The present invention relates to methods for treating engine exhaust and methods for forming catalyst assemblies for treating engine exhaust.
Like gasoline engines, diesel engines have been widely used for transportation and stationary applications. A combustion exhaust from diesel engines often contains a variety of combustion waste materials including unburned hydrocarbon (HC), carbon monoxide (CO), particulate matter (PM), nitric oxide (NO), and nitrogen dioxide (NO2), with NO and NO2 collectively referred to as nitrogen oxide or NOx. Removal of CO, HC, PM, and NOx from the combustion exhaust is needed for cleaner emissions. The combustion exhaust treatment becomes increasingly important in meeting certain emission requirements.
Conventional emission control systems often use selective catalytic reduction (SCR) catalyst for the reduction of NOx. Urea SCR technology using base metal containing catalysts, in particular, is under development to reduce NOx emission from lean gasoline and diesel engine exhaust gas. Efficient NOx reduction is needed in a relatively broad temperature range, for instance at low temperatures during cold start events and at high temperatures during diesel particulate filter (DPF) events and lean gasoline highway conditions.
According to one embodiment, a method for treating engine exhaust is disclosed. The method includes contacting an NOx exhaust with an upstream catalyst material coated onto a substrate and including copper or iron loaded in a first zeolite at an upstream loading of 0 to 3.5 g/l to convert the NOx exhaust in a first temperature range of 150° C. to 500° C. to a first NOx converted exhaust. The method further includes contacting the first NOx converted exhaust with a downstream catalyst material coated onto the substrate downstream of the upstream catalyst material and including copper or iron loaded in a second zeolite at a downstream loading of 1.5 to 9.5 g/l to convert the first NOx converted exhaust in a second temperature range of 450° C. to 700° C.
In another embodiment, a method of forming a catalyst assembly for treating engine exhaust is disclosed. The method includes coating an upstream substrate with an upstream catalyst material including copper at an upstream loading. The method further includes coating a downstream substrate with a downstream catalyst material including copper at a downstream loading. The upstream and downstream copper loading is substantially uniform and the upstream and downstream catalyst materials have an increasing coating thickness in an exhaust flow direction.
In yet another embodiment, a method of forming a catalyst assembly for treating engine exhaust is disclosed. The method includes coating an upstream substrate with an upstream catalyst material including copper at an upstream loading. The method further includes coating a downstream substrate with a downstream catalyst material including copper at a downstream loading. The upstream and downstream copper loadings are substantially uniform. The upstream and downstream catalyst materials have an increasing coating thickness in an exhaust flow direction. One of the upstream and the downstream substrates is a wall flow ceramic substrate.
a depicts an emission control system containing a catalyst according to one aspect of the present invention, for reducing waste materials from the exhaust of an internal combustion engine;
b depicts a schematic view of catalyst of
c depicts a schematic view of catalyst configured as two spaced apart bricks;
d depicts a schematic view of a broadened temperature window for NOx conversion realized by the catalyst of
a depicts a schematic view of the catalyst of
b depicts an enlarged cross section of the catalyst of
c depicts a vertical cross-section along line BB′ of the catalyst of
d depicts a vertical cross section along line BB′ of the catalyst of
a depicts an enlarged view of a portion of the substrate walls in relation to
b depicts an another enlarged view of a portion of the substrate walls in relation to
c depicts a yet another enlarged view of a portion of the substrate walls in relation to
d depicts an enlarged view of the area “cc” of
a depicts a plot of NOx conversion for a copper-containing SCR core sample, as a function of inlet gas temperature when only NO is introduced into the inlet gas, as referenced in the Example section;
b depicts a plot of NOx conversion for an iron-containing SCR core sample, as a function of inlet gas temperature when only NO is introduced into the inlet gas, as referenced in the Example section;
a depicts a plot of NOx conversion for a copper-containing SCR core sample, as a function of inlet gas temperature when 50/50 NO/NO2 is introduced into the inlet gas, as referenced in the Example section;
b depicts a result graph of NOx conversion for an iron-containing SCR core sample, as a function of inlet gas temperature when 50/50 NO/NO2 is introduced into the inlet gas, as referenced in the Example section;
a depicts a plot of NH3 oxidation for a copper-containing SCR core sample, as a function of inlet gas temperature when the inlet gas contains NH3 and does not contain NO or NO2, as referenced in the Example section; and
b depicts a plot of NH3 oxidation for an iron-containing SCR core sample, as a function of inlet gas temperature when the inlet gas contains NH3 and does not contain NO or NO2, as referenced in the Example section.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Moreover, except where otherwise expressly indicated, all numerical quantities in the description and in the claims are to be understood as modified by the word “about” in describing the broader scope of this invention. Also, unless expressly stated to the contrary, the description of a group or class of material as suitable or preferred for a given purpose in connection with the invention implies that mixtures of any two or more members of the group or class may be equally suitable or preferred.
With respect to the Figures that will be described in detail below, like numerals are used to designate like structures throughout the Figures.
In one or more embodiments, “SCR” means selective catalytic reduction and includes a reducing catalyst which speeds or enhances a chemical reduction of NOx through the assistance of a reductant. In certain particular instances, the selective catalytic reduction catalyst is supported on a flow-through honeycomb monolith substrate and/or a wall-flow honeycomb monolith substrate.
In one or more embodiments, “NOx” means nitrogen oxide and illustratively includes a mixture of compounds of nitric oxide (NO) and nitrogen dioxide (NO2).
In one or more embodiments, “DPF” or “DF” refers to the particulate filter employed to remove particulate matter or the like. In certain particular instances, the particular filter is based on a wall-flow honeycomb monolith substrate.
In one or more embodiments, emission control systems typically use selective catalytic reduction (SCR) catalysts to convert certain waste materials including NOx to form less harmful counterparts such as N2, for safer emissions. Ammonia is a commonly used reductant for SCR catalyst catalyzed NOx conversion. Decomposition of urea and subsequent reduction of NOx typically occurs according to the following scheme:
4NO+4NH3+O2→4N2+6H2O
6NO2+8NH3→7N2+12H2O
2NH3+NO+NO2→2N2+3H2O
According to one aspect of the present invention, an emission control system is provided for reducing waste species from the exhaust of an internal combustion engine. The waste species from the exhaust of an internal combustion engine may include unburned hydrocarbon (HC), carbon monoxide (CO), particulate matters (PM), nitric oxide (NO), and nitrogen dioxide (NO2), with NO and NO2, collectively referred to as nitrogen oxide or NOx.
In one or more embodiments, and as depicted in
It has been found, according to one or more embodiments of the present invention, for a given NOx conversion rate, a catalyst composition containing a relatively higher base metal loading can achieve the given NOx conversion at a relatively lower operating temperature. Therefore, the catalyst can be strategically provided with a first portion configured for operation at a relatively higher temperature and a second portion configured for operation at a relatively lower temperature, wherein a first base metal loading in the first portion can be relatively reduced, and any portion or the whole of the reduced amount from the first portion can be added back to the second portion to enhance the relatively low temperature operation. As a result of this base metal segmentation and orientation, an overall temperature window can be broadened while the total amount of base metal required for carrying out the given NOx conversion is no greater than the amount otherwise needed without segmentation or orientation.
According to one aspect of the present invention, a catalyst assembly is provided for treating an exhaust from an engine. In one or more embodiments, and as depicted in
As used herein according to one or more embodiments, the first or the second catalyst material is “catalytically active” in a given temperature when at that temperature, the first or the second catalyst material is able to convert 85 percent or more by volume of NOx to nitrogen.
In yet another embodiment, and as depicted in
As indicated, the catalyst assembly 100 can be provided with a relatively broadened temperature window for NOx conversion as compared to conventional catalyst compositions which are merely directed to operation at either relatively low temperatures, for instance at from 150° C. to 500° C. (degrees Celsius) or relatively high temperatures, for instance at from 450° C. to 750° C. As depicted in
For instance, and as depicted in
In one or more embodiments, and as depicted in
A vertical cross-section taken along line BB′ of the catalytic assembly 100, as depicted in
Alternatively, and as depicted in
In one or more embodiments, the differential base metal loading between the first and second portions 130, 132 of
In one or more embodiments, the differential base metal loading between the first and second portions 130, 132 of
In one or more embodiments, and as depicted in
In one or more embodiments, the substrate walls 206, 212 defining the flow channels 202 are collectively formed from a material known as a monolith, which is generally described as a ceramic block made of a number of substantially parallel flow channels such as flow channels 202. The monolith may be made of ceramic materials such as cordierite, mullite, and silicon carbide or metallic materials such as iron chromium alloy, stainless steel, and Inconel®. The channels can be substantially straight, hollow, and parallel to the flow of the exhaust, therefore flow obstruction to the exhaust is minimized. In the event that the substrate is configured as a wall-flow particulate filter for additionally removing the particulate matters, the substrate can further include cordierite, silicon carbide, metal fiber, paper, or combinations thereof.
In yet another embodiment, at least one of the first and second catalyst materials of the catalyst assembly 100 includes zeolite. The term “zeolite” generally refers to a framework aluminosilicate containing atoms of oxygen aluminum and/or silicon. An example of a natural zeolite is mordenite or a chabazite. Synthetic zeolites illustratively include type A as synthetic forms of mordenite, type B as ZSM-5® zeolites, and type Y as ultra-stabilized Beta zeolite. The framework structure of the zeolites often acquires an overall negative charge compensated for by exchangeable cations which may readily be replaced by other cations such as metal cations through methods including ion exchange. The NOx occluding catalyst typically includes an alkaline earth metal exchanged zeolite, precious metal exchanged zeolite such as platinum based and/or a base metal exchanged zeolite such as copper and iron based zeolites. While any type zeolite may be used, some suitable zeolites include X type zeolite, Y type zeolite, and/or ZSM-5 type zeolite.
In one or more embodiments, the first and second catalyst materials each independently include at least one base metal selected from the group consisting of copper, nickel, tin, zinc, iron, lead, aluminum, cerium, silver, and combinations thereof.
The first and second base metal loadings can each be defined in terms of grams of the base metal weight per liter of a total loading volume, generally shown at “V” in
In yet another embodiment, the first base metal loading as based on the total loading volume “V” of the catalyst assembly 100 is from 0.00 grams per liter (g/l), to 3.50 g/l, 0.00 g/l to 3.00 g/l, or 0.00 g/l to 2.50 g/l. The first base metal loading may be selected based on the substrate material for forming the catalyst assembly 100; however, the first base metal loading as selected is less than the second base metal loading. In certain particular instances, the first base metal loading is from 0.00 g/l to 2.33 g/l when, for instance, the catalyst assembly 100 is formed of cordierite substrate having 300 to 500 CPSI (cells per square inch) and having a wall thickness of 3.0 to 6.0 mil.
In yet another embodiment, the second base metal loading as based on the exterior volume of the catalyst assembly 100 is from 1.50 grams per liter (g/l) to 9.50 g/l, 2.0 g/l to 9.5 g/l, or 2.5 g/l to 9.5 g/l. The second base metal loading may be selected based on the substrate material for forming the catalyst assembly 100; however, the second base metal loading as selected is greater than the first base metal loading. In certain particular instances, the second base metal loading is from 2.33 g/l to 9.33 g/l when, for instance, the catalyst assembly 100 is formed of cordierite substrate having 300 to 500 CPSI and having a wall thickness of 3.0 to 6.0 mil.
The first and second catalyst material loadings can be provided in terms of grams of the catalytic material in dry weight per liter of a loading volume, generally shown at “V” in
In yet another embodiment, the first catalyst material loading as based on the loading volume “V” of the catalyst assembly 100 is from 10 grams per liter (g/l) to 300 g/l, 10 g/l to 250 g/l, 10 g/l to 200 g/l, or 10 g/l to 150 g/l. In yet another embodiment, the second catalyst material loading as based on the loading volume “V” of the catalyst assembly 100 is from 50 g/l to 450 g/l, 100 g/l to 450 g/l, 150 g/l to 450 g/l, or 200 g/l to 450 g/l. The first and second catalyst material loadings are calculated based on dry weight of the catalyst materials or the washcoat materials illustratively including one or more of the base metals, one or more types of zeolites, one or more types of binders. In one or more embodiments, the first and the second catalyst material loadings are each referred to as a first and second washcoat loading.
One or more embodiments of the present invention are further illustrated by the following non-limiting examples.
Catalyst activity data are obtained using an automated laboratory scale flow reactor system. Custom-written LabVIEW based software with National Instruments data acquisition hardware is used to control MKS mass flow controllers and Lindberg Mini-Mite tubular furnaces. A computer controlled evaluation protocol is run for each same to decrease the test-to-test variations commonly observed by manual operation.
For all the SCR core samples tested in this example, the total gas flow rate is held constant at 6.44 liters/min while the sample size is held constant at 2.54 cm in diameter×2.54 cm in length. As a result, a space velocity equal to 30,000/hr is used in this example. The inlet gas temperature is maintained with one preheat tubular furnace followed by a second tubular furnace. The SCR core samples are loaded in quartz tubing and placed in the second tubular furnace. A Thermo Electron Antaris IGS FTIR Gas Analyzer with a heated sample cell is used at the outlet of the reactor to measure NO, NO2, N2O, NH3, CO2, and H2O levels. To cover the full exhaust temperatures expected on diesel vehicles, data are taken at inlet gas temperatures from approximately 150° C. to 700° C. in 25° C.-50° C. steps. The computer-controlled evaluation protocol steps the reaction temperature setting from a high temperature to low temperature for a prescribed duration. At each temperature setting, the duration is chosen so that post SCR gas composition is allowed enough time to equilibrate.
Tables 2-4 show the simulated diesel exhaust gas composition applied to each sample core to study the Standard SCR Reaction, the Fast SCR Reaction, and the Ammonia Oxidation Reaction, respectively. The molar NH3 to NOx ratio (ANR) is held constant at 1.0 to represent the stoichiometry of the well known Standard SCR Reaction and Fast SCR Reaction in Equations (1) and (2), respectively. Typical engine-out diesel exhaust contains a higher fraction of NO compared to NO2. However, exhaust configurations with an upstream oxidation catalyst can be used to oxidize a portion of the NO to NO2. Finally, the Ammonia Oxidation Reaction is employed to examine NH3 oxidation by oxygen in the absence of NOx according to Equation (3).
Standard SCR Reaction 4NH3+4NO+O2-4N2+6H2O (1)
Fast SCR Reaction 2NH3+NO+NO2-2N2+3H2O (2)
Ammonia Oxidation Reaction 4NH3+3O2—N2+6H2O (3)
The standard SCR reaction according to the Equation (1) is employed to determine NOx conversion efficiency of the SCR core samples when the inlet feed gas contains only NO as the NOx source as shown in Table 2. The fast SCR reaction according to the Equation (2) is employed to determine NOx conversion efficiency of the SCR core samples when the inlet feed gas contains both NO and NO2 as the NOx source as shown in Table 3. It is well know in the art that a SCR catalyst performs better in NOx conversion reactions when an exhaust flow is provided with a relatively higher ratio of NO2 relative to NO as the NOx source. An increase content of NO2 can be realized with the use of an oxidation catalyst upstream of the SCR catalyst. This portion of the testing is to further explore the behavior patterns of the catalyst according to certain embodiments of the present invention. The ammonia oxidation reaction according to the Equation (3) is employed to show how well the SCR core samples tolerate the ammonia oxidation insult across a wide range of inlet temperatures
a depicts NOx conversion efficiency, according to Equation (1), as a function of inlet gas temperature among the SCR core samples with various copper loadings, wherein the catalyst core samples have been degreened and the inlet gas contains NO only as the NOx. As can be seen from
b depicts NOx conversion efficiency as a function of inlet gas temperature among the SCR core samples with various iron loadings according to Equation (1), wherein the catalyst core samples have been degreened and the inlet gas contains NO only as the NOx. As can be seen from
a depicts NOx conversion, according to Equation (2), as a function of inlet gas temperature for SCR core samples with various copper loadings, wherein the SCR core samples have been degreened and the inlet gas contains NO and NO2 in equal share. As can be seen from
b depicts NOx conversion efficiency as a function of inlet gas temperature among the SCR core samples with various iron loadings according to Equation (2), wherein the catalyst core samples have been degreened and the inlet gas contains an equal share of NO and NO2. As can be seen from
a depicts NH3 oxidation, according to Equation (3), as a function of inlet gas temperature for SCR core samples with various copper loadings, wherein the SCR core samples have been degreened and the inlet gas contains NH3 as the only nitrogen source. As well known in the art, NH3 oxidation is an undesirable side reaction competing for oxygen in an exhaust gas flow. As can be seen from
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application is a divisional of U.S. application Ser. No. 12/706,346 filed Feb. 16, 2010, which issued on ______ as U.S. Pat. No. ______, the disclosure of which is hereby incorporated in its entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 12706346 | Feb 2010 | US |
Child | 14805617 | US |