 1976 | DE |
25 37 038 | Mar 1977 | DE |
2537038 | Mar 1977 | DE |
19649919 | Jun 1998 | DE |
199 48 009 | Mar 2001 | DE |
19948009 | Mar 2001 | DE |
60000008 | Mar 2002 | DE |
101 41 698 | Mar 2003 | DE |
10141698 | Mar 2003 | DE |
102005048258.9 | Oct 2005 | DE |
102005048258 | Apr 2006 | DE |
60116780 | Nov 2006 | DE |
0 205 713 | Dec 1986 | EP |
0205713 | Dec 1986 | EP |
1230 274 | Apr 1971 | GB |
1230274 | Apr 1971 | GB |
2328952 | Mar 1999 | GB |
57154533 | Sep 1982 | JP |
57154533 | Sep 1982 | JP |
1126434 | Aug 1989 | JP |
05-104567 | Apr 1993 | JP |
11342461 | Dec 1999 | JP |
2001512763 | Aug 2001 | JP |
2003214465 | Jul 2003 | JP |
2004011841 | Jan 2004 | JP |
20010049837 | Jun 2001 | KR |
9823877 | Jun 1998 | WO |
WO 9823877 | Jun 1998 | WO |
0136836 | May 2001 | WO |
WO 0136836 | May 2001 | WO |
2007035206 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090044923 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
60956422 | Aug 2007 | US |