The present invention relates to cat litter products.
Swelling clay made of sodium bentonite has been used to promote clumping in cat litter products but has the disadvantage of being relatively expensive.
According to a first broad aspect, the present invention provides composition comprising: a blend comprising sodium bentonite and calcium bentonite, wherein sodium bentonite comprises at least 47% of the total external surface area of the blend, wherein the calcium bentonite comprises 5% to 53% of the total external surface area of the blend, wherein 90% of the particles of the sodium bentonite have a particle size of 345 to 1695 μm, and wherein 90% of the particles of the calcium bentonite have a particle size of 626 to 2000 μm.
According to a second broad aspect, the present invention provides a composition comprising: a blend of sodium bentonite and calcium bentonite, wherein the calcium bentonite is coated with a coating comprising polytetrafluoroethylene (PTFE).
According to a third broad aspect, the present invention provides a composition comprising a uniform blend of sodium bentonite and calcium bentonite.
According to fourth broad aspect, the present invention provides a composition comprising: a mixture comprising sodium bentonite and one or more granular filler materials, wherein the one or more granular filler materials comprise one or more cellulose-containing materials, wherein sodium bentonite comprises at least 47% of the total external surface area of the mixture, wherein the one or more granular filler materials comprise 5% to 53% of the total external surface area of the mixture, and wherein the mixture is removably clumpable.
According to fifth broad aspect, the present invention provides a composition comprising: a mixture comprising sodium bentonite and one or more granular filler materials, wherein the one or more granular filler materials comprise one or more non-calcium bentonite clays, wherein sodium bentonite comprises at least 47% of the total external surface area of the mixture, wherein the one or more granular filler materials comprise 5% to 53% of the total external surface area of the mixture, and wherein the mixture is removably clumpable.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain the features of the invention.
Where the definition of terms departs from the commonly used meaning of the term, applicant intends to utilize the definitions provided below, unless specifically indicated.
For purposes of the present invention, it should be noted that the singular forms, “a,” “an” and “the” include reference to the plural unless the context as herein presented clearly indicates otherwise.
For purposes of the present invention, directional terms such as “top,” “bottom,” “upper,” “lower,” “above,” “below,” “left,” “right,” “horizontal,” “vertical,” “up,” “down,” etc., are merely used for convenience in describing the various embodiments of the present invention. The embodiments of the present invention may be oriented in various ways. For example, the diagrams, apparatuses, etc., shown in the drawing figures may be flipped over, rotated by 90° in any direction, reversed, etc.
For purposes of the present invention, a value or property is “based” on a particular value, property, the satisfaction of a condition or other factor, if that value is derived by performing a mathematical calculation or logical decision using that value, property or other factor.
For purposes of the present invention, the term “blend” refers to a uniform or substantially uniform mixture of two or more solid materials. One or more materials in a blend may be coated.
For purposes of the present invention, the term “cellulose-containing material” refers to a material in which 10% or more of the material is comprised of cellulose. Examples of cellulose-containing materials include paper, wood, seeds, fibers, etc. Examples of suitable seeds and grains for use as filler material include grass seeds and grains such as barley, rice, wheat, corn, maize, etc., pieces and parts thereof, reconstituted parts thereof and mixtures thereof.
For purposes of the present invention, the term “clumping additive” refers to a clumping agent other than sodium bentonite.
For purposes of the present invention, the term “clumping agent” refers to a material that increases the clump strength of a litter material. Examples of clumping agents include sodium bentonite, xanthan gum, guar gum, etc.
For purposes of the present invention, the term “clump strength” refers to the numerical value of average clump strength for a clump of litter material formed by exposing the litter material to a wetting agent approximating urine. The clump strength of a litter material may be determined using one of the clump strength test procedures described below. These procedures include the Standard Drop Method Test and Extreme Drop Method Test described below, as well as other procedures for determining clump strength.
For purposes of the present invention, the term “filler” and the term “filler material” refer to a material in a litter product other than a clumping agent, i.e., other than sodium bentonite or a clumping additive. In one embodiment of the present invention, a filler material may be calcium bentonite. In one embodiment of the present invention, the filler material may be a cellulose-containing material. In one embodiment of the present invention filler may constitute from 5% to 53% of the total external surface of a litter product. In one embodiment of the present invention filler may constitute from 10% to 53% of the total external surface of a litter product. In one embodiment of the present invention filler may constitute from 15% to 53% of the total external surface of a litter product. In one embodiment of the present invention filler may constitute from 50% to 53% of the total external surface of a litter product.
For purposes of the present invention, the term “fragrance coating” refers to a coating comprising a fragrance. A fragrance coating may include other components.
For purposes of the present invention, the term “granular” refers to a solid material having a particle size below 2 mesh. A solid material used in a mixture of the present invention may be ground to form a granular material.
For purposes of the present invention, the term “granular filler” and the term “granular filler material” refer to a filler that is granular.
For purposes of the present invention, the term “heterogeneous mixture” refers to a composition in which the components of the mixture may be readily separated from each other.
For purposes of the present invention, the term “homogeneous mixture” refers to a composition that is uniform.
For purposes of the present invention, the term “mixture” refers to a composition comprising two or more different components that are mixed but not combined chemically. An individual component of a heterogenous mixture may comprise two substances that are combined chemically, such as calcium bentonite particles coated with polytetrafluoroethylene (PTFE).
For purposes of the present invention, the term “non-calcium bentonite clay” refers to a clay other than calcium bentonite. Because a filler material cannot be sodium bentonite, a “non-calcium bentonite clay” cannot be sodium bentonite.
For purposes of the present invention, the term “removably clumpable” refers to a litter that, when exposed to a wetting agent forms one or more clumps having a firmness of sufficient structural integrity and hardness to withstand mechanical separation from unwetted litter for disposal. A litter material having a clump strength of ≤1.33 using the Standard Drop Method Test (described below) 30 seconds, 1 hour, 12 hours, 24 hours, 36 hours or 72 hours after the clump is formed by exposure to a liquid is removably clumpable. A litter that is removably clumpable, i.e., has a clump strength of ≤1.33 using the Standard Drop Method Test, has a clump strength that is substantially the same as a litter comprised of only the sodium bentonite of the litter.
For purposes of the present invention, the term “substantially uniform” refers to a mixture that has substantially the same density throughout the mixture.
For purposes of the present invention, the term “Taft clay” refers to Antelope shale. Taft clay is porcelanite that is composed of opalaceous material.
For purposes of the present invention, the term “uniform” refers to a mixture of two or more solid materials wherein a measured density of the composition for ten or more samples of the mixture has a standard deviation of no greater than 2.0 lbs/ft3 throughout the mixture. One or more of the solid materials may be coated.
For purposes of the present invention, the term “uniform blend” refers to a blend that is uniform.
For purposes of the present invention, the term “uniform mixture” refers to a mixture that is uniform.
For purposes of the present invention, the term “wetting agent” refers to a liquid that wets a litter. Examples of wetting agents include liquids such as water, aqueous solutions, urine, synthetic urine, etc.
In one embodiment, the present invention provides a litter comprising sodium bentonite and calcium bentonite in which only the calcium bentonite particles are coated in polytetrafluoroethylene (PTFE) as a dedusting agent. Because clumpability for litters comprising mixtures of sodium bentonite with a filler, such as calcium bentonite, is dependent on the total external surface area of the sodium bentonite particles in the litter, by applying a PTFE coating to only the calcium bentonite particles, in one embodiment the present invention provides a litter that is low in dust while not substantially reducing the clumpabilility of the litter.
In one embodiment, the present invention provides a litter product blend of sodium bentonite and calcium bentonite in which 90% of the sodium bentonite particles have a particle size of between 345 and 1695 μm and 90% of the calcium bentonite particles have a particle size of between 626 and 1695 μm. In one embodiment of the present invention, the sodium bentonite particles have an average size of between 450 and 1000 μm and the calcium bentonite particles have an average range between 650 and 2000 μm.
In one embodiment, the present invention provides a litter product comprising a mixture of sodium bentonite and one or more fillers that has emissions of ammonia when exposed to urine that are less than for sodium bentonite alone.
In one embodiment, the present invention provides a litter product comprising sodium bentonite and one or more filler materials, in which the litter product has similar clumpability properties to sodium bentonite of the litter while being less dense than the sodium bentonite alone. In one embodiment, the present invention provides a clumpable litter product employing a cellulose-containing filler material to minimize the amount of sodium bentonite used while still providing clumpability similar to sodium bentonite of the litter.
Apparatus 302 also includes a calcium bentonite tank 332 which is used to deliver calcium bentonite particles to a weigh conveyor belt 334 where the calcium bentonite particles are weighed. Weigh conveyor belt 334 conveys the calcium bentonite particles to a conveyor belt 336 where a PTFE slurry from a tank 340 is sprayed onto the calcium bentonite particles, as indicated by arrow 342, to form coated calcium bentonite particles by using a hydraulic spray pump to pump the PTFE slurry through a set of flat fan sprayer nozzles. Conveyor belt 336 conveys the calcium bentonite particles to a base portion 322 of elevator 324.
The coated sodium bentonite particles and the coated calcium bentonite particles are mixed together at base portion 322 of elevator 324 and conveyed up to a top portion 328 of elevator 324 before falling through a dedust box 348 and a mass flow surge bin 350 and onto a weigh conveyor belt 352. The total amount of mixture is weighed on weigh conveyor belt 352. Weigh conveyer belt 352 conveys the mixture to a conveyor belt 354 where one or more additives may be added to the mixture from an additive feeder 356 as indicated by arrow 358. Conveyor belt 354 conveys the mixture to a conveyor belt 360 where the mixture is blended using stationary mixing plows 362. Conveyor belt 360 eventually conveys the mixture to a static mixer 364 to further blend the mixture. After the mixture is well blended to form a litter product, the litter product is dispensed from static mixer 364 into a mass flow packaging bin 366, as indicated by arrow 368, and is sent to a packaging apparatus as indicated by arrow 372. Dust collection is performed by various dust collection devices at various portions of apparatus 302 as shown by arrows 374.
The dedust box function dedusts the clay. Clay falls down a “flight of stairs” with air passing through the falling clay as it falls from each step. The air with entrained dust goes to a dust collector.
One purpose of the mass flow surge bin is to function as a typical surge bin. The mass flow surge bin also functions is to avoid segregation. A normal surge bin is a kind of “first in first out” and has funnel flow. This action may cause segregation. A mass flow bin does a much better job of avoiding segregation. When one mixes materials of either different particles sizes or densities, agitation and movement may cause segregation. A mass flow surge bin is a special design where material moves as a column down the silo so one gets a “first in, first out behavior. This greatly lessens agitation and decreases segregation.
In apparatus 302 of
The static mixer of apparatus 302 of
Apparatus 302 of
In making a cat litter blend, any time a blend is agitated at a material transfer point where there is a free flow or free fall of material, segregation may occur. Therefore, in one embodiment of the present invention, segregation of the materials in a blend may be minimized by minimizing the number of material transfer points and by minimizing the length that a blend falls at a material transfer point.
The additive feeder of the apparatus of
In one embodiment of the present invention, the sodium bentonite used in a litter mixture may have a bulk density of 60 to 75 lbs/ft3.
In one embodiment of the present invention, the calcium bentonite used in a litter mixture may have a bulk density of 35 to 45 lbs/ft3.
In one embodiment of the present invention, a sodium bentonite/calcium bentonite blend used in a litter may have a bulk density of 50 to 58 lbs/ft3. In one embodiment of the present invention, a sodium bentonite/calcium bentonite blend may be sufficiently uniform that differences in the bulk density throughout the blend are 2.0 lbs/ft3, or 0.97 lbs/ft3, or 0.96 lbs/ft3, or even 0.74 lbs/ft3, for 10 samples of the blend.
In addition to calcium bentonite, other materials that may be used as filler materials in litter compositions of the present invention include Taft clay, smectites, attapulgite (palygorskite), fuller's earth, diatomaceous earth, kaolinite, sepiolite, zeolite, vermiculite, pumice, perlite, gypsum, beads (polyethylene, polystyrene, polypropylene, glass, silica gel), cloth, cotton, straw, cellulose, bark, poultry litter, reconstituted materials and combinations of materials such as mineral cellulose and light weight fertilizer, recycled wastes such as Milorganite, organic material such as barley grains, corn kernels, wheat grains, coffee beans, rice grains, nut shells, paper, wood fiber, wood pulp, wood shavings, wood chips, wood flour, sawdust, etc., pieces and parts thereof, reconstituted parts thereof and mixtures thereof. In one embodiment, filler materials of the present invention may have a bulk density of less than of the sodium bentonite in a litter mixture.
In one embodiment, a filler of the present invention may be a granular filler.
Litter compositions of the present invention may include clumping additives. Examples of clumping additives that may be used in mixtures of the present invention include polysaccharides, guar gum, Arabic gum, karaya gum, tara gum, ghatti gum, galactomannan gum, locust bean gum, cellulose ester or ether, carboxymethyl cellulose, hydroxypropylmethyl cellulose, hydroxybutylmethyl cellulose, methyl cellulose, polyelectrolyte, xanthan gum, alginates, carrageenan gums, pectins, starches, psyllium husk powder, corn flour, pre-gelatinized corn flour, polyvinyl alcohol, polymers, copolymers, modified starches, etc.
Litter compositions of the present invention may include dedusting agents. Examples of dedusting agents that may be included in a litter composition of the present invention include polytetrafluoroethylene (PTFE), oils, water, glycerols, glycols, polyvinyl alcohol, polyvinyl acetate, polymers, silicones, calcium chloride, foams, etc.
In one embodiment of the present invention in which calcium bentonite particles are used as a filler material, a 1.2% slurry of PTFE in water may be sprayed onto the calcium bentonite particles at the application rate of 40 lbs/ton of calcium bentonite (0.48 lbs. active PTFE per ton of calcium bentonite) using an apparatus such as shown in
A litter of the present invention may include various other additives such as odor control additives, odor masking agents, emulsifiers, fixatives, indicators, pesticides, insecticides, herbicides, attractants, repellants, sanitizers, emollients, humectants, dessicants, dyes, pigments, etc.
Examples of odor control additives that may be included in a litter composition of the present invention include biocides, urease inhibitors, iodine, chlorophyllin sodium copper salts, probiotics, enzymes, baking soda, carbon, zeolites, salts, aldehydes (benzaldehyde, heptaldehyde, undecalcatone, benzyl cinnamate, cinnamaldehyde, citral, vanillin, coumarin, undecanal, etc.).
Examples of odor masking agents that may be included in a litter composition of the present invention include fragrances such as citrus, floral (lavender), green, fruity, herbaceous, musk, oriental, woody, etc.
Examples of emulsifiers that may be included in a litter composition of the present invention include: polysorbate 20, polysorbate 80, block copolymers such as Lutrol® and non-ionic solubilizers such as Cremophor® RH.
Examples of fixatives that may be included in a litter composition of the present invention include polypropylene glycol, polypropylene glycol, polyethylene glycols, glycerin, sugar alcohols, etc.
Examples of indictors that may be included in a litter composition of the present invention include pH indicators, ammonia indicators, etc. that change color to indicate a change in pH, the presence of ammonia, etc.
Examples of attractants that may be included in a litter composition of the present invention include pheromones, catnip, etc.
Examples of repellants that may be included in a litter composition of the present invention include flea repellants, tick repellants, mite repellants, etc.
Examples of sanitizers that may be included in a litter composition of the present invention include alcohols, chlorhexidine gluconate, phenols, iodine, quaternary salts, ammonium compounds, hydrogen peroxide, urea hydrogen peroxide, sodium perchlorate, etc.
Examples of dessicants that may be included in a litter composition of the present invention include calcium sulfate, calcium chloride, silica gel, etc.
Having described the many embodiments of the present invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims. Furthermore, it should be appreciated that all examples in the present disclosure, while illustrating many embodiments of the invention, are provided as non-limiting examples and are, therefore, not to be taken as limiting the various aspects so illustrated.
Materials and Methods
Clump Strength Test—Standard Drop Method Test
Dropping device 402 includes a vertical back 412 mounted on two legs 414 and 416 that stand on a table surface 418. A swinging platform 422 is mounted on a vertical back 412 by means of a spring-loaded hinge 424 that is attached to swinging platform 422 and a base 426 by mounting plates 428 and 430. Base 426 is mounted on vertical back 412. An aluminum pan 432 is located on table surface 418 below swinging platform 422.
Clumps are evaluated using the scale shown in
Clump Strength Test—Extreme Drop Method Test
Dropping device 702 including a vertical back 712 mounted on two legs 714 and 716 that stand on a table surface 718. A swinging platform 722 is mounted on vertical back 712 by means of a spring-loaded hinge 724 that is attached swinging platform 722 and a base 726 by mounting plates 728 and 730. Base 726 is mounted on vertical back 712. An aluminum pan 732 is located on table surface 718 below swinging platform 722.
Clumps are evaluated using the scale shown in
Bulk Density—Loose-Fill (O'Haus) Method
The Bulk Density—Loose-Fill (O'Haus) Method is a standard test used to determine the density (in lbs/ft3, or kg/m3) of a granulated or powdered substance in its loose state. In this method a tared dry pint cup is filled to overflowing with a sample of a granulated or powdered substance or mixture. The sample is leveled. The weight of the sample is measured and the bulk density calculated in pounds per cubic foot or kilograms per cubic meter. Additional information about this testing method is provided in ASTM Standard Method E 727, the entire contents and disclosures of which are incorporated herein by reference.
Apparatus and Reagents
Procedure (Operator time is approximately 10 minutes):
Calculations:
Magic Cat Box testing provides an evaluation of a cat litter's ammonia control efficacy over time under stressful conditions. The test can be used to compare competitive products and to evaluate new fragrance/biocide systems. This test involves mixing feces-inoculated synthetic cat urine with test material, placing in capped, ventilated jars and testing periodically for ammonia formation using ammonia detection tubes.
Apparatus and Reagents:
Procedure:
A litter is produced using the manufacturing process shown in
The fragrance slurry (coating) is applied only to the sodium bentonite. The fragrance slurry has a composition shown in Table 2 below:
The polytetrafluoroethylene (PTFE) slurry (coating) is applied only to the calcium bentonite. The PTFE slurry has a composition shown in Table 3 below:
Based on information in Table 3, the slurry is 1.2% PTFE (w/w). Based on the information in Tables 1 and 3, PTFE makes up 0.0084% (w/w) of the litter composition.
A fragrance-free litter is produced using the manufacturing process shown in
In Examples 3-49 below, the following terms have the following meanings:
In Examples 3-49 below, tests are conducted on blends of a swelling clay and a non-swelling clay, a swelling clay alone, blends of a swelling clay with paper particles, a blend of a swelling clay with wood fiber particles and blends of a swelling clay with barley grains. The swelling clay used is sodium bentonite from Wyoming from the company Wyo-Ben. The non-swelling clay used is Oil-Dri's Blue Mountain RVM clay (calcium bentonite). Each experimental blend of sodium bentonite and calcium bentonite clay is prepared by weighing out each component into a clean, plastic cat litter bin and blending by hand until uniform. Immediately after blending, about 1,000 grams of each blend is transferred to an appropriately sized plastic container. Next, 20 ml of room temperature tap water is drawn using a transfer pipette and poured over the blend to form a clump. A total of three clumps are formed in each container. The clumps are allowed to sit for 30 seconds and one hour prior to testing. In some cases the clumps are prepared 12, 24 and 36 hours prior to testing. The clump strength is tested using the Standard Drop Method Test. The aluminum pan is lined with a paper towel. The clumps are each tested by placing a clump on the spring loaded hinged platform of the dropping device and releasing the platform to allow the clump to fall into the aluminum pan lined with the paper towel. Each clump was dropped from the height of 12 inches. The clumps are later evaluated visually and rated from 1 to 3 based on the scale shown in
After completion of the particle size analysis, an external surface area of each particle cut is calculated based on an average mesh size of each particle cut, according to an equation: 4πr2. The external surface area calculation is based on a simplifying assumption that each particle is a perfect sphere. The particle count per unit weight of material is calculated according to the ASTM Standard Test Method E 1520-99. The multipliers for 4/6, 6/8, 8/10, 6/10 and <100 mesh particles are extrapolated from a power trendline with the R2=0.9923 for the plot of the U.S. mesh size versus ASTM multiplier. The particle count is also based on a simplified assumption that all particles are spherical; see
Next, a total external surface area of each particle cut was calculated by multiplication of the external surface area value by the number of particles in each cut. Following the surface area calculation, a cumulative external surface of each raw material is calculated per pound of material by summation of the external surface area values of each particle size cut. Finally, a ratio of a total external surface area of sodium bentonite and Blue Mountain RVM (calcium bentonite) clay per pound of blended material is calculated. After completion of all experiments, the percentage of external surface area as sodium bentonite per pound of product is plotted against the clump strength results for 30 second and 1 hour clumps, as shown in
A similar plot was compiled for the percentage of total particle count as sodium bentonite per pound of product versus the clump strength results for 30 second and 1 hour clumps, as shown in
Blend #1: 65% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 60.15 lb/ft3, external surface area 27.39 ft2/lb), 35% calcium bentonite (BL-RVM, bulk density 41.5 lb/ft3, external surface area 23.47 ft2/lb). Information about the sodium bentonite of Blend #1 is provided in Table 1202 of
Information about Blend #1 is provided in Table 5 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 6 below.
Blend #2: 65% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.4 lb/ft3, external surface area 17.48 ft2/lb), 35% calcium bentonite (BL-RVM, bulk density 37.1 lb/ft3, external surface area 38.44 ft2/lb). Information about the sodium bentonite of Blend #2 is provided in Table 1402 of
Information about Blend #2 is provided in Table 7 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 8 below.
Blend #3: 65% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.4 lb/ft3, external surface area 17.48 ft2/lb), 35% calcium bentonite (BL-RVM, bulk density 41.1 lb/ft3, external surface area 15.63 ft2/lb). Information about the sodium bentonite of Blend #3 is provided in Table 1402 of
Information about Blend #3 is provided in Table 9 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 10 below.
Blend #4: 50% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 60.15 lb/ft3, external surface area 27.39 ft2/lb), 50% calcium bentonite (BL-RVM, bulk density 41.5 lb/ft3, external surface area 23.47 ft2/lb). Information about the sodium bentonite of Blend #4 is provided in Table 1202 of
Information about Blend #4 is provided in Table 11 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 12 below.
Blend #5: 65% sodium bentonite (BPO sodium bentonite, bulk density 64.33 lb/ft3, external surface area 15.46 ft2/lb), 35% calcium bentonite (BL-RVM, bulk density 37.7 lb/ft3, external surface area 35.07 ft2/lb). Information about the sodium bentonite of Blend #5 is provided in Table 1702 of
Information about Blend #5 is provided in Table 13 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 14 below.
Blend #6: 70% sodium bentonite (BPM sodium bentonite, bulk density 64.33 lb/ft3, external surface area 15.46 ft2/lb), 30% calcium bentonite (BL-RVM, bulk density 37.7 lb/ft3, external surface area 35.07 ft2/lb). Information about the sodium bentonite of Blend #6 is provided in Table 1702 of
Information about Blend #6 is provided in Table 15 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 16 below.
Blend #7: 50% sodium bentonite (Wyo-Ben Exp. sodium bentonite, bulk density 62.49 lb/ft3, external surface area 18.75 ft2/lb), 50% calcium bentonite (BL-RVM, bulk density 37.7 lb/ft3, external surface area 35.07 ft2/lb). Information about the sodium bentonite of Blend #7 is provided in Table 1902 of
Information about Blend #7 is provided in Table 17 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 18 below.
Blend #8: 60% sodium bentonite (Wyo-Ben Exp. sodium bentonite, bulk density 62.49 lb/ft3, external surface area 18.75 ft2/lb), 40% calcium bentonite (BL-RVM, bulk density 37.7 lb/ft3, external surface area 35.07 ft2/lb). Information about the sodium bentonite of Blend #8 is provided in Table 1902 of
Information about Blend #8 is provided in Table 19 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 20 below.
Blend #9: 70% sodium bentonite (Wyo-Ben Exp. sodium bentonite, bulk density 62.49 lb/ft3, external surface area 18.75 ft2/lb), 30% calcium bentonite (BL-RVM, bulk density 37.7 lb/ft3, external surface area 35.07 ft2/lb). Information about the sodium bentonite of Blend #9 is provided in Table 1902 of
Information about Blend #9 is provided in Table 21 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 22 below.
Blend #10: 80% sodium bentonite (Wyo-Ben Exp. sodium bentonite, bulk density 62.49 lb/ft3, external surface area 18.75 ft2/lb), 20% calcium bentonite (BL-RVM, bulk density 37.7 lb/ft3, external surface area 35.07 ft2/lb). Information about the sodium bentonite of Blend #10 is provided in Table 1902 of
Information about Blend #10 is provided in Table 23 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 24 below.
Blend #11: 65% sodium bentonite (Wyo-Ben Exp. sodium bentonite, bulk density 62.49 lb/ft3, external surface area 18.75 ft2/lb), 35% calcium bentonite (BL-RVM, bulk density 37.7 lb/ft3, external surface area 35.07 ft2/lb). Information about the sodium bentonite of Blend #11 is provided in Table 1902 of
Information about Blend #11 is provided in Table 25 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 26 below.
Blend #12: 50% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.2 lb/ft3, external surface area 17.13 ft2/lb), 50% calcium bentonite (BL-RVM, bulk density 37.7 lb/ft3, external surface area 35.07 ft2/lb). Information about the sodium bentonite of Blend #12 is provided in Table 2002 of
Information about Blend #12 is provided in Table 27 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 28 below.
Blend #13: 60% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.2 lb/ft3, external surface area 17.13 ft2/lb), 40% calcium bentonite (BL-RVM, bulk density 37.7 lb/ft3, external surface area 35.07 ft2/lb). Information about the sodium bentonite of Blend #13 is provided in Table 2002 of
Information about Blend #13 is provided in Table 29 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 30 below.
Blend #14: 70% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.2 lb/ft3, external surface area 17.13 ft2/lb), 30% calcium bentonite (BL-RVM, bulk density 37.7 lb/ft3, external surface area 35.07 ft2/lb). Information about the sodium bentonite of Blend #14 is provided in Table 2002 of
Information about Blend #14 is provided in Table 31 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 32 below.
Blend #15: 60% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.4 lb/ft3, external surface area 17.48 ft2/lb), 40% calcium bentonite (BL-RVM, bulk density 41.9 lb/ft3, external surface area 31.60 ft2/lb). Information about the sodium bentonite of Blend #15 is provided in Table 1402 of
Information about Blend #15 is provided in Table 33 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 34 below.
Blend #16: 65% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.4 lb/ft3, external surface area 17.48 ft2/lb), 35% calcium bentonite (BL-RVM, bulk density 41.9 lb/ft3, external surface area 31.60 ft2/lb). Information about the sodium bentonite of Blend #16 is provided in Table 1402 of
Information about Blend #16 is provided in Table 35 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to water. No tests are conducted 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 36 below.
Blend #17: 50% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.4 lb/ft3, external surface area 17.48 ft2/lb), 50% calcium bentonite (BL-RVM, bulk density 37.1 lb/ft3, external surface area 24.04 ft2/lb). Information about the sodium bentonite of Blend #17 is provided in Table 1402 of
Information about Blend #17 is provided in Table 37 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 38 below.
Blend #18: 55% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.4 lb/ft3, external surface area 17.48 ft2/lb), 45% calcium bentonite (BL-RVM, bulk density 37.1 lb/ft3, external surface area 24.04 ft2/lb). Information about the sodium bentonite of Blend #18 is provided in Table 1402 of
Information about Blend #18 is provided in Table 39 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 40 below.
Blend #19: 60% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.4 lb/ft3, external surface area 17.48 ft2/lb), 40% calcium bentonite (BL-RVM, bulk density 37.1 lb/ft3, external surface area 24.04 ft2/lb). Information about the sodium bentonite of Blend #19 is provided in Table 1402 of
Information about Blend #19 is provided in Table 41 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 12 hours, 24 hours and 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 42 below.
Blend #20: 40% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.4 lb/ft3, external surface area 17.66 ft2/lb), 60% calcium bentonite (BL-RVM, bulk density 46.22 lb/ft3, external surface area 14.02 ft2/lb). Information about the sodium bentonite of Blend #20 is provided in Table 1402 of
Information about Blend #20 is provided in Table 43 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 12 hours and 24 hours after exposure of the test litter to water. No tests are conducted 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 44 below.
Blend #21: 45% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.4 lb/ft3, external surface area 17.66 ft2/lb), 55% calcium bentonite (BL-RVM, bulk density 46.22 lb/ft3, external surface area 14.02 ft2/lb). Information about the sodium bentonite of Blend #21 is provided in Table 1402 of
Information about Blend #21 is provided in Table 45 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 12 hours and 24 hours after exposure of the test litter to water. No tests are conducted 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 46 below.
Blend #22: 50% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.4 lb/ft3, external surface area 17.66 ft2/lb), 50% calcium bentonite (BL-RVM, bulk density 46.22 lb/ft3, external surface area 14.02 ft2/lb). Information about the sodium bentonite of Blend #22 is provided in Table 1402 of
Information about Blend #22 is provided in Table 47 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 12 hours and 24 hours after exposure of the test litter to water. No tests are conducted 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 48 below.
Blend #23: 55% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 64.86 lb/ft3, external surface area 16.33 ft2/lb), 45% calcium bentonite (BL-RVM, bulk density 39.75 lb/ft3, external surface area 22.80 ft2/lb). Information about the sodium bentonite of Blend #23 is provided in Table 2302 of
Information about Blend #23 is provided in Table 49 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 12 hours and 24 hours after exposure of the test litter to water. No tests are conducted 36 hours after exposure of the test litter to water. The results of these tests are shown in Table 50 below.
Blend #24: 50% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 50% paper granules (paper granule Biodac, bulk density 46.5 lb/ft3, external surface area 18.17 ft2/lb). The final density of the blend is 55.90 lb/ft3. Information about the sodium bentonite of Blend #24 is provided in Table 2502 of
Information about Blend #24 is provided in Table 51 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 52 below.
Blend #25: 55% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 45% paper granules (paper granule Biodac, bulk density 46.5 lb/ft3, external surface area 18.17 ft2/lb). The final density of the blend is 57.23 lb/ft3. Information about the sodium bentonite of Blend #25 is provided in Table 2502 of
Information about Blend #25 is provided in Table 53 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 54 below.
Blend #26: 65% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 35% paper granules (paper granule Biodac, bulk density 46.5 lb/ft3, external surface area 18.17 ft2/lb). The final density of the blend is 57.25 lb/ft3. Information about the sodium bentonite of Blend #26 is provided in Table 2502 of
Information about Blend #26 is provided in Table 55 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 56 below.
Blend #27: 70% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 30% paper granules (paper granule Biodac, bulk density 46.5 lb/ft3, external surface area 18.17 ft2/lb). The final density of the blend is 58.45 lb/ft3. Information about the sodium bentonite of Blend #27 is provided in Table 2502 of
Information about Blend #27 is provided in Table 57 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 58 below.
Blend #28: 86% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 14% wood fiber particles (bulk density 7.5 lb/ft3, external surface area 102.56 ft2/lb). The final density of the blend is 41.13 lb/ft3. Information about the sodium bentonite of Blend #28 is provided in Table 2502 of
Information about Blend #28 is provided in Table 59 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 60 below.
Blend #29: 40% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 60% barley grains (bulk density 49.7 lb/ft3, external surface area 17.95 ft2/lb). The final density of the blend is 56.91 lb/ft3. Information about the sodium bentonite of Blend #29 is provided in Table 2502 of
Information about Blend #29 is provided in Table 61 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 62 below.
Blend #30: 45% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 55% barley grains (bulk density 49.7 lb/ft3, external surface area 17.95 ft2/lb). The final density of the blend is 58.13 lb/ft3. Information about the sodium bentonite of Blend #30 is provided in Table 2502 of
Information about Blend #30 is provided in Table 63 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 64 below.
Blend #31: 50% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 50% barley grains (bulk density 49.7 lb/ft3, external surface area 17.95 ft2/lb). The final density of the blend is 58.66 lb/ft3. Information about the sodium bentonite of Blend #31 is provided in Table 2502 of
Information about Blend #31 is provided in Table 65 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 66 below.
Blend #32: 55% sodium bentonite (engineered light weight sodium bentonite, bulk density 49.66 lb/ft3, external surface area 21.00 ft2/lb), 45% calcium bentonite (BL-RVM, bulk density 41.1 lb/ft3, external surface area 22.06 ft2/lb). The final density of the blend is 45.40 lb/ft3. Information about the sodium bentonite of Blend #32 is provided in Table 2902 of
Information about Blend #32 is provided in Table 67 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 68 below.
A litter is prepared that is 100% sodium bentonite (bulk density 63.3 lb/ft3, total external surface area 17.01 ft2/lb). Information about the sodium bentonite litter is provided in Table 2502 of
Information about this litter is provided in Table 69 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to water. The results of these tests are shown in Table 70 below.
Blend #33: 45% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 65.74 lb/ft3, external surface area 17.63 ft2/lb), 55% calcium bentonite (BL-RVM, bulk density 42.1 lb/ft3, external surface area 21.40 ft2/lb). The final density of the blend is 52.03 lb/ft3. Information about the sodium bentonite of Blend #33 is provided in Table 3002 of
Information about Blend #33 is provided in Table 71 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 72 below.
Blend #34: 50% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 65.74 lb/ft3, external surface area 17.63 ft2/lb), 50% calcium bentonite (BL-RVM, bulk density 42.1 lb/ft3, external surface area 21.40 ft2/lb). The final density of the blend is 53.05 lb/ft3. Information about the sodium bentonite of Blend #34 is provided in Table 3002 of
Information about Blend #34 is provided in Table 73 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 74 below.
Blend #35: 55% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 65.74 lb/ft3, external surface area 17.63 ft2/lb), 45% calcium bentonite (BL-RVM, bulk density 42.1 lb/ft3, external surface area 21.40 ft2/lb). The final density of the blend is 54.13 lb/ft3. Information about the sodium bentonite of Blend #35 is provided in Table 3002 of
Information about Blend #35 is provided in Table 75 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 76 below.
Blend #36: 60% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 65.74 lb/ft3, external surface area 17.63 ft2/lb), 40% calcium bentonite (BL-RVM, bulk density 42.1 lb/ft3, external surface area 21.40 ft2/lb). The final density of the blend is 54.21 lb/ft3. Information about the sodium bentonite of Blend #36 is provided in Table 3002 of
Information about Blend #36 is provided in Table 77 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 78 below.
Blend #37: 45% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 65.74 lb/ft3, external surface area 17.63 ft2/lb), 55% calcium bentonite (BL-RVM, bulk density 42.1 lb/ft3, external surface area 21.40 ft2/lb). The final density of the blend is 52.30 lb/ft3. Information about the sodium bentonite of Blend #37 is provided in Table 3002 of
Information about Blend #37 is provided in Table 79 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 80 below.
Blend #38: 50% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 65.74 lb/ft3, external surface area 17.63 ft2/lb), 50% PTFE-coated calcium bentonite (BL-RVM coated with 40 lbs of 1.2% PTFE solution per ton of clay, bulk density prior to coating 42.1 lb/ft3, external surface area prior to coating 21.40 ft2/lb). The final density of the blend is 53.13 lb/ft3. Information about the sodium bentonite of Blend #38 is provided in Table 3002 of
Information about Blend #38 is provided in Table 81 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 82 below.
Blend #39: 55% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 65.74 lb/ft3, external surface area 17.63 ft2/lb), 45% PTFE-coated calcium bentonite (BL-RVM coated with 40 lbs of 1.2% PTFE solution per ton of clay, bulk density prior to coating 42.1 lb/ft3, external surface area prior to coating 21.40 ft2/lb). The final density of the blend is 54.27 lb/ft3. Information about the sodium bentonite of Blend #39 is provided in Table 3002 of
Information about Blend #39 is provided in Table 83 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 84 below.
Blend #40: 60% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 65.74 lb/ft3, external surface area 17.63 ft2/lb), 40% PTFE-coated calcium bentonite (BL-RVM coated with 40 lbs of 1.2% PTFE solution per ton of clay, bulk density prior to coating 42.1 lb/ft3, external surface area prior to coating 21.40 ft2/lb). The final density of the blend is 54.50 lb/ft3. Information about the sodium bentonite of Blend #40 is provided in Table 3002 of
Information about Blend #40 is provided in Table 85 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 86 below.
Blend #41: 65% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 35% attapulgite (GA-RVM, bulk density 32.5 lb/ft3, external surface area 27.95 ft2/lb). Information about the sodium bentonite of Blend #41 is provided in Table 2502 of
Information about Blend #41 is provided in Table 87 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 88 below.
Blend #42: 60% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 40% attapulgite (GA-RVM, bulk density 32.5 lb/ft3, external surface area 27.95 ft2/lb). Information about the sodium bentonite of Blend #42 is provided in Table 2502 of
Information about Blend #42 is provided in Table 89 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 90 below.
Blend #43: 55% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 45% attapulgite (GA-RVM, bulk density 32.5 lb/ft3, external surface area 27.95 ft2/lb). Information about the sodium bentonite of Blend #43 is provided in Table 2502 of
Information about Blend #43 is provided in Table 91 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 92 below.
Blend #44: 60% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 40% Taft clay (TF-RVM, bulk density 40.0 lb/ft3, external surface area 24.22 ft2/lb). Information about the sodium bentonite of Blend #44 is provided in Table 2502 of
Information about Blend #44 is provided in Table 93 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 94 below.
Blend #45: 55% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 45% Taft clay (TF-RVM, bulk density 40.0 lb/ft3, external surface area 24.22 ft2/lb). Information about the sodium bentonite of Blend #45 is provided in Table 2502 of
Information about Blend #45 is provided in Table 95 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 96 below.
Blend #46: 50% sodium bentonite (Wyo-Ben sodium bentonite, bulk density 63.3 lb/ft3, external surface area 17.01 ft2/lb), 50% Taft clay (TF-RVM, bulk density 40.0 lb/ft3, external surface area 24.22 ft2/lb). Information about the sodium bentonite of Blend #46 is provided in Table 2502 of
Information about Blend #46 is provided in Table 97 below:
Clump strength is tested for samples after using the Standard Drop Method Test described above. Tests are conducted 30 seconds and 1 hour after exposure of the test litter to synthetic urine. The results of these tests are shown in Table 98 below.
Results and Conclusions from Examples 3-49
Based on the results of Examples 3-25, 34 and 36-43, sodium bentonite/calcium bentonite clay blends with 47% or more of the total external surface area coming from sodium bentonite particles tested 1.0 (clumps intact) for clump strength at 30 seconds except for Blend #1 of Example 3 which tested 1.3 based on an average of 3 clumps. All of the blends with 47% or more of the total external surface area coming from sodium bentonite tested 1.0 for 1-hour clumps. The sodium bentonite/calcium bentonite blends have clumpability similar to the clumpability of the sodium bentonite alone (see Example 35 above).
Therefore, Examples 3-25 and 34-43 show that it is possible to form sodium bentonite/calcium bentonite blends having clumpability similar to the sodium bentonite wherein 50% or less, or even as little as 47%, of the total external surface area of all the particles in the blend are from sodium bentonite particles.
All remaining blends with 33% to 46% of the total external surface area coming from sodium bentonite tested between 1.7 and 3.0 (slight to moderate breakage) for 30-second clumps. and 1.0 to 2.3 (clump intact to slight breakage) for 1-hour clumps.
A direct relationship is found between clumping and percentage total external surface area of swelling clay in a swelling/non-swelling clay blend. A minimum of 47% of the total external surface area of all particles in a swelling/non-swelling clay blend needs to originate from the swelling clay in order for the product to form strong clumps at 30 seconds upon wetting. As the percentage total external surface area of swelling clay in a swelling/non-swelling clay blend increases, the clump strength also increases. The longer the clumps are allowed to sit prior to testing, the stronger they get.
Examples 36-43 show that sodium bentonite/calcium bentonite blends in which the calcium bentonite are coated with PTFE (Examples 41-43) have similar clumpability properties to sodium bentonite/calcium bentonite blends in which the calcium bentonite is uncoated (Examples 36-40).
Examples 26-33 show that sodium bentonite/paper granule blends (Examples 26-29), a sodium bentonite/wood fiber particle blend (Example 30) and sodium bentonite/barley grain blends (Examples 31-33) with 47% or more of the total external surface area coming from sodium bentonite particles have clumpability similar to the clumpability of the sodium bentonite alone (see Example 35 above).
Examples 44-46 show that sodium bentonite/attapulgite blends with 47% or more of the total external surface area coming from sodium bentonite particles have clumpability similar to the clumpability of the sodium bentonite alone (see Example 35 above).
Examples 47-49 show that sodium bentonite/Taft clay blends with 47% or more of the total external surface area coming from sodium bentonite particles have clumpability similar to the clumpability of the sodium bentonite alone (see Example 35 above).
Ten litter mixtures are prepared having the following compositions:
In all of the above litters, the ratio of sodium bentonite to calcium bentonite in the sodium bentonite/calcium bentonite blend is 65% sodium bentonite to 35% calcium bentonite. In all of the above litters, the sodium bentonite is coated with a fragrance slurry coating having the composition shown in Table 2 of Example 1. In all of the above litters, the calcium bentonite is coated with a PTFE slurry coating having the composition shown in Table 3 of Example 1. The granulation size (fine, medium and coarse) for the clumping additives is defined by the suppliers of the clumping additive. Because the suppliers for the different clumping additives are different, the particle size specifications vary.
Table 99 below shows the results of a clump strength test with synthetic urine using the Standard Drop Method Test described above using the average of 3 drops for each clump strength value. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine.
Table 100 below shows the results a clump strength test with synthetic urine using the Extreme Drop Method described above using the average of 3 drops for each clump strength value. Tests are conducted 30 seconds, 1 hour, 24 hours and 72 hours after exposure of the test litter to synthetic urine.
Three litters are tested for odor control properties using the Magic Cat Box method described above. Litter A is an untreated sodium bentonite litter. Litter B is an untreated calcium bentonite litter. Litter C is an untreated 65/35 mixture of sodium bentonite and calcium bentonite (65% sodium bentonite, 35% calcium bentonite). The results of these tests are shown in Tables 101, 102 and 103 below and in plot 3402 of
In plot 3402, the squares are for Litter A (sodium bentonite, NaB), the circles are for Litter B (10/24 BL RVM clay, BL) and the triangles are for Litter C (65/35 blend, 65/35).
Three litters are prepared and poured into boxes using the apparatus of
Samples are taken from the top (sample 1) to the bottom (sample 2) of each box. Results of these density measurements are provided in Table 104 below.
A litter composition comprising a sodium bentonite/calcium bentonite blend is formed using the apparatus of
The PTFE slurry consists of 98.0% water and 2.0% of a 60% PTFE suspension in water. The PTFE slurry is applied to the calcium bentonite at rate of 40.0 lbs/ton of PTFE slurry/calcium bentonite to attain 14.0 lbs/ton of PTFE slurry/calcium bentonite in finished product.
While the present invention has been disclosed with references to certain embodiments, numerous modifications, alterations and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof
This application is a continuation of U.S. application Ser. No. 16/222,267, filed Dec. 17, 2018, now pending, which is a continuation of U.S. application Ser. No. 15/845,373, filed Dec. 18, 2017, now pending, which is a continuation of U.S. application Ser. No. 15/606,805 filed May 26, 2017, now U.S. Pat. No. 9,894,877, which is a continuation of U.S. application Ser. No. 15/492,566 filed Apr. 20, 2017, now abandoned, which is a continuation of U.S. application Ser. No. 15/260,660 filed Sep. 9, 2016, now abandoned, which is a continuation of U.S. application Ser. No. 15/162,296 filed May 23, 2016, now U.S. Pat. No. 9,439,393, which is a divisional of U.S. application Ser. No. 13/524,021 filed Jun. 15, 2012, now U.S. Pat. No. 9,345,227, which claims the benefit of priority to U.S. Provisional Patent Application No. 61/497,178, entitled “Cat Litter Product” filed Jun. 15, 2011. Reference is made to U.S. application Ser. No. 15/053,114 filed Feb. 25, 2016, now U.S. Pat. No. 9,408,368 and PCT/US12/42631 filed Jun. 15, 2012, which claim benefit of priority to U.S. application Ser. No. 13/524,021 filed Jun. 15, 2012, now U.S. Pat. No. 9,345,227. Reference is also made to co-pending application U.S. application Ser. No. 14/012,153 filed Aug. 28, 2013, now U.S. Pat. No. 9,185,878, which in turn claims benefit of priority to U.S. Provisional Patent Application No. 61/497,178 filed Jun. 15, 2011 and U.S. Provisional Patent Application No. 61/694,000, filed Aug. 28, 2012. The content of each of the aforementioned patent applications is incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2531427 | Hauser | Nov 1950 | A |
2728733 | Hashimoto | Dec 1955 | A |
3586478 | Neumann | Jun 1971 | A |
3789797 | Brewer | Feb 1974 | A |
3993584 | Owen | Nov 1976 | A |
4157696 | Carlberg | Jun 1979 | A |
4607594 | Thacker | Aug 1986 | A |
5000115 | Hughes | Mar 1991 | A |
5094189 | Aylen et al. | Mar 1992 | A |
5129365 | Hughes | Jul 1992 | A |
5176107 | Buschur | Jan 1993 | A |
5188064 | House | Feb 1993 | A |
5303676 | Lawson | Apr 1994 | A |
5317990 | Hughes | Jun 1994 | A |
5359961 | Goss et al. | Nov 1994 | A |
5386803 | Hughes | Feb 1995 | A |
5421291 | Lawson et al. | Jun 1995 | A |
5458091 | Pattengill et al. | Oct 1995 | A |
5503111 | Hughes | Apr 1996 | A |
5507250 | Reddy | Apr 1996 | A |
5577463 | Elazier-Davis et al. | Nov 1996 | A |
5634431 | Reddy | Jun 1997 | A |
5638770 | Peleties | Jun 1997 | A |
5647300 | Tucker | Jul 1997 | A |
5714431 | Gupta et al. | Feb 1998 | A |
5826543 | Raymond et al. | Oct 1998 | A |
5836263 | Goss | Nov 1998 | A |
5860391 | Maxwell et al. | Jan 1999 | A |
5901661 | Pattengill | May 1999 | A |
5970916 | Yoder et al. | Oct 1999 | A |
5972835 | Gupta | Oct 1999 | A |
5975019 | Goss | Nov 1999 | A |
6089189 | Goss et al. | Jul 2000 | A |
6543385 | Raymond et al. | Apr 2003 | B2 |
6662749 | Wiedenhaft et al. | Dec 2003 | B1 |
6810831 | Opfel | Nov 2004 | B1 |
6854421 | Opfel | Feb 2005 | B2 |
6872275 | Ko et al. | Mar 2005 | B2 |
6887570 | Greene | May 2005 | B2 |
7124710 | Weaver | Oct 2006 | B2 |
7341661 | Sansalone | Mar 2008 | B2 |
7343874 | DeLeeuw et al. | Mar 2008 | B2 |
7429421 | Greene et al. | Sep 2008 | B2 |
7527019 | Burckbuchler, Jr. | May 2009 | B2 |
7603964 | Jenkins | Oct 2009 | B2 |
7665418 | Bracilovic | Feb 2010 | B2 |
7964529 | Borgese et al. | Jun 2011 | B2 |
9010274 | Drief et al. | Apr 2015 | B2 |
9185878 | Kuras et al. | Nov 2015 | B2 |
9253961 | Fritter et al. | Feb 2016 | B2 |
9283540 | Fritter | Mar 2016 | B2 |
9345227 | Kuras | May 2016 | B2 |
9648845 | Fritter et al. | May 2017 | B2 |
20030209203 | Opfel | Nov 2003 | A1 |
20050005869 | Fritter et al. | Jan 2005 | A1 |
20050005870 | Fritter | Jan 2005 | A1 |
20050056229 | Greene | Mar 2005 | A1 |
20050175577 | Jenkins | Aug 2005 | A1 |
20070289543 | Petska et al. | Dec 2007 | A1 |
20080022940 | Kirsch et al. | Jan 2008 | A1 |
20080223302 | Wang | Sep 2008 | A1 |
20090007852 | Fritter et al. | Jan 2009 | A1 |
20120260860 | Drief | Oct 2012 | A1 |
20140000526 | Kuras | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2546538 | Nov 2007 | CA |
101543186 | Sep 2009 | CN |
4312279 | Oct 1994 | DE |
4427334 | Feb 1996 | DE |
202008008025 | Sep 2008 | DE |
0378421 | Jul 1990 | EP |
2082614 | Mar 1982 | GB |
1992287626 | Oct 1992 | JP |
1994343362 | Dec 1994 | JP |
2000300102 | Oct 2000 | JP |
2002360093 | Dec 2002 | JP |
1998037149 | Aug 1998 | WO |
2006042617 | Apr 2006 | WO |
2010034457 | Apr 2010 | WO |
2010057124 | May 2010 | WO |
Entry |
---|
1997 Merriam Webster definition of “Particulate”. |
1997 Merrian Webster definition of “Arithmetic Mean”. |
Complaint for Patent Infringement; Civil Action No. 1:16CV09179; OilDri Corporation of America v. Nestlé Purina Petcare Company; filed Sep. 23, 2016. |
Declaration of John Hughes dated Nov. 12, 2014. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 3, 2015, which issued during prosecution of International Application No. PCT/US2013/057005. |
Invalidity Claim Chart for U.S. Pat. No. 9,408,368 (redacted). |
JainRaina, et al. “Evaluation of Blends of Alternative Gelling Agents With Agar and Development of Xanthagar A Gelling Mix Suitable for Plant Tissue Culture Media Asian” Journal of Biotechnology, 2011, 3(2):153164. |
Nestlé Purina Petcare Company's First Amended Answer, Affirmative Defenses and Counterclaim. Civil Action No. 1:16CV09179; OilDri Corporation of America v. Nestlé Purina Petcare Company; filed May 22, 2017. |
Nestlé Purina Petcare Company's Initial Invalidity and Unenforceability Contentions dated Dec. 23, 2016 (redacted). |
NonFinal Rejection dated and Notice of References dated Jul. 5, 2017, which issued during prosecution of corresponding U.S. Appl. No. 15/492,566. |
Notice of Allowability for U.S. Appl. No. 08/914,406 dated May 21, 1999. |
Notice of Allowance and Notice of References dated Sep. 19, 2017, which issued during prosecution of corresponding U.S. Appl. No. 15/606,805. |
Office Action dated Jan. 29, 1999 which issued during prosecution of U.S. Appl. No. 08/914,406. |
OilDri's Initial Response to Invalidity Contentions dated Jan. 6, 2017. |
Petition for Inter Partes Review of U.S. Pat. No. 5,975,019 pursuant to 37 C.F.R. §42.100 et seq., Feb. 13, 2015. |
Proof of Service, Feb. 13, 2015. |
Stedman's Medical Dictionary definition of “Plantago” (26th ed. 1995). |
Terminal Disclaimer for U.S. Appl. No. 08/914,406 dated Apr. 29, 1999. |
Third Party Submission under 37 CFR 1.290 of U.S. Appl. No. 14/012,153, Mar. 12, 2014. |
U.S. Sieve Series Chart. |
Zobel et al. “Starch: Structure Analysis and Application Food Polysaccharides and Their Applications” Alistair M. Stephen ed. 1995. |
Number | Date | Country | |
---|---|---|---|
20200068845 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
61497178 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13524021 | Jun 2012 | US |
Child | 15162296 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16222267 | Dec 2018 | US |
Child | 16679743 | US | |
Parent | 15845373 | Dec 2017 | US |
Child | 16222267 | US | |
Parent | 15606805 | May 2017 | US |
Child | 15845373 | US | |
Parent | 15492566 | Apr 2017 | US |
Child | 15606805 | US | |
Parent | 15260660 | Jun 2016 | US |
Child | 15492566 | US | |
Parent | 15162296 | May 2016 | US |
Child | 15260660 | US |