Catalyst For Direct Decomposition of Nitric Oxide And Method of Manufacturing The Catalyst

Abstract
The oxide catalyst for the direct NO decomposition to N2 and 02 is deposited on the austenitic acid-proof steel substrate and contains the phase with aFe203 structure and the phase with spinel structure and the lattice parameters close to the lattice parameters of NiFe204. Those phases form the micro-crystallites that additionally contain Cr and Mn and eventually Si. The catalyst according to the invention is manufactured by the at least twice heating of the austenitc acid-proof steel substrate in the atmosphere containing oxygen, up to the temperature from the 600-850° C. range, with the rate of 2-6° C./min, followed by the annealing at that temperature for 2-6 hours.
Description

The subject of the present invention is a catalyst for direct NO decomposition to N2 and O2. This catalyst is designed for nitric oxide removal from tail-gases of stationary sources of emission, such as: power plants, heat and power plants, waste incinerators, nitric acid factories, boilers of small and medium power, Diesel engines.


DeNOx technology is used nowadays for the nitric oxide removal from tail-gases of the stationary sources of emission. The technology is based on NO reduction by ammonia ((Catal. Today 62 (2000) 51-65 P. Forzatti et al.). The new patents concerning this technology still appear (ex. JP 2010-214306).


However, ammonia is relatively expensive and corrosive reducer, demanding costly dosage systems, and moreover, it itself is the air pollutant effecting harmfully human respiratory system.


Monolithic vanadium-tungsten oxide catalysts on ceramic supports, commonly used in this process, frequently undergo blocking by the soot forming in the burning processes, containing inorganic and carbon components. Moreover, the ceramic supports are relatively fragile. It may cause mechanical damage of the surface parts of the catalyst, responsible for its activity. In addition, selective interaction of particular components of the ceramic support with the reaction gases causes its cracking and deforming during long-lasting use.


The use of the direct NO decomposition for the NO removal from tail-gases of the stationary sources of emission does not require any reducer and thus, any system for its dosage, that make the process cheaper and environmentally-friendly.


The authors of the numerous patents have proposed for the direct NO decomposition: precious metals on oxide supports (US 20060073964, US 20070025901), silver or silver oxide on the oxide support (EP526099, EP679427), and mixed oxides containing transition metals in the hydrotalcite structure (KR 101011830).


The NO decomposition in the presence of the reducing agents on the mixed oxide catalysts with spinel structure (JP 7284663, JP 10180105) and the direct NO decomposition on the mixed V-W oxide catalysts (PL199013) were proposed earlier.


The direct NO decomposition on the soot, with the participation of the oxygen activated on α Fe2O3 (Applied Catalysis B: Environmental 80 (2008) 248-259 D. Reichert et al., Applied Catalysis B: Environmental 84 (2008) 803-812 D. Reichert et al.) and on metallic iron (Chemical Engineering Science, 53 (1998) 1481-1489 A. N. Hayhurst et al. and Fuel 89 (2010) 3505-3509 B. Gradoń et al.) was suggested recently.


A big drawbacks of the proposed catalysts is the low rate of the direct NO decomposition and the drop of the selectivity to nitrogen—caused by the oxygen presence, the destruction of the catalyst structure, under the influence of the water present in tail-gases, in the case of zeolites, as well as the gradual loss of the activity of the catalysts as a result of the soot deposition. Therefore none of the proposed catalysts have been commercialized till now.


The oxide catalyst for the direct NO decomposition to N2 and O2 on the austenitic acid-proof steel substrate, according to invention, contains the phase with the αFe2O3 structure and the phase with the with spinel structure having lattice parameters the nearest to to the lattice parameters of the nickel-iron spinel NiFe2O4 Those phases form microcrystallites that contain additionally Cr and Mn and eventually Si. In the phase with NiFe2O4 structure concentration of Cr and Mn are equal to 3.6-8.8 at. % and 1.4-3.4 at. %, respectively and in the phase with α-Fe2O3 structure the concentration of Cr, Mn and Si are equal to 0.1-1.7 at. %, 0.1-0.3 at. % and 0-0.2 at. %, respectively.


The content of the spinal phase with lattice parameters the close to the NiFe2O4 lattice parameters, determined from the average EDS data with assumption that Ni occurs only as Ni2+, Cr as Cr3+ is equal to 29-36 wt. % and the content of the phase with α Fe2O3 structure is equal to 64-72 wt. %.


Preferably in the phase with αFe2O3 structure no more than 1.5% of Fe3+ ions is substituted by Cr3+, whereas in NiFe2O4 structure no more than 12% of Fe 3+ ions is substituted by Cr3+ ions and no more than 10% Ni2+ ions is substituted by Mn2+ ions. The The austenitic steel substrate occurs in the form of tubes, stripes and monoliths made of the foil and it is prepared from Cr—Ni steel, possibly with addition of Ti.


Preferably the steel containing no more than 0.1 wt. %of C, 2.0 wt.% of Mn, 0.8 wt. % of Si, 0.045 wt. % of P, 0.03wt. % of % S, 0.3% wt. % of Cu, 19.0 wt. %of Cr, 10.0wt. % of Ni and 0.8 wt. % of % Ti is used. The most preferably the austenitic1H18N9T/1.4541 steel is applied.


Preferably the specific surface area of the catalyst is equal 1 to 5 m2/g.


The oxide catalyst according to the present invention is manufactured directly on the acid-proof austenitic steel substrate by its oxidation in the atmosphere containing oxygen during at least twice heating of the austenitic acid-proof steel monolith to 600-850° with the rate of 2-6° C./min, followed by the next annealing at those temperatures for 2-6 hours.


Preferably the steel is heated in air atmosphere.


Preferably the steel is heated 2-10 times.


Preferably the austenitic steel substrate has the shape of stripes, tubes or monoliths made from the foil.


As a result of the heating of the austenitic acid-proof steel substrate, the catalyst according to the present invention, containing oxide phases strongly bound with the substrate, is formed.


Two-phase catalyst on the acid proof austenitic steel substrate shows: the high activity in the direct NO decomposition, the small change in the selectivity to nitrogen under the oxygen influence and the time stability of both the catalytic parameters.


The catalyst causes oxidation of the carbon from the soot that ensure its stable activity. The thin coatings of the oxide catalyst, according to the invention, formed on the channel walls of monolith as epitaxial layers, do not undergo chipping and protect the metallic substrate against further corrosion.


The very simple manufacturing and the low cost are the additional assets of the proposed catalysts on the acid proof austenitic steel substrate.


The structure of the oxide layers on the acid proof austenitic steel substrate was determined by the X-ray diffraction, electron diffraction and Raman spectroscopy. Their chemical composition was determined by X-ray spectroscopy and X-ray photoelectron spectroscopy (XPS). The samples for those investigations were obtained by scraping the catalyst off the surface from the oxidized tubes or pieces of the foil.


The content of the spinel phase with the lattice parameters the close to the lattice parameters of the NiFe2O4 1 was evaluated on the base of the statistics of the indexed selected area diffraction patterns as well as on the base of the X-ray diffraction patterns and chemical analyses performed by the X-ray spectroscopy and the XPS.


The subject of the present invention was illustrated by the examples.







EXAMPLE 1

The acid proof austenitic steel 1H18N9T/1.4541 tube was subjected to 7 heating cycles in air. The cycles were composed of the thermo-programmed heating to 650° C. with the rate of 4°/min and the next annealing at that temperature for 4 h. The layer of the oxide catalyst, containing the phase with the spinel structure and the lattice parameters of NiFe2O4, as well as the phase isostructural with a Fe2O3, was obtained. The percentage of the spinel phase was ca 36% and the percentage of the phase with a Fe2O3 structure was ca 64%. The BET specific surface area of powdered catalyst scraped off the tube was equal to 4 m2/g.


The Raman spectra were taken in three points of the powdered sample. The spectra in the 100-2000 cm−1 wave number range are presented in FIG. 1. Above the maxima the position of the peaks of α Fe2O3 (Phys. Rev. B41 (1990) 7822-7827 M. J. Massem et al.) (*), FeCr2O4 (Geochim. Cosmochim. Acta, 67 (2003) 3937-3942 M. Chen et al.) (▾), Fe3O4 (Journal of Solid State Chemistry 174 (2003) 424-430 O. N. Shebanova et al.) (), and NiFe2O4 (J. Raman Spectrosc. (2010), (wileyonlinelibrary.com) DOI 10.1002/jrs.2791 A. Ahlawat & V. G. Sathe) (▴) are marked.


As seen, in the investigated micro-areas of the sample, scraped from the tube surface, α-Fe2O3 phase and spinel phases with the lattice parameters of NiFe2O4 and/or FeCr2O4 are present. The presence of α-Fe2O3 and spinel phases in his catalyst was also found by the XRD method.


The results of the investigation of that catalyst by transition electron microscopy have provide more precise information about the present phases and their chemical composition. In FIG. 2 the results obtained for typical micro-crystallite, by the analytical transmission electron microscopy, are presented. FIG. 2a represents the microscopic image of the micro-crystallite. FIG. 2b shows selected area diffraction pattern from the chosen area of the micro-crystallite with marked zone of the planes, FIG. 2c represents the X-ray spectrum from the point of micro-crystallite shown by the arrow, FIG. 2d shows the contents of the particular elements in the analysis area shown by the arrow, in weight and atomic percents.


The indexing of the selected area diffraction pattern allows to find out the presence of the α-Fe2O3 crystallite with (110) surface perpendicular to the electron beam. The O/Fe atomic ratio close to 1.5 confirms the presence of Fe2O3. However, the presence of Cr 0.5 at. % and close ionic radii of Fe3+ and Cr3+ ions show the formation of the Cr3+/α-Fe2O3 solid solution. The amounts of manganese and silicon found out in that crystallite are smaller.


In FIG. 3 the results obtained by transmition electron microscopy for another micro-crystallite of the investigated catalyst are shown. FIG. 3a presents microscopic image of the micro-crystallite. FIG. 3b represents the area diffraction pattern from the chosen part of the investigated micro-crystallite with marked zone of planes. FIG. 3c shows X-ray spectrum from the area marked by the arrow. FIG. 3d presents contents of the particular elements in the area shown by the arrow, in the weight and atomic percents.


The indexing of the selected area diffraction pattern, shown in FIG. 3b, allows to find that it comes from NiFe2O4 crystallite with (112) plane perpendicular to the electron beam. The atomic ratio of iron to nickel close to 2 (FIG. 3d) also confirms the presence of that phase.


EXAMPLE 2

The 1H18N9T/1.4541 austenitic acid- proof steel tube was subjected to 7 heating cycles in air, composed of thermo programmed heating up to 840° C. with 4°/min rate followed by the annealing at that temperature for 4 hours. The oxide layer with specific surface area equal to 1 m2/g, containing a Fe2O3 and spinel phase with lattice parameters near to the lattice parameters of nickel-iron spinel, was obtained.


The surface part (up to 2 nm) of this layer is impoverished in Cr3+ and Fe2+ cations and enriched in Fe3+ cations in comparison with the surface part oxide layer obtained in the heating cycles up to 650° C., as it is shown in Table 1, demonstrating the results obtained by the X-ray photoelectron spectroscopy method. However, the content of the nickel ions is practically the same in both the cases.


The lowering of the ratio of the total amount of the ions at II degree of oxidation to the total amount of the ions at III degree of oxidation in comparison to the catalyst obtained in the heating cycles up to 650° C. distinctly shows lowering of the participation of the spinel phase, that is confirm also by results of the investigation by diffraction methods and by Raman spectroscopy.









TABLE 1







Percentage of the particular cations in the surface nanolayers of the


catalyst obtained in the course of 7 heating cycles up to 650 and


to 840° C., determined by XPS.










Kind of cations













Fe3+
Fe2+
Cr3+
Ni2+











Catalyst obtained in the course of 7 heating cycles up to 650° C. in air













Content
23
39
28
10



[at. %]







Catalyst obtained in the course of 7 heating cycles up to 840° C. in air













Content
42
28
21
 9



[at. %]










EXAMPLE

3


The investigation of the activity of the Cr,Mn/α-Fe2O3—Cr, Mn/NiFe2O4 biphasic catalyst, obtained according to the example 1, in the direct NO decomposition.


The investigation was performed in the quartz vertical tubular flow reactor (Ø=3.6 mm and l=31 cm) with the perforated quartz plate holding the catalyst, placed 3 cm above its bottom end as well as in the quartz vertical u-tube (Ø=3.6 mm) flow reactor with 4 times broadening in the catalyst volume, containing quartz fit holding the catalyst.


The investigations was performed in 150-500° C. temperature range for NO diluted by helium to 2%, 1% and 200 ppm with GHSV=15000 h−1. The NO concentration equal to 200 ppm corresponds to the concentration of NO in tail-gases of numbers coal-biomass power plants. They used GHSV was ca twice higher than GHSV of the tail-gases in the power plants.


In FIG. 4 the temperature dependences of the selectivity to nitrogen in the direct NO decomposition in the gas mixtures containing: a) 2/% NO/He, b) 2% NO and 7.4% O2/He; c) 2% NO and1600 ppm SO2/He; d) 2% NO, 7.4% O2, 200 ppm SO2 and 0.25 g of the dusts gathered after electro filters in biomass-coal power plant, with s GHSV=15000 h−1 on the 0.2 g sample of the catalyst obtained according to example 1, are presented . The NO conversion was equal to 100% at all the temperatures for the reaction mixtures containing additional components beside 2% NO/He. The NO conversion was equal to ca. 50% only at 150° C. for the reaction mixture 2% NO/He.


As easy to notice, the direct NO decomposition proceeds with the highest selectivity to nitrogen (SN2) in the 2% NO/He gas mixture (FIG. 4a). It gains the value close to 100% already at 250° C. and stabilizes at this level at higher temperatures.


The presence of 5% of oxygen in the reaction mixture results in lowering of the value of the selectivity to nitrogen in the whole temperature range and the shift of its stabilization, at the level of ca 80%, to 400° C. (FIG. 4b).


1600 ppm of SO2 causes bigger lowering of the selectivity to nitrogen than 5% of O2 and causes also the lack of SN2 stabilization in the investigated temperature range.


Simultaneous presence of 2% NO, 7,4% O2, 200 ppm SO2 and mixing of the catalyst with 0.5 g of the dust gathered behind the electro filters in biomass-coal power plant causes that selectivity to nitrogen at temperatures up to 300° C. remains at very low level (ca. 10%). Above 300° C. the SN2 rapidly increases achieving at 400° C. the value ca 90%. This selectivity remains stabile also at higher temperatures. CO2 was found in the products of reaction proceeding above 300° C.


The comparison of the result of the chemical analyses performed by the X-ray spectroscopy method for the freshly prepared sample of the catalyst mixed with the dust as well as for the sample of this catalyst used in the reaction of the direct NO decomposition shows diminishing of the carbon content in the course the catalyst interaction with the reaction mixture.


It could be thus claimed that above 300° C. the catalyst according to the invention may be used for simultaneous removal of NO and carbon particles from tail-gases of such sources of emission as power plants, heat and power plants, nitric acid factories, waste incinerators, boilers of the low and medium power or Diesel engines, containing noticeable amount of oxygen and possibly also the amounts of sulphur dioxide comparable with those of NO.

Claims
  • 1. The oxide catalyst for the direct NO decomposition to N2 and O2 deposited on metallic substrate, characterized in that the austenitic acid proof steel is the substrate and the catalyst is biphasic and contains the phase with αFe2O3 structure and the phase with spinel structure. The lattice parameters of the spinel phase are very close to the lattice parameters of NiFe2O4. The phases form micro crystallites containing additionally Cr, Mn and possibly Si with the concentrations: 3.6-8.8 at. % of Cr, and 1.4-3.4 at. % of Mn in the phase with NiFe2O4 structure and 0.1-1.7 at. % of Cr, 0.1-0.3 at. % of Mn and 0-0.2 at.% of Si in the phase with α-Fe2O3 structure. The content of the spinel phase in the catalyst is equal to 28%-36% wt. % and the content of the phase with αFe2O3 structure is equal to 64-72 wt. %.
  • 2. The catalyst according to the claim 1 characterized in that in the phase with αFe2O3 structure no more than 1.5% of the Fe3+ ions is substituted by Cr3+ ions, whereas in the phase with NiFe2O4 structure no more than 12% of the Fe3+ ions is substituted by Cr3+ ions and no more than 10% of the Ni2+ ions is substituted by Mn2+ ions.
  • 3. The catalyst according to the claim 1 characterized in that the chromium-nickel steel is the substrate.
  • 4. The catalyst according to the claim 3 characterized in that the steel contains titanium.
  • 5. The catalyst according to the claim 3 characterized in that the steel substrate contains no more than: 0.1 wt. % of C; 2.0 wt. % of Mn; 0.8 wt. % of Si; 0.045 wt. % of P; 0.03 wt. % of S; 0.3 wt. % of Cu; 19.0 wt. % of Cr; 10.0 wt. % of Ni and 0.8 wt. % of Ti.
  • 6. The catalyst according to the claim 5 characterized in that the 1H18N9T/1.4541 steel is the substrate.
  • 7. The catalyst according to the claim 1 characterized in that the substrate occurs in the form of the tubes, the pieces of the foil or the monoliths manufactured from the foil.
  • 8. The catalyst according to the claim 1 characterized in that its specific surface area is equal to 1 to 5 m2/g.
  • 9. The method of the production of the oxide catalyst for the direct NO decomposition to N2 and O2, deposited on the metallic substrate, characterized in that the austenitic acid proof steel is oxidized by the at least twice heating of the austenitic acid-proof steel substrate in the atmosphere containing oxygen to 600-850° C., with the rate 2-6° C./min followed by the annealing at the temperature for 2-6 hours.
  • 10. The method according to the claim 9 characterized in that the steel is heated in the air atmosphere.
  • 11. The method according to the claim 9 characterized in that the chromium-nickel steel is subjected to the heating.
  • 12. The method according to the claim 11 characterized in that the steel, containing no more than 0.1 wt. % of C; 2.0 wt.% of Mn; 0.8 wt.% of Si; 0.045 wt. % of P; 0.03 wt. % of S; 0.3 wt. % of Cu; 19.0 wt. % of Cr; 10.0 wt. % of Ni and eventually 0.8 wt. % of Ti, is subjected to the heating. .
  • 13. The method according to the claim 12 characterized in that the 1H18N9T/1.4541 steel is subjected to the heating.
  • 14. The method according to the claim 9 characterized in that the heating is performed 2-10 times.
  • 15. The method according to the claim 1 characterized in that the substrate occurs in the form of the tubes, the pieces of the foil or the monoliths manufactured from the foil.
Priority Claims (1)
Number Date Country Kind
P 395905 Aug 2011 PL national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/PL2012/000065 8/8/2012 WO 00 6/7/2013