The present invention relates to a casting tool for the manufacture of a cast part with a cantilever, and a method for the manufacture of such a cast part. Further, the present invention relates to the use of such a casting tool. Furthermore, the present invention relates to a cast part with a self-supporting cantilever.
There are many areas of technology in which cast parts with self-supporting cantilevers are manufactured in casting tools and used in numerous applications, e.g. in electrical engineering as connector housings in which the cantilevers are used for latching, for example, and can be configured as latching hooks. The latching hooks are used, for example, to latchingly secure contact elements located in contact chambers of the connector housing. For this purpose, the latching hooks each run along the contact chamber and provide a suitable support surface for the contact element located in the contact chamber.
However, shaping the cast part, and in particular the cantilever, which can be achieved using conventional casting tools, is subject to limitations. On the one hand, the material behavior of such cast parts during the cooling-down process often causes undesired warping of the cantilever, as a result of which its geometry or final position after demolding the cast part fails to match the original condition from the casting tool. On the other hand, room that is taken up during the casting process by the casting tool itself is obviously not available to the cantilever.
For the connector housings with latching hooks already provided for as an example, this may in some cases mean that the latching hooks warp away from the respective contact chambers as a result of cooling-down, thus diminishing the available support surface. On the other hand, the latching hooks cannot be cast randomly protruding into the contact chamber in order to increase the support surface, since the casting tool occupies most of the contact chamber itself during the casting process for the purpose of shaping the contact chamber.
A casting tool has a tool part that, in a casting position, delimits a hollow of the casting tool and shapes a negative form of a self-supporting cantilever of a cast part. The tool part is transferable from the casting position along a separation direction into a separation position to demold the cast part. The hollow has an undercut with respect to the separation direction that is shaped by the tool part in the casting position.
The invention will now be described by way of example with reference to the accompanying Figures, of which:
In the following, the invention is explained in more detail with reference to the drawings by way of a plurality of exemplary embodiments, the various features of which can be combined with one another as desired. In the drawings, for similar, same and functionally identical elements, where appropriate, there are provided identical reference signs.
First of all, the schematic structure of a casting tool 1 according to the invention and of a cast part 2 according to the invention will be explained with reference to
The casting tool 1 shown in
In the exemplary casting tool 1 shown, a negative form 12 of the cast part 2 is present as a cavity 14. Further, a portion 16 of this cavity 14 is configured as a hollow 18 that shapes the negative form 12 of the cantilever 8. The casting tool 1 has a tool part 20 which, in a casting position 22, delimits the hollow 18 at least sectionally, the hollow 18 having an undercut 24 shaped by the tool part 20. The function of this undercut 24 is explained in more detail below. Within the meaning of the present invention, the negative form 12 is a negative contour or a negative of the respective outer form shaped in the casting tool 1.
For demolding the cast part 2, the tool part 20 is configured to be transferred from the casting position 22, shown in
During the casting process, the tool part 20 is in the casting position 22, so that by introducing material melt into the casting tool 1, the cantilever 8 can be shaped in the hollow 18, while the remainder of the cast part 2 is shaped in the remainder of the cavity 14. Here, in particular, the undercut 24 of the hollow 18 creates a corresponding undercut 24 of the cantilever 8. The tool part 20 and the cantilever 8 rest against each other for the duration of the solidification process (see
During demolding, the tool part 20 and the cast part 2 are then moved relative to each other (see
Since it has an undercut 24 with respect to the separation direction 28, the cantilever 8 is forced to “avoid” the tool part 20 during the relative movement 30. In other words, the cantilever 20 is at least partially displaced or deflected (see
In particular, if this displacement or deflection takes place when the cast part 2 is not yet fully solidified or hardened, plastic deformation of the cantilever 8 can be achieved at least in part (see
Alternatively or additionally, the plastic deformation of the cantilever 8 can be used specifically to compensate for the aforementioned warping of the cantilever 8 due to the cooling-down, provided that the direction 32 and, in an embodiment, also the extent of the warping due to the cooling-down can be predicted in advance. In this respect, the casting tool 1 is configured in such a way that the cantilever 8 is already overbent by the undercut 24 in the opposite direction to 32 during demolding and even before the warping due to the cooling-down sets in. In particular, the cantilever 8 can be overbent by the predicted amount beyond an actual desired final position. As soon as the warping due to the cooling-down then occurs, it returns the cantilever 8 to the actually desired final position. In other words, the influence of warping due to the cooling-down on the cantilever 8 can be selectively compensated or at least minimized by sequentially superimposing plastic deformation and warping due to the cooling-down.
The undercut 24 may be shaped by a portion 34 of the tool part 20 that is complementary in shape to the undercut 24. In the embodiment shown in
In order for the already mentioned relative movement 30 along the separation direction 28 to be converted into a movement transverse to the separation direction 28, the undercut 24 may extend transverse to the separation direction 28. In the exemplary embodiment shown in
To prevent the cantilever 8 from possibly getting caught on the tool part 20, the tool part 20 has a withdrawal bevel 40 at the undercut 24. In
As shown in
The further tool part 20' does not form an undercut of the cavity 18 with respect to the separation direction 28 and is removed first in the course of demolding. Thus, space 48 can be created in advance for deflecting the cantilever 8 (see
The tool parts 20, 20' shown in
One casting mold half 50' is configured as the injection side 54 and the other casting mold half 50 as the ejector side 56. In particular, the injection side 54 may be connected to a plasticating unit via a nozzle 58. The ejector side 56 may in turn be arranged on an ejector unit for the purpose of demolding. In particular, an ejector device 60 of the ejector unit, such as an ejecting rod 62, may partially penetrate the ejector side 56. This is indicated by dotted lines in
In the embodiment of
As shown in
Naturally, one tool part can also be configured as a casting mold half and the other tool part as a slider. In addition, the casting tool may include, for example, a core or other mold components.
In the demolded, force-free state 70 (see
The direction of the deflection and thus the direction of the postforming can be specifically influenced by arranging the undercut 24 opposite the side 74 of the cantilever 8 to which the cantilever 8 is to be deflected. For this purpose, the projection 68 of the cantilever 8 can be turned away from the side 74.
In
The cast part 2 of
The cantilever 8 is part of the connector housing 76. In particular, the cantilever 8 is configured as a latching hook 79 or latching tab 80 that extends from an inner wall 82 of the connector housing 76, extends into the contact chamber 78, and extends at least partially along the contact chamber 78. Within the contact chamber 78, the latching tab 80 provides a support surface 84 for a contact element received within the contact chamber 78. Due to the plastic deformation, the latching tab 80 can be permanently bent into the contact chamber 78 to overlap more with the contact chamber 78, thereby increasing the support surface area 84 for the contact element.
The casting tool 1 shown in
The cast part 2 according to the invention can, of course, have a plurality of self-supporting cantilevers 8. In this case, for example, the tool part 20 for each cantilever 8 delimits a hollow 18 that shapes a negative form of the respective cantilever 8 in the tool part 20. To ensure that each hollow 18 has an undercut 24, for example, a plurality of undercut-like projections 38 are provided on the tool part 20. This is indicated by dashed lines in the detailed view from
The cast part 2 according to the invention shown in
Nevertheless, in order to keep the gaps 92 as small as possible, the cantilevers 8 are each configured as flap-like elements 94, which are postformed by the undercuts 24 when the component 86 is demolded. In particular, as the tool part 20 is withdrawn, the elements 94 are folded over by the undercut-like projections 38 to at least partially close the internal gaps 92. This is indicated by dashed arrows 100 in
The method according to the invention for postforming the cast part 2 can be carried out integrated in a casting process for the manufacture of the cast part 2 as follows. In the casting process, a casting tool 1 according to one of the aforementioned embodiments is provided in the casting position 22. The material melt already mentioned above, for example a plastic melt, is introduced, poured or injected into the cavity 14 of the casting tool 1. The material melt is then at least partially solidified so that it solidifies at least to some extent to form the cast part 2.
Finally, the cast part 2 is demolded from the casting tool 1. For this purpose, for example, the slider 64' without undercut 24 is the first to be withdrawn from the casting tool 1 along the separation direction 28. This is indicated by arrow 102 in
Next, the slider 64 with the undercut 24 is withdrawn from the casting tool 1 in the opposite direction. This is indicated by arrow 104 in
In other words, postforming the cantilever 8 occurs during demolding the cast part 2 due to the purposefully provided undercut 24. In particular, the cast part 2 may still be in the casting tool 1 or may be about to be completely removed from the tool part 20 with the undercut 24.
Number | Date | Country | Kind |
---|---|---|---|
102021122734.8 | Sep 2021 | DE | national |
This application claims the benefit of the filing date under 35 U.S.C. § 119(a)-(d) of German Patent Application No. 102021122734.8, filed on Sep. 2, 2021.