Catalyst additive for reduction of sulfur in catalytically cracked gasoline

Abstract
The present invention concerns a novel additive composition for reducing sulfur content of a catalytically cracked gasoline fraction. This additive composition comprises a support consisting of porous clay into which a first metal from group IV is incorporated and a second metal from group II is impregnated. Preferably, the first incorporated metal is zirconium and the second impregnated metal is zinc. The sulfur reduction additive is used in the form of a separate particle in combination with a conventional fluidized catalytic cracking catalyst in a fluid catalytic cracking process to convert hydrocarbon feed stocks into gasoline and other liquid products.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plot of sulfur content of product gasoline fraction obtained with conventional FCC catalyst, without additive (reference) and FCC catalyst/commercial additive mixture (comparative) versus percent conversion.



FIG. 2 is a plot of sulfur content of product gasoline fraction obtained with reference (no additive), the comparative additive, and the novel composition's base material (clay) versus percent conversion.



FIG. 3 is a plot of sulfur content of product gasoline fraction obtained with zinc impregnated-base material, reference material and the comparative additive versus percent conversion.



FIG. 4 is a plot of sulfur content of product gasoline fraction obtained with zirconium incorporated-base material, reference material and the comparative additive versus percent conversion.



FIG. 5 is a plot of sulfur content of product gasoline fraction obtained with the novel composition, reference material and the comparative versus percent conversion.





DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, the sulfur content of a FCC gasoline is reduced to lower levels by the use of an additive-containing catalyst composition. The FCC catalyst is preferably made of powder and generally possesses an average particle size in the range of 50-100 microns and a bulk density in the range of 0.5-1.0 kg/L. It is preferred that the particle size, density and mechanical strength of the catalyst composition of the present invention is the same as a conventional FCC catalyst in which the composition is to be physically mixed.


The cracking catalyst particles preferably contain at least one cracking catalyst component which is catalytically active for the cracking of hydrocarbons in the absence of added hydrogen. The cracking catalyst component preferably comprises a zeolite, a non-zeolite molecular sieve, a catalytically active amorphous silica alumina species, or a combination thereof. The cracking catalyst component is most preferably a Y-type zeolite selected from the group consisting of Y, USY, (described in U.S. Pat. No. 3,293,192, which is incorporated herein by reference), REY and RE-USY (described in U.S. Pat. Nos. 3,607,368 and 3,676,368, both of which are incorporated herein by reference) and mixtures thereof. The cracking catalyst particles may also contain one or more matrix components such as clays, modified clays, alumina, etc. The cracking catalyst particles may also contain a binder such as an inorganic oxide sol or gel. Preferably, the cracking catalyst particles contain at least 5 wt. %, more preferably about 5 to 50 wt. %, of cracking catalyst component.


The support material of the claimed composition is preferably a montmorillonite clay which possesses a surface area in the range of 150-350 m2/g. The clay has been calcined in air at 550° C. to remove physically adsorbed water. Calcinations at 550° C. did not result in much increase in the surface area.


Clay material itself possesses considerable capacity to reduce sulfur in gasoline fraction. However, the reduction in the benzothiophene fraction is minimal. It was observed that the impregnation of a Lewis acid component onto the clay did not significantly increase either overall sulfur reduction capacity or the reduction of benzotiophene.


Incorporating zirconium, the preferred Group IV metal, into the pores of the subject clay increased the surface area by about 15 to about 25%. It was observed that impregnation of the zirconium incorporated clay material with a Lewis acid significantly reduced the sulfur content of the gasoline fraction which is catalytically cracked. It is most preferable to use a Lewis acid including compounds of Group II metals, preferably zinc, to effect a reduction in the sulfur content of gasoline.


In order to further illustrate the present invention and the advantages thereof, the following specific examples are presented. The examples are presented as specific description of the claimed invention. It should be understood, however, that the invention is not limited to the specific details set forth in the examples. The examples illustrate the preparation and catalytic evaluation of specific compositions for reducing sulfur content of a catalytically cracked gasoline fraction.


EXAMPLES

Micro activity test (MAT) evaluation of FCC catalyst/additive mixtures were carried out according to ASTM method D-3907, at a reaction temperature of 510° C. and a injection time of 30 seconds for a catalyst to oil ratio between 3 to 5, to obtain conversion of 55 to 75%. The feed used was a vacuum gas oil of Arabian light crude origin. Sulfur content of this feed was 2.5 weight percent. Other properties of this feed are shown in Table 1. The sulfur content of the gasoline fraction was measured by GC-SCD. For comparison purposes, sulfur content of gasoline fraction was calculated at 71% conversion level.


Example 1

Sulfur Content of Gasoline Fraction Obtained with Use of a Conventional FCC Catalyst.


A steamed, conventional, commercial FCC zeolite catalyst, a typical low RE-USY type available from any FCC catalyst supplier, was evaluated in MAT according to ASTM D 3907. FIG. 1 shows the plot of gasoline sulfur content versus percent conversion obtained with only the conventional catalyst without any additive (reference). This sulfur content is taken as a reference.


Example 2

Sulfur Reduction with a Commercially Available Additive Composition.


A commercial sulfur reduction additive generally available from a typical catalyst supplier, for example, Albemarle, CClC, Englehard, Grace Davison, or Intercat, labeled as comparative additive in the tables were added (10 wt. %) to the same steamed conventional FCC catalyst, namely, low RE-USY, as in Example 1 and was tested in MAT under the same conditions as in Example 1. The sulfur content of the gasoline fraction in this Example is compared with the reference sulfur content in FIG. 1. At a conversion of 71%, the overall sulfur reduction achieved including benzothiophene, was 16%. Table 2 lists the sulfur content of gasoline fraction for all the additives.


Example 3

Base Material of the Claimed Novel Composition has Considerable Capacity to Reduce Sulfur Content of FCC Naphtha.


To measure the sulfur reduction ability of the support material, Montmorillonite clay itself was mixed with a conventional catalyst, a typical RE-USY type available from any FCC catalyst supplier, and evaluated in MAT. The results obtained, which are shown in FIG. 2, were compared with the reference. Montmorillonite clay has considerable sulfur reduction ability. Sulfur content of the product gasoline fraction was reduced by 21% (Table 2).


Example 4

Results Obtained by Use of a Zinc-Impregnated Clay.


A composition was prepared by impregnating 2% Zn on the clay described in Example 3 by the incipient wetness method. 10%, by weight, of this composition was mixed with the same commercial catalyst, a typical low RE-USY type, available from any FCC catalyst supplier, as in Example 1 and tested in MAT. FIG. 3 compares the sulfur content of gasoline obtained by the composition of Example 4 with that obtained by use of the reference catalyst and the composition of Example 3. It is seen that sulfur reduction ability of this composition is similar to the composition of Example 3. At 71% conversion, product gasoline sulfur was reduced by 21% compared with the reference catalyst.


Example 5

Effect of Incorporating Zirconium into the Pores of Clay


A composition of Zr-Clay was prepared by incorporating zirconium into the pores of montmorillonite clay by ion exchange. About 2 weight percent zirconium was incorporated. This composition was mixed with a commercial FCC zeolite catalyst, a typical low RE-USY type, available from any FCC catalyst supplier, in a ratio of 1:10.



FIG. 4 shows the sulfur content of gasoline fraction versus conversion for the reference catalyst and the Zr-clay/catalyst mixture. The MAT test conducted with the composition of Zr/clay added to the commercial FCC catalyst gave a 17% reduction (at 71% conversion) in the sulfur content of cracked gasoline fraction, which was comparable to that obtained with the comparative additive of Example 2.


Example 6

Results Employing Zinc Impregnated on Zirconium Incorporated Montmorillonite Clay.


A composition was prepared by impregnating 2 wt. % zinc on the composition described in Example 5 (Zr incorporated clay), by the incipient wetness method. 10 wt. % of this material was mixed with a typical low RE-USY type, available from any FCC catalyst supplier, and tested in MAT at the same conditions as described in Example 1.



FIG. 5 shows the gasoline sulfur content obtained with this material compared with that obtained with the compositions of Example 1 and Example 2. With the composition of this Example (Zn impregnated on Zr-incorporated clay), the sulfur content of the gasoline was reduced by 28% (Table 2). It can be seen that the additive composition of the present invention is superior to the comparative additive of the prior art.


Example 7

Composition Consisting of Zinc Impregnated on Zirconium Incorporated Montmorillonite Clay (Sulfur Compound Distribution)


Catalytically cracked gasoline contains different sulfur compounds, such as mercaptans, saturates, thiophenes and benzothiophenes. Sulfur compound distribution in the product gasoline fraction obtained in Example 6 was determined by the use of GC-SCD. It is shown in Table 3. The composition of the present invention possesses a different reducing effect with respect to the various types of sulfur compounds. With the composition of the present invention, sulfur reduction is most effective for saturates and C2-C4 thiophenes.


Example 8

Gasoline Yield is not Affected by the Use of Novel Additive


Table 4 lists the product yields of gasoline, gas, LCO, HCO and coke obtained with a conventional catalyst, i.e., low RE-USY®, a comparative additive, and the additive compositions of the present invention, at 71% conversion. Gasoline yield and coke yield is not affected by the use of the additive composition of the present invention, which is 50% and 3.1%, respectively.









TABLE 1







Properties of vacuum gas oil (VGO).











Property
Unit
Value















Density
g/cc
0.882



API

29.1



Carbon
wt %
85.08



Hydrogen
wt %
12.08



Sulfur
wt %
2.46



Nitrogen
ppm
960



Initial Boiling Point
° C.
214



(IBP)



Final Boiling Point
° C.
588



(FBP)

















TABLE 2







Sulfur content of gasoline fraction and percent reduction


in sulfur content obtained with reference (no additive),


comparative additive and other four additive compositions









Additive
Gasoline Sulfur, ppm
Percent reduction












Reference (no additive)
659
0


Comparative
553
16


Clay
523
21


Zn/Clay
520
21


Zr/Clay
547
17


Zn—Zr/Clay
472
28
















TABLE 3







Sulfur compounds distribution, total gasoline sulfur and


percent reduction obtained with reference (Example 1),


comparative additive (Example 2) and the composition of the


present invention (Example 3), at a conversion level of 71%.










Comparative




additive
Zn—Zr/Clay













Reference

%

% re-


Sulfur compound
ppm
ppm
reduction
ppm
duction















Saturates
40
38
5
16
60


Thiophene-C1-thiophene
60
64
−6
33
45


C2–C4 Thiophenes
252
185
26
108
57


Benzothiophene
307
266
13
314
−2.5


Total Sulfur in gasoline
659
553
16
472
28
















TABLE 4







MAT yields obtained with reference (no additive), comparative


additive and other four additive compositions














Ref: no


Zn/




Additive
additive
Comparative
Clay
Clay
Zr/Clay
Zn—Zr/Clay
















Gasoline
50
52
51
51
52
50


(wt. %)


Gas
17
15
16
17
15
18


LCO
17
17
17
17
18
16


HCO
12
12
12
12
11
13


Coke
3.4
3.4
3.6
3.9
3.3
3.1









Various modifications of the present invention are possible in light of the foregoing teachings. However, it is to be understood that other modifications may be made without departing from the scope thereof, which is to be determined solely by the claims which follow.

Claims
  • 1. A sulfur reduction additive for use with a cracking catalyst in a cracking process, which comprises a porous support, having (a) a first metal component from Group IV of the Periodic Table which is within the pore structure of the support material and (b) a second metal component from Group II of the Periodic Table deposited on the surface of the support material.
  • 2. The additive according to claim 1, wherein the support material is montmorillonite clay.
  • 3. The additive according to claim 1, wherein the first metal component from Group IV of the Periodic Table is incorporated into the pores of the support material.
  • 4. The additive according to claim 1, wherein the second metal component from Group II of the Periodic Table is impregnated on the surface of the support material.
  • 5. The additive according to claim 3, wherein the first metal component from Group IV of the Periodic Table incorporated in the pores of the support is zirconium.
  • 6. The additive according to claim 4, wherein the second metal component from Group II of the Periodic Table impregnated on the surface of the support material is zinc.
  • 7. The additive according to claim 5, wherein the sulfur reduction additive contains from about 1 to about 5 weight percent of zirconium based on the total weight of the additive.
  • 8. The additive according to claim 6, wherein the sulfur reduction additive contains from about 1 to about 10 weight percent of zinc based on the total weight of the additive.
  • 9. The additive according to claim 1, wherein the concentration of the sulfur reduction additive is from about 10 to about 20 weight percent of the cracking catalyst.
  • 10. A process for reducing the sulfur content of a gasoline fraction obtained from a cracking process which comprises contacting a hydrocarbon feedstock with a conventional cracking catalyst in combination with a sulfur reduction additive composition, said additive composition consisting of a support material into which an element from Group IV of the Periodic Table has been incorporated and which is impregnated by a Lewis acid compound selected from Group II of the Periodic Table.
  • 11. The process according to claim 10, wherein said sulfur reduction additive is added as a separate particle.
  • 12. The process according to claim 10, wherein the support material is montmorillonite clay.
  • 13. The method according to claim 10, wherein the first metal component from Group IV of the Periodic Table is incorporated into the pores of the support material.
  • 14. The process according to claim 10, wherein the second metal component from Group II of the Periodic Table is impregnated on the surface of the support material.
  • 15. The process according to claim 13, wherein the first metal component from Group IV of the Periodic Table incorporated into the pores of the support is zirconium.
  • 16. The process according to claim 14, wherein the second metal component from Group II of the Periodic Table impregnated on the surface of the support material is zinc.
  • 17. The process according to claim 15, wherein the sulfur reduction additive contains from about 1 to about 5 weight percent of zirconium based on the total weight of the additive.
  • 18. The process according to claim 16, wherein the sulfur reduction additive contains from about 1 to about 10 weight percent of zinc based on the total weight of the additive.
  • 19. The process according to claim 10, wherein the concentration of the sulfur reduction additive is from about 10 to about 20 weight percent of the cracking catalyst.