The automotive and aerospace industries continue to drive innovation in a variety of technological fields, including that of the cast metals industry. Continual market pressure to significantly reduce cast component cost and weight while increasing performance has highlighted the need for geometric design flexibility and the merging of value-added features into complex engineered castings. This focus gave birth to Precision Sand Casting [PSC] for aluminum engine blocks and cylinder heads as developed by Cosworth Castings and other companies by using zircon dry sand molding technology. Dry sand molding, combined with sand core technology for intricate internal casting features is a practical and flexible approach for “Core-Pack Molding” in the production of aluminum castings. This technology is cost effective and complex-design friendly for a high-volume production foundry process. PSC technology is being utilized for the production of Premium Quality Aluminum Engine Blocks for the North American Automotive Industry.
The automotive industry is continuously demanding reduction of vehicle weight, coupled with significant reduction in overall manufacturing product and process costs. There is a need to address this pressing demand for weight and cost reduction, for example, in engine block and powertrain components. Sand molding technology and low-pressure mold filling technology could be enhanced by unique features to achieve cost reduction and premium quality aluminum metallurgy.
The manufacturing industry is also demanding an improved casting process that can be used in low to medium volume production facilities. For example, in the foundry environment, there is a demand to provide a casting system that is flexible for small production runs to generate prototype sample parts. There is also a demand to then utilize that same production process for larger scale productions runs as well. Thus, a flexible casting process that is operable for prototype runs as well as production runs is in demand. Cost savings can result from such an improved casting system.
The present disclosure contemplates a casting system and process employing super lightweight mold segments assembled into a mold fixture support system to serve as a mold transportation device or fixture that is delivered via a mold line to a production line roll-over support system which performs as a pouring station. Once the mold fixture is secured in the roll-over system, it is then connected to a low-pressure furnace fill nozzle where metal pouring begins. Using a counter-gravity delivery system, the low-pressure furnace delivers premium quality molten lightweight material, such as aluminum, that is free from oxides and dissolved hydrogen gas into the mold cavity.
To make the mold cavity free from oxides, the permeable sand is saturated with Helium gas [He] which facilitates rapid solidification of the molten aluminum, thus influencing very fine dendrite formation. To accomplish this, the cavity may be flushed with He before metal is introduced in to the cavity. The metallurgical impact on the aluminum is reflected in measurable [between 50% and 100%] mechanical property improvements. The light weight precision sand mold segments are matched with a high-productivity pouring station, which is possible because of the He mold environment and counter-gravity pouring system. Casting solidification is then accomplished offline away from the pouring station, which in turn frees up the pouring station so that it can accept the next mold fixture in line for the next rapid pouring cycle.
The sand mold construction with metal chills strategically located in casting areas enhances solidification properties. He gas, because of its unique qualities of thermal conductivity [six times that of air], significantly improves the efficiency of the chill as well as the surrounding sand to molten aluminum contact areas. Further, the He gas can be introduced into the sand mold via a manifold system that targets the mold cavity for maximum effectiveness.
This disclosure provides at least three improved mold configurations taking advantage of the He cooling gas environment as deployed in the present casting system. They are:
The present casting system 10 can be deployed in a foundry prototype or hi-production facility where very thin, lightweight sand cores for Core-Pack Molding can be used in the production of light metal castings such as, but not limited to, aluminum and magnesium. The lightweight sand cores can be produced with conventional core machines and core sand binder systems. One improvement is in the assembly of the lightweight core segments with shape specific geometries into a core pack, and subsequently shrink-wrapped, to form a seal of the core pack to keep the assembly intact dimensionally while being counter-gravity filled with molten aluminum. The improved lightweight core pack can also be supported within a fixture and then sealed via shrink wrap, or some other method, to achieve a self-contained mold environment that can be flushed with an inert cooling gas, such as, but not limited to, Helium to significantly improve the molten metal and mold heat transfer characteristics. In addition to keeping the core pack assembly intact, the shrink wrap and/or other techniques create a self-contained environment that can be designed to allow for a vacuum attachment that will draw a vacuum on the mold cavity while being filled with molten metal. The slight vacuum will facilitate the removal of core gases as well as allow for the flushing of cooling gases and the removal of heat from the casting while it solidifies.
Helium cooling gas is a preferred gas for the present casting system because of its physical characteristics compared to air or any other inert gas. Helium is inert and has a density seven times lower than air, with thermal conductivity properties six times that of air. Helium has three properties which play roles in influencing the present aluminum casting system. In particular, Helium gas is inert, it has a low density, and it has attractive thermal conductivity characteristics. Taken individually, an inert gas mold cavity environment allows for rapid mold filling without the risk of metal oxidation and resultant casting defects. Such performance can result in faster cycle times, which improves production output per hour. The low-density gas will be pushed out of the mold cavity through the permeable sand mold while the metal enters the mold with far less resistance; thus facilitating thin-wall capability when compared to air. This results in smoother and quicker mold fill times, all while using thinner sand mold walls. And finally, the improved thermal conductivity will enhance the solidification process and significantly improve the efficiency of the metal chill to drive directional metal solidification and improve aluminum metallurgy. This also results in faster cure times which translates in to increased production output per hour for a given pour line. The resulting system provides high production cycle rates due to the high metal fill rate. It also provides improved metal solidification rates resulting in improved microstructure characteristics, improved mechanical properties and thermal fatigue resistance. The present system is further flexible in that it can be used with commercial materials, such as aluminum alloys.
The present sand mold cooling concept is operable to affect the metallurgical properties of aluminum. Such concepts may be applicable to Permanent and Semi-Permanent (hard mold tooling) Aluminum Casting Process as well. The impact of a Helium cooling gas which is inert, has low density and is highly heat conductive, will yield similar results in hard mold tooling. The cooling gas may be introduced into the mold cavity and be targeted on specific areas of the resulting casting. Hard tooling is typically vented to allow core gases and expanding air in the mold cavity to escape—the same venting concept can be applied in reverse to introduce helium gas into the mold cavity. The cooling gas has a positive impact on the solidification characteristics of the aluminum thus achieving a metallurgical microstructure of very low Secondary Dendrite Arm Spacing—higher strength and ductility. Productivity is also improved because of the solidification rate of the cast molten aluminum. Thus, the present disclosure may be applied to sand mold casting, permanent mold casting, and semi-permanent mold casting environments. For discussion purposes only, the sand mold casting process and systems are presented in detail below.
Referring now to the figures,
The transport system 14 includes motors 32, sensors 34, and PLCs 36 for controlling the operation of the casting system 14. The PLCs 36, in turn, may communicate with a main computer 38 located remotely in the foundry or elsewhere for controlling and overseeing the production environment at a given facility. It will be appreciated that the motors 32, sensors 34, and PLC 36 may be located at numerous locations within the casting system 10 and they may be operable to communicate with each other in series and/or in parallel in order to effectuate the desired performance and production output. The first portion 26 is operable to motivate a plurality of fixtures 16 from an assembly area (not shown), along a path 40, and then deliver the fixture 16 to a receiving or inlet area 42 of the roll-over station 20. The operation of each fixture 16 along the path 40 of the first portion 26 is controlled by the PLC 36. For example, the sensor 34 may sense when a fixture 16 has entered the inlet area 42, thus allowing the next available fixture 16 to advance along the casting system 10.
The roll-over station 20 is the mold pouring station for the casting system 10 and includes the inlet area 42, a base 44, a head 46 with an indexing or rotating turret 48 that is connected to the base 44, and a nozzle inlet portion 50 for communicating with a furnace nozzle 52. The rotating turret 48 is operable to index axially in the direction of arrow 54 relative to the base 44. This action allows the turret 48 to index relative to the furnace nozzle 52 during mold filling operations. For example, during mold fill operations, the turret 48 is extended outwards towards the furnace nozzle 52 so as to allow flow of the molten material such as aluminum in to the sand mold segments 18. Once the mold is full, metal flow is terminated, which then permits the rotating turret 48 to axially retract in the direction of arrow 54 so as to permit the furnace nozzle 52 to disconnect from the fixture 16.
The roll-over station 20 is operable to rotate in the direction of arrow 54 for the purpose of advancing the fixture 16 from an upright position 56 to an inverted position 58. The fixture 16 enters the inlet 42 in the upright position 56, is secured via clamping mechanism 60, and then is inverted 180 degrees to the inverted position 58 as is shown in
The second portion 28 of the transport system 14 includes rollers 68, similar to the rollers 68 on the first portion 26, for supporting and advancing the inverted fixture 16′. The second portion 28 includes motors 32, sensors 34, and a PLC 36, which is in turn connected 70 via a communication link to the main computer 38. It will be appreciated that the PLCs 36 could be connected using various telecommunication methods, for example blue tooth, near field proximity, or other type methods. One or more chillers 30 may be placed along the path of the second portion 28 so as to effectuate cooling characteristics of the metal in the mold segments 18.
The method of casting 90 may begin with step 100, which is providing mold segments and a support fixture for casting metal parts, may include the mold segments 18 being individual molds that are aligned in segments such that they can be encapsulated and held in place by the fixture 16 during the molding process. After the casting process is complete, the mold segments are destroyed during the shake-out process so as to separate the casted part 12 from the fixture 16′. The fixture in turn can be reused for another mold cycle by installing new mold segments 18. It will be appreciated that based on the design of the casting part 12 to be manufactured, that a single segment 18 or segments aligned in different fashions may be employed.
The next step 102 is loading mold segments 18 into the fixture 16, and this step may include inserting a plurality of individual segments 18 which collectively form the mold 76. This step can be performed off-line and in a staging area.
The next step 104 is to transfer the fixture 16 along a transport line 14 to a mold roll-over station 20, where molten material is introduced to the mold 76. The fixture transfer process may be controlled by the main computer 38, which in turn my have human interface for selectively controlling the operations.
The next step 106 is to load the fixture 16 into the roll-over station 20 which is shown in
The next step 108 is to secure the fixture 16 to the roll-over station 20. This may be accomplished by using an automated locking system having clamps and sensors that communicate with the computer 38. This securing step 108 holds the fixture in place when it is rotated 180 degrees before the fill cycle.
The next step 110 is to connect the He source 22 to the mold segments 18 or mold 76. This step provides the supply of inert gas, such as He, to the mold 76 so that a constant supply of He can be delivered at predetermined pressures and predetermined flow rates. This results in a controlled He infusion process which can be adjusted based on the mold's geometry. The He source 22 can be controlled by the PLC 36 or computer 38, and thus the He delivery process can be specifically controlled so as to yield a certain result within the mold 76. For example, for a mold 76 with many mold segments 18, the rate of gas delivery to the mold's cavity can be controlled so as to have the rate of infusion of the inert gas calculated to exhaust Oxygen from the cavity of the mold in the best possible way.
The next step 112 is to inject He into the bottom of the mold segments. This step starts the process of removing O2 particles from the base of the mold cavity.
The next step 114 is to flush the mold segments 18 with He under a predetermined pressure and flow rate so as to create an environment of O2-free mold segments, along with any other particles that may be present in the cavity of the mold segments. This is the step where the inert gas source system 22 continuously works to flush the entire cavity with inert gas sufficient to evacuate all O2, and penetrate the porous walls of the mold to form a barrier layer of inert gas on the surface of the inner wall cavity. This barrier layer of inert gas helps the thermal cooling performance as it has high thermal conductivity. A goal of this step may be to provide total He gas saturation within the mold cavity 76. Another goal is to provide targeted He gas delivery to specific sections within the mold cavity, and that can be accomplished by the inert gas source system 22 working in concert with, for example, a manifold delivery system. (See
The next step 116 is to rotate the fixture 16 using the mold roll-over station 20 to a second or inverted position 58. By rotating the fixture 180 degrees, this facilitates an anti-gravity molten metal fill process. Constant inert gas pressure may be applied during this roll-over process so that positive pressure is maintained within the cavity to aid in keeping O2 for reentering the mold cavity. This process will help keep the mold cavity saturated with inert gas before and during the mold fill process.
The next step 118 is to connect the fixture 16 to the low-pressure furnace 24. This can be accomplished by the turret 48 indexing axially in a direction opposite of arrow 54. The turret 48 indexes to the point where it fully connects to the nozzle 52 which extends outward from the body of the furnace 24. Once the nozzle 52 is connected to the turret 48, this becomes the metal pour fill position and such is maintained during the pour fill cycle.
The next step 120 includes injecting into bottom 78 of fixture 16 molten metal 80 using a counter gravity filling process where molten metal 80 is delivered in an O2-free environment. The counter-gravity filling process results in introducing molten metal 80 in the bottom 78 of the sand mold using a low-pressure system furnace delivery system. The pressure range employed in this counter-gravity filling process could be in the range of 5 psi to 20 psi and the flow rate could be in the range of 5 to 25 pounds/second. By introducing the molten metal 80 using this counter-gravity methodology, the molten metal 80 will displace the He within the cavity as the pressurized molten metal traverses from the bottom of the cavity 78 and makes its way upward, against gravity, through the internal spaces 82 of the cavity. As the metal 80 continues to displace the He and travel upward against gravity, the He is exhausted out a degassing valve 222 near the top of the fixture 16. (See
The next step 122 is to continue injecting metal using low-pressure counter-gravity cycle to form a casting part 12. This is improved by the deployment of He in the cavity which improves fluid flow. The He further reduces turbulent metal flow within the cavity which permits a more rapid fill rate because, in part, there is less push back because the air has been removed from the cavity. This step includes the low-pressure furnace 24 delivering molten metal 80, aluminum for example, but other metals are contemplated by this disclosure, through the furnace nozzle 52 which in turn directs the metal 80 to the mold cavity 76.
The next step 124 is to stop filling the mold with molten metal 80 when a mold full signal is generated by a mold fill sensor 84. The sensor 84 may be situated near the top 86 of the mold. The sensor may communicate with the PLC 36, the computer 38, and/or a separate fill system. The fill sensor 84 may be on board the fixture 16, as is shown in
The next step 126 of the casting process may include rolling the fixture 16 back to the first position 26. This would be the same orientation as the fixture 16 had when it entered the roll-over station 20 at the beginning of the fill cycle. See
The next step 128 is to disconnect fixture 16 from furnace 24. This can be accomplished by retracting the turret 48 in the direction of arrow 54 so as to cause the nozzle 52 to disengage the inlet 50 of the turret 48. It will be appreciated that this step may be accomplished using a drive system 88 that may be on-board or external to the roll-over station 20. The drive system 88 is operable to control the indexing of the turret 48 relative to the base 44 at predetermined periods of the metal pour cycle.
The next step 130 is to disconnect the He from fixture 16 so as to no longer deliver pressurized He to the fixture 16. This may be accomplished manually or by the system 10 being automated in this regard so long as the inert gas source system 22 is no longer delivering a supply of gas to the cavity. The inert gas system 22 may include a supply tank, lines, valves, sensors, gauges, and its own controller.
The next step 132 is to remove the fixture 16 from roll-over station 20. This may be accomplished in several ways, one of which could include actuators propelling the fixture 16 in a direction 62 away from the roll-over station 20 so as to advance the fixture 16 towards the second line 28 which could also be referenced as a cooling conveyor.
The next step 134 is to advance the fixture 16′ to the cooling conveyor which embodies the second line 28 for the final processing of the fixture. Once the fixture 16′ is securely positioned on the cooling conveyor 28, the roll-over station 20 is now free to accept another fixture 16 that in turn can be loaded, and thus a new mold fill process can begin once it is has been properly positioned.
The next step 136 is to introduce chill cycle to the fixture 16′ and thus the casted part 12 that is now curing within the fixture 16′. By employing chillers at this stage, the casted part 12 will begin cool quicker which results in improved part characteristics. The chill cycle may be accomplished by the use of chillers 30 that are shown in
The next step 138 is to shake out the part 12 from the fixture 16. This is done after the chillers 30, if any, have completed their cooling cycle and thus the part 12 is ready to be broken away from the fixture and the sand molds therein. The shake out step 138 may be accomplished using conventional means in the industry. However, one variant here is that the fixture 16′ will be preserved and repurposed so as to be deployed again in another casting process 90. Thus, the shake out process 138 contemplates a recovery system for the just used fixture 16′, a procedure for separating out the dirty sand, and for then advancing the newly casted part 12 to a finishing station.
The next step 140 is to repeat steps 100-138 to form another casting part 12. This casting process 90 contemplates employing the casting system 10 over and over again so that a continuous mold line can operate at varying capacities. For example, prototype mold casting runs can be envisioned with the present system because it is flexible in that fixtures 16 can be loaded on to the transport system 14, all the while the parts 12 to be formed can be of different sizes and shapes. The computers 38 and PLCs 36 may permit selective programming for each fixture 16, which in turn allows for the mold fill cycle to be uniquely controlled, and the chill cycle to be uniquely controlled, all based on the desired characteristics for a particular casted part 12. The mold fill cycle can contemplate steps 102-132, while the chill cycle can contemplate steps 134-136.
Another example of the flexibility of the present system is that small prototype runs may be intermixed with large scale production runs. This can be accomplished because each fixture 16 may have its own mold parameters 140, 142, and so on. Each mold parameter may be a unique set of instructions, data sets, characteristics, and the like, that are particular to the casted part 12 that is to be casted. For example, one mold parameter 140 could be specific instructions regarding the part to be manufactured, part size, target weight, inert gas type to be delivered to the cavity, rate of gas delivery, pressure rate of gas delivery, cycle time, mold fill cycle time target rates, metal type, chill cycle times, target casted part material properties, etc. Any bit of information that may be important, specific, and/or unique to the part 12 to be casted could be contemplated as a mold parameter 140, 142. The mold parameters 140, 142, may be saved in a storage system that is connected with the computer 38 and/or housed in the cloud.
It will also be appreciated that on large scale casting production runs, the casting system 10 can be deployed where the identical casted part 12 can be casted for extended periods of time, such as days, weeks, months, even years. If a part changeover is later desired, then the mold parameters 142 for the next desired part can be set up and programmed, and because the system 10 is flexible, the production line can be easily transitioned to casting another part as desired.
The sand casting mold 76 includes cross-sections 200 with an exemplary mold cavity section 202 having a sealed configuration and a non-sealed 204 cavity configuration. The sealed cavity section 202 includes a seal 206 that creates a sealed environment for surrounding and segregating the permeable sand mold 208 from the rest of its environment. The seal 206 may be a bag, liner, or other device that is operable to withstand the internal operating characteristics that are present in the casting environment. The seal 206 encapsulates the sand mold 208 and is operable to keep air out while maintaining inert gas inside the liner during the mold pour cycle. The seal is capable of withstanding pressures in the range of 5 psi to 50 psi. Within the center of the sand mold is the cavity 210 which takes on the form of the casted part 12 that is to be formed in this foundry process.
Inert gas 212 such as, but not limited to He, is introduced at an inlet 213 into a mold gate and it traverses along a path 214 to where an inlet valve 216 may control the flow of gas 212. Gas 212 passes past the valve 216 through a seal member 218 that is positioned adjacent a lower portion of the liner 206. Gas 212 then is forced in the direction of arrow 220 to where it permeates and saturates the cavity 210. A degassing valve 222 is positioned at an opposite side of the sealed liner 206. Within the sealed liner 206 is an internal environment 224 wherein gas particles 226 are forced up and out of the environment through the degassing valve 222. Before the internal environment 224 is flushed with an inert gas, it contains atmospheric contaminates such as O2, and others, which can be flushed out with the aid of the pressurized inert gas system 22. The gas 212 flow and pressure rates may be controlled by the system 22 so as to achieve a desired part performance.
With continued reference to
With reference to
The piping system 404 includes a plurality of pipes 414 and elbows 416, preferably made of metal, that are connected and progress through the recessed channel 408. The pipes 414 include gas openings 418 that permit inert gas to be released out of the piping system 404 and directed towards the mold cavity. Inert gas flows in to the drag 402 in the direction of arrow 420 and is routed through the piping system.
The efficiency of Helium as a cooling gas and the impact on the aluminum metallurgy has been evaluated under two very distinct test environments: [1] measure the cooling rate of Helium and Nitrogen on a preheated slug of aluminum, and [2] measure the cooling rate of Helium and Nitrogen in an encapsulated sand mold environment when filled with molten aluminum.
The first test was to measure the cooling effects of Helium and Nitrogen gas in a close-to-open system where a preheated aluminum specimen was surrounded by the ceramic fibers. The highly permeable ceramic fibers generated virtually no back pressure in the system. The cooling curves of the preheated 6061 aluminum cylinder from 950 F to 400 F under different cooling gases and different gage pressures showed: [1] the mass flow rate of Helium is always higher than that of Nitrogen under any pressure applied, and [2] the cooling rate of the preheated metal increases with cooling medium mass flow rate. The results are consistent with the statistical thermodynamics gas theory. The gas theory predicts that Helium molecules have a slightly lower heat capacity than Nitrogen [by ˜30%], but travel much faster [by ˜160%] than Nitrogen under any given temperature because of its lower molecular weight than Nitrogen (4 to 28). For a given gage pressure [z overall pressure differential] there are significantly more Helium molecules available to remove heat than Nitrogen. Consequently, this gas cooling efficiency test demonstrates very clearly the measurably higher cooling rates for Helium gas when compared to Nitrogen [air].
In the second test, Helium and Nitrogen gas was applied to a sealed sand mold before and during casting solidification. In addition, a mold was poured without any gas flow simulating a conventional sand mold filling environment. The cooling curves decidedly show the cooling effect of Helium gas compared to Nitrogen gas as well as a comparative cooling curve for a conventionally solidified mold environment. The thermal data strongly suggests that Helium cooling will cause a DCS reduction based on the well-known relationship between aluminum alloy DCS and local solidification time.
It will be appreciated that the aforementioned method and systems may be modified to have some components and steps removed, or may have additional components and steps added, all of which are deemed to be within the spirit of the present disclosure. Even though the present disclosure has been described in detail with reference to specific embodiments, it will be appreciated that the various modifications and changes can be made to these embodiments without departing from the scope of the present disclosure as set forth in the claims. The specification and the drawings are to be regarded as an illustrative thought instead of merely restrictive thought.
Number | Name | Date | Kind |
---|---|---|---|
2359524 | Lane | Oct 1944 | A |
3823760 | Bloomfield et al. | Jul 1974 | A |
4633930 | Behrens | Jan 1987 | A |
4938274 | Iwamoto et al. | Jul 1990 | A |
5163500 | Seaton | Nov 1992 | A |
5355934 | Uozumi | Oct 1994 | A |
6247521 | Kawai et al. | Jun 2001 | B1 |
6932146 | Nichol et al. | Aug 2005 | B2 |
7896059 | Hetke | Mar 2011 | B2 |
20010002617 | Schofield et al. | Jun 2001 | A1 |
20030056929 | Staley, Jr. | Mar 2003 | A1 |
20050126740 | Wust | Jun 2005 | A1 |
20080264597 | Harada et al. | Oct 2008 | A1 |
20080308249 | Hetke | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
61209761 | Sep 1986 | JP |
01104457 | Apr 1989 | JP |
02274366 | Nov 1990 | JP |
2009314318 | Dec 1997 | JP |
2011192544 | Sep 2011 | JP |
H-11192544 | Sep 2011 | JP |
2018065168 | Apr 2018 | JP |
WO-2007079482 | Jul 2007 | WO |
WO-2017085765 | May 2017 | WO |
Entry |
---|
International Search Report of PCT/US2019/030839. |
Number | Date | Country | |
---|---|---|---|
20190344337 A1 | Nov 2019 | US |