CATALYST FOR THE FIRST HYDRODEMETALIZATION STEP IN A HYDROPROCESSING SYSTEM WITH MULTIPLE REACTORS FOR THE IMPROVEMENT OF HEAVY AND EXTRA HEAVY CRUDES

Information

  • Patent Application
  • 20100304963
  • Publication Number
    20100304963
  • Date Filed
    May 26, 2008
    16 years ago
  • Date Published
    December 02, 2010
    14 years ago
Abstract
An improved catalyst for hydrodemetallization of heavy crude oils and residua is disclosed. The catalyst is adopted for fixed bed hydroprocessing units. The invention is characterized for having a large pore diameter catalyst principally for hydrodemetallization of heavy oil and residue in a first reactor of a multi-reactor process. The catalyst has high demetallizing activity and high metal deposition capacity which results in good stability with time on stream (TOS). The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of gamma-alumina and having a pore capacity of 0.3-0.6 ml/g or larger and a mean pore diameter of 10 to 26 nm, extrudating and calcining, and after that supported with active metals component of elements belonging to groups VIIIB and VIB of the periodic table.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates to a catalyst developed for hydroprocessing of heavy oil and residue, and particularly relates to a catalyst used in a hydrodemetallization step of a multistage process for hydroconversion of heavy crude oils and residue.


The catalysts synthesized in a present invention considerably improve the hydrodemetallization activity and are not deactivated quickly by the contaminants, particularly metals such as nickel and vanadium (Ni or and V) that are present in heavy crude oil feedstock. This process not only removes the adverse impurities such as metals, sulfur, nitrogen, etc, but also can crack heavy fraction into high value components with low boiling point.


BACKGROUND OF THE EARLIER WORK

The heavy crude oil contains a substantial proportion of asphaltenes and other hydrocarbons which are associated with large amount of sulfur, nitrogen and metals. In past times, these heavy fractions were usually found to be applicable in paving materials and converted to the valuable product using thermal processes. Today, due to the cost and enormous demands for petroleum, these fractions require to be processed to form more valuable products, which are relatively low sulfur and lower boiling hydrocarbon that can be used as clean fuels. It is known in the art that this reduction in metal, sulfur and conversion to lower boiling hydrocarbons can be carried out with hydrogen and a solid catalyst at elevated temperatures and pressure. There are few previous arts, which report the catalysts close to the present invention.


The patent WO 0,253,286 claims a hydroprocessing catalyst for the conversion of the heavy oil hydrocarbons, which contains a transition metal of group VI in a concentration of 7 to 20 weight % and a metal of group VIII in a concentration of 0.5-6 weight % in a calcined catalyst, which correspond to oxide composition over a support of alumina. The invention also claims a process for the hydroprocessing of heavy hydrocarbon feedstock with the catalyst of the invention in fixed or ebullated bed.


U.S. Pat. No. 4,225,421 discloses a process for hydrodemetallation and hydrodesulfurization of hydrocarbon feedstocks containing asphaltenes and metals by contacting the feedstock with hydrogen and a bimodal catalyst consisting essentially of a Group VIB hydrogenation metal on a support comprising alumina wherein said catalyst has a surface area of about 140-300 m2/g and a total pore volume of about 0.4-1.0 cc/g. Out of that total pore volume, 0.06-0.3 cc/g can be in pores having a radius greater than 60 nm. U.S. Pat. No. 4,746,419 discloses a bimodal catalyst characterized by a surface area of 75-400 m2/g and a total pore volume of 0.5-1.5 cc/g. Out of that total pore volume, 0.2-0.3 cc/g are in pores greater than 60 nm radius and not more than 0.15 cc/g in pores greater than 200 nm radius. Although U.S. Pat. Nos. 4,225,421 and 4,746,419 disclose that high surface area, bimodal catalyst are desirable for hydroprocessing heavy hydrocarbon feedstocks, these patents fail to understand that the manner in which the pore volume is distributed throughout the range of pores that are less than 60 nm radius can make a difference in catalyst performance.


U.S. Pat. No. 5,545,602 claims a catalyst with a composition containing very high amount of group VIII and group VIB metals along with phosphorus oxide, with a surface area of 150-240 m2/g, total pore volume of 0.7-0.98 cm3/g, and a pore volume distribution where less than 20% corresponds to the micro-pore zone with diameter of 10 nm, around 34-74 corresponds to pores within the 10-20 nm interval, from 26-46% corresponds to the region of meso-pores with pore diameter of 20 nm, 22-32% with pore diameters of 25 nm, and the macro-pore region with diameters of 100 nm contributes with 14-22%. This patent mainly claims the process for residua feedstock having 4-6° API gravity.


U.S. Pat. No. 6,218,333 discloses a detailed method for the preparation of a catalyst by means of a porous support (alumina, silica-alumina, silica, titanium, boron, zeolites, zirconium, magnesium and their combinations) with one or more active metals (Mo, W, Co, Ni and their oxides, sulfides and mixtures of them). The aim of this patent is to find out the proper method of activation before catalytic activities.


U.S. Pat. No. 4,687,757 claims an alumina support which can contain compounds of transition metals titanium and one of molybdenum having a surface area in the 100-250 m2/g interval, while they are neither claiming the interval of pore volume nor the average pore diameter, both of which are very important properties particularly when the hydrotreating feedstock are residues and/or heavy crude oils. In the detailed description of the patent they reveal a volume of pore of 0.2-2.0 cm3/g, which was determined in mercury penetration equipment. From these data it is evident that the catalyst of the referred patent is used mainly in the hydrodemetallization stage, which contains titania in the support.


On the other hand, in present invention to balance catalyst textural properties to provide a catalyst that admits a maximum amount of treatable hydrocarbons into the pores of the catalyst while at the same time providing access to a maximum number of active catalytic sites on the surface as well as in-side the pores without diffusion limitations.


In addition, the present inventions provide a catalyst affording higher conversion of heavy hydrocarbon feedstocks along with sufficient stability with time on stream. Thus, a catalyst development is appreciated that is economically attractive to maximize the balance of catalyst life and activity of hydroprocessing. This entity is accomplished herein by variation support composition (different alumina) or different pore diameter of the catalyst.


The above representative patents examples disclosed the catalyst formulations and other catalyst useful components along with their entirety of process conditions. All of them are with the alumina catalysts of the present invention.


DESCRIPTION OF THE INVENTION

The performance of heavy oil hydroprocessing catalysts is often affected by pore diffusion limitations generated due to the carbon and metal deposition. The variation of support composition is a way to find out the optimum pore diameter of the catalyst. The reason behind the optimum pore diameter is to obtain more selective activity, which depends on the active metal dispersion as well as pore diameter of the catalysts. However, heavy oils fraction contains high amounts of sulfur and other contaminants that exhibit different reactivity during hydroprocessing, and depending on their complexity, can affect the course of reactions differently; to the point that they can even deactivate the catalyst at a very fast rate. Therefore, before hydroprocessing heavy oil, there are two main concerns that need to be considered: i) environmental specification, and ii) product selectivity. The later case involves the different functionalities of the hydrotreating catalyst, i.e., hydrogenolysis, hydrogenation and hydrocracking, which have an impact on the final product quality depending on both feed and catalyst compositions. Thus, to satisfy both concerns, upgrading of heavy oil is mandatory. Alternatively, refiners are facing a dilemma in trying to keep oil prices more or less steady in spite of treating the crude with more expensive processing methods.


To solve the aforesaid problems existing in the prior art, an object of the present invention is to provide a catalyst for hydroconvertion of a heavy hydrocarbon feedstock.


Another objective of present investigation is to obtained a catalyst that has a high metal retention capacity during the operation of heavy oil and residues, thereby prolonging the operation lifetime of the hydroprocessing units as well as protect subsequent process catalysts in a multi-reactor system.


An additional objective of the present invention is to develop an HDM catalyst located in the front reactor; to remove metals; and to protect high activity downstream HDS, hydrogenation, and HDN catalysts, which are loaded in subsequent reactors of a multi reactor system.


Therefore, the design of pore structure of catalysts should handle complex metal compounds of large molecular size. In general the HDM catalyst (first reactor) is designed with high porosity and low surface area, while the subsequent catalysts are characterized by higher surface area and moderate pore size distribution. Apart from this, the large pore catalysts enhance diffusion of asphaltene into the interior surface of the catalyst.


The detail of the above said objectives of present invention is given in the following sections.





BRIEF DESCRIPTIONS OF THE DRAWINGS

The manner in which the foregoing and other objects are achieved in accordance with the present invention will be better understood in view of the following detailed description and accompanying drawings, which form a part of this specification, and wherein:



FIG. 1, a flow diagram showing the steps (A-G) for manufacturing a hydroprocessing catalyst of the present invention. Where, (A) is referred to the drying of boehmites, (B) mixing of boehmite powder, (C) peptization of boehmite with HNO3, (D) preparation of extrudates, (E) drying and calcination of the support, (F) catalyst preparation, and (G) correspond to the drying and calcination of the catalysts.



FIG. 2, a flow diagram showing the steps (H-M) for activation or pretreatment of catalysts of the present invention. Where, (H) is referred to catalyst loading, (I) hemiticity test of the reactor, (J) sulfidation procedure, (K) reaction conditions, (L) time-on-stream of the reaction, and (M) correspond to the analysis of the reaction products.



FIG. 3, shows the heavy crude oil hydroprocessing activities for a typical CoMo/Al2O3 (CoMo/Catapal C1 & Catapal 200) supported catalyst invention with a mixed feedstock of Maya and diesel up to 120 h time-on-stream (Catalyst 1, 11.8 nm).



FIG. 4, shows the heavy crude oil hydroprocessing activities for a typical CoMo/Al2O3 (Catapal 200) supported catalyst invention with a diluted feedstock up to 120 h time-on-stream (Catalyst 2, 26.8 nm).



FIG. 5, shows the heavy crude oil hydroprocessing activities for a typical CoMo/Al2O3 (Pural HT 100 and Pural SB) supported catalyst invention with a mixed feedstock of heavy crude and diesel up to 120 h time-on-stream (Catalyst 3, 21.5 nm).



FIG. 6, shows the comparison of performance for three different alumina support compositions for CoMo catalysts of the present invention for hydrodemetallization of heavy crude oil after 120 h TOS.



FIG. 7, shows the heavy crude oil hydroprocessing activities for a typical CoMo/Al2O3 (Catapal C1 and Catapal 200) supported catalyst and invention with a pure Maya heavy crude oil up to 1000 h time-on-stream (Catalyst 1, 11.8 nm).



FIG. 8, shows the performance for a CoMo/Al2O3 (Catapal C1 and Catapal 200) supported catalysts with pure Maya crude upto 1000 h of time-on-stream, showing the metal deposition along with time-on-stream.





DETAILED DESCRIPTION OF THE INVENTION

The catalyst is adopted for fixed bed hydroprocessing units. The invention is characterized for having a large pore diameter catalyst principally for hydrodemetallization of heavy oil and residue in a first reactor of a multi-reactor process. The catalyst has high demetallizing activity and high metal deposition capacity which results in good stability with time on stream (TOS). The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of gamma-alumina and having a pore capacity of 0.3-0.6 ml/g or larger and a mean pore diameter of 10 to 26 nm, extrudating and calcining, and after that supported with active metals component of elements belonging to groups VIIIB and VIB of the periodic table.


Our invention is entitled “Catalyst for a first-step hydrodemetallization in a multi-reactor hydroprocessing system for upgrading of heavy and extra-heavy crude oils” for improved textural properties of catalysts and their evaluation, the step wise drawing shows the detail preparation method of catalyst.


Stepwise Description of Supports and Catalysts Preparation

The preparation of support and catalysts are depicted in the FIG. 1, which is completed in the A-G steps. The principal step is the peptization of aluminas that are responsible to the strength of catalysts as well as generation of macro-pore due to the inter-particle distance. Boehmite aqueous suspensions were acidified (peptized) with diluted nitric acid at room temperature to produce colloidal sol systems.


Required quantity of aluminum oxyhydroxide (boehmite) is first dried at 120° C. for 5 h (A). The following steps are dry mixing of different boehmite (B), and mixing continuously with 3.5% (volume/volume) of HNO3 and distilled H2O(C). The mixture is then added to the mixer slowly with continuous mixing with the amount of deionized water necessary to obtain an homogeneous paste adequate to be extruded (D). The extrudates obtained with the paste are maintained at 20-25° C. during 12-18 h, then they are dried at 100-120° C. during 2-6 h, and calcined at 500-600° C. during 3-5 h, using a heating ramp of 2° C./min to obtain gamma alumina (E). The calcined support was impregnated with the active metal in a sequential impregnation method (F) using typical group IV metal in first step and second step group VIIIB as promoters. The catalysts were dried at room temperature, 120° C. for 12 h, and finally calcined at 450° C. for 4 hours (G). The catalysts prepared with this method with variation of support composition and their physico-chemical properties are those presented in Table 1.









TABLE 1







Properties of catalysts, indicating the various


catalysts composition and their physical properties.


Catalysts properties











Cat-1
Cat-2
Cat-3














Support composition, wt. %





Catapal C1
50




Catapal 200
50
100


Pural SB


50


Pural TH 100


50


Catalyst composition, wt. %


MoO3
10.01
9.98
9.99


CoO
2.2
2.2
2.1


Catalyst physical properties


Shape
Cylindrical
Cylindrical
Cylindrical



extrudate
extrudate
extrudate


Size, in
1/16
1/16
1/16


Density of extrudates, cc/g
0.86
0.91
0.93


Crushing strength (grain-to-
4.2
3.8
3.9


grain), kg


Specific surface area, m2/g
120
56
102


Average pore diameter, nm
11.8
26.8
21.5


Total pore volume, ml/g
0.362
0.479
0.546


% Micro-pore (d < 2 nm)
0.81
0.62
0.53


volume, ml/g


% Meso-pore (2 ≦ d ≦ 50
42.5
33.8
29.3


nm) volume, ml/g


% Macro-pore (d > 50 nm)
56.6
65.6
70.2


volume, ml/g


Pore volume, cc/g


>5 nm
12.5
3.0
4.2


5-10 nm
34.8
2.6
10.5


10-25 nm
39.2
9.1
33.9


25-50 nm
8.5
20.2
44.5


50-100 nm
4.0
37.5
5.2


>100 nm
1.0
27.7
1.7









Stepwise Description of Catalyst Pretreatment and Catalytic Test

The reactor was operated in a fixed bed mode using up-flow and down flow modes. FIG. 2 is a schematic representation of the methodology used for the micro and bench scale reaction evaluation of the catalysts described in the examples of the present invention. In step (H), the reactor is loaded with 10 mL of catalyst with 10 mL of inert material (SiC). Stage (I), corresponds to the test of the equipment at a pressure 10 higher than the one used in normal operation in order to detect any leak in the experimental set up. The stage (J) represents the sulfidation of the catalyst, performed with gasoil from the atmospheric distillation of petroleum (SRGO) to which 2 wt % sulfur was added (DMDS+SRGO). The following operating conditions were used for the sulfidation of the catalyst: reaction temperature of 320° C., pressure of 28 Kg/cm2, LHSV of 2.0 h−1 and hydrogen/hydrocarbon ratio of 356 m3/m3. The step (K) corresponds to the operation of the catalytic test that is performed by feeding the mixture of oil and hydrogen to the reactor in ascending mode (descending mode for bench scale). The composition and characteristics of feedstocks for micro and bench scales are those presented in Table 2. The feed to the reactor is a 50/50 wt % mixture of heavy crude and hydrodesulfurized diesel. The operating conditions in stage (K) are as follows: temperature of 380° C., pressure of 5.4 MPa, hydrogen/hydrocarbon ratio of 356 m3/m3, and LHSV of 1.0 h−1. In stage L the reaction takes place during 120 h and during this time samples of product are taken every 12 h. Finally, in stage (M), analysis of the products from the reactor is performed.









TABLE 2







Properties of typical heavy hydrocarbon oil










Bench-scale-Feed
Micro-plant Feed


Properties
(Heavy crude oil)
(Diluted feedstock)












Elemental analysis




C, wt. %
86.9
84.2


H, wt. %
5.3
8.8


N, wt. %
0.3
0.184


S, wt. %
3.52
2.21


Metal, wppm


Ni
49.5
26.21


V
273.0
124.78


(Ni + V)
322.5
150.99


Ca
11.26
5.0


Mg
2.04
1.01


Na
44.83
21.2


K
20.25
10.2


Fe
2.16
1.02


Asphaltene, wt. % (n-C7 insol.)
12.7
8.43


Physical properties


Density, 20/4° C.
0.9251
0.88


Pour point, ° C.
−30
−15


Ramscarbon, wt. %
10.87
5.45


API gravity
21.31
37.09


Viscosity, g/cm s


at 50° C.

3.08


at 100° C.

9.45









The selected conditions for the evaluation of catalysts at micro plant and bench scale are those presented in Table 3. At bench scale level the operating conditions for evaluation of the catalysts are more severe than at micro-plant level, the run time was increased to 1000 h and the amounts of catalyst and inert material were 100 and 50 mL respectively.









TABLE 3







Reactor specifications and reaction conditions


for fixed-bed integral reactors











Conditions
Micro-plant
Bench scale plant















Reactor Specification





Reactor Length, in
22.2
55



Reactor inner diameter, in
0.51
1.0



Reactor outer diameter, in
0.98
1.5



Reactor material (inox)
SS-316
SS-316



Reaction Conditions



Temperature, ° C.
380
400



Pressure, MPa
5.4
7.0



Hydrogen flow, l/h
4.6
90



Flow of heavy crude, mL/h
10
100



LHSV, h−1
1.0
1.0



Hydrogen/Oil ratio, m3/m3
356
891.0



Mode of operation
Up-flow
Down flow



Time-on-stream, h
120
200



Catalyst volume, mL (g)
10 (8.5)
100 (85.0)



Extrudate diameter, mm
2.5
2.5



Extrudate length, mm
5-7
5-7



Feed composition tested



Pure heavy crude





Diluted feedstock












EXAMPLES

The following examples are provided to illustrate the behavior of the catalyst of the present invention and its use in hydroprocessing of heavy crude oil and residua. These examples should not be considered as limitations of the invention, but should merely teach how to make the appropriate support, catalyst and their evaluation, reflecting the present invention. The reactor had a fixed bed of a particulate supported transitions metal hydroprocessing catalyst. The reactor was run at a total pressure of 5.4-7 MPa. The liquid weight throughput based on catalyst volume was 1 h−1, and the hydrogen throughput was equivalent to 891 m3/m3.


Example 1

A support hydroprocessing catalyst containing the reference aluminas from Table 1 was prepared per following procedure. The dried 50 parts of catapal C1 alumina (Catapal C1 from Condea) and 50 parts pseudoboehmite alumina (Catapal 200 from Condea) were well mixed in equal proportion considering 25% moisture in both samples. To the mix, diluted HNO3 acid and sufficient amount of de-ionized water were added to form an extrudable paste (3-5 wt % HNO3 to the total powders). These weights are on 100% solids basis. The paste was extruded in 1/16″ cylinder, and dried at 100-120° C. overnight. The dried extrudates were calcined at 500-550° C. for 4 hour with purging excess dry air to obtain a gamma alumina support, and cooled down to room temperature.


Impregnation of Co and Mo was done using a solution containing ammonium heptamolybdate and cobalt nitrate to the target metal loadings of 2.2 wt % CoO and 10 wt % MoO3 in the finished catalyst. The total volume of the solution matched the 100% water pore volume of the base extrudate sample (incipient wetness method). The metal solution was added to the support extrudates gradually while tumbling the extrudates. When the solution addition was complete, the soaked extrudates were aged for over night. Then the extrudates were dried at 120° C. for 12 h. The dried extrudates were calcined at 450° C. for 4 hour with purging excess dry air, and cooled down to room temperature. This catalyst is named Catalyst 1 (Cat-1) and its physical properties are summarized in Table 1 where it is observed that catalyst contains mesoporous.


The catalyst of the present invention was loaded to a reactor and used as first-stage hydrodemetallization catalyst. The run was carried out in a bench-scale test unit having automatic controls for pressure, flow of reactants, and temperature. The reactor specifications are reported in the Table 3. During the reaction the reactor temperatures were controlled at different height of reactor through outside as well as inside thermo-well extended up through the center of the reactor. The hydrocarbon feedstock was fed to the unit by means of a LDC pump, a positive-displacement pump. The activity products of the run were obtained from the product receiver and were analyzed for relevant analysis. Catalyst activities for HDS, HDN, HDM and HDAs are shown in FIG. 3. These activities were slightly decreased with time-on-stream almost at similar magnitude. as shown in FIG. 3.


Example 2

Catalyst 2, a CoMo catalyst containing alumina of the invention, was prepared using a procedure similar to Catalyst 1. For Catalyst 2, catapal 200 alumina of the invention from Example 1 was used to prepare the base extrudates. This catalyst is named Catalyst 2 (Cat-2) and its physical properties are summarized in Table 1. The texturales property of the catalyst (Cat-2) is shown in Table 1 where it is observed that catalyst contains mesoporous.


Catalyst activities for HDS, HDM and HDAs were slightly higher than HDN. These activities were decreased with time-on-stream almost at similar magnitude as shown in FIG. 4.


Example 3

Catalyst 3, a CoMo catalyst containing alumina of the invention, was prepared using a procedure similar to Catalyst 1. For Catalyst 3, 50 parts alumina (Pural SB, from Condea) of the invention from example 1 and 50 parts pural TH alumina (Pural TH 100, from Sasol) were used to prepare the base extrudates. This catalyst is named Catalyst 3 (Cat-3) and its physical properties are summarized in Table 1. The texturales property of the catalyst (Cat-2) is shown in Table 1 where it is observed that catalyst contains mesoporous.


The catalyst showed almost similar activity for HDS, HDM and HDAs. These activities were decreased with time-on-stream almost at similar magnitude as shown in FIG. 5.


Example 4
Comparison Between the Three Catalysts

The catalysts activities were compared for three different catalysts after 120 h time-on-stream as shown in FIG. 6. The activity corresponds to the pore diameter as well as the balance between the pore diameter and dispersion of catalytic sites.


Example 5

Based on the balanced HDS and HDM activities results obtained in the evaluation of catalyst (Cat-1) at micro-plant scale after 120 hours of time-on-stream, this catalyst was evaluated at bench scale during 1000 h of time-on-stream. The reaction conditions were mentioned previously (Table 3). The behavior of Cat-1 at bench scale is presented in FIG. 7.


The experiment of Example I is repeated with two changes. As base feedstock is used a pure Maya crude having a sulfur content of 3.52%, a metals content of 322 ppm and a gravity of about 21.3. Results illustrating the effectiveness of the invention similar to those of Example I would be observed.



FIG. 7 shows the results of activity and stability of catalyst (Cat-1) of the present invention evaluated at bench scale. The formulation of Cat-1 exhibited the best activity in the micro plant tests; therefore, it was decided to evaluate this catalyst at bench scale, using a feedstock containing large amount of sulfur, nitrogen and metals. It is observed that catalyst presents constant stable behavior after 100 h and onwards along with time-on-stream of the test, maintaining an HDM conversion level of around 30%. In the same figure the behavior of catalyst (Cat-1) in the HDS (40%), HDN (15%), and HDAs (28%) reactions are also observed. The HDM and HDAs reactions presented the same stability maintaining a conversion of around 30% from 150 h up to 1000 h.


Apart from the above conversion the hydrotreated product oil improved API gravity by 6-8 degree along with low metal and sulfur content. Such kind of feedstock can be directly used for hydrocracking or fluid catalytic cracking. During the HDM, catalyst retains Ni and V sulfides as shown in FIG. 8.


NOVELTY OF THE INVENTION

It has been described above that the present invention has its novelty and therefore, the following claims have been proposed.

Claims
  • 1. A catalyst for hydrodemetallization for feedstock consisting of heavy crudes comprising a support based on alumina (Catapal C1 and Catapal 200, 50/50 weight %). The support having on its surface a catalytically effective amount of hydrodemetallization (HDM), hydrodesulfurization (HDS) and hydrodeasphaltenization (HDAs), said catalyst having a pore volume of about 0.3 to 0.6 cc/g, a surface area of 50-120 m2/g, the catalysts has 99% of its pores having a diameter greater than 2 nm, and average pore diameter from 5-30 nm, which is determined by means of nitrogen adsorption and catalyst is in the form of extrudates.
  • 2. A procedure to obtain a catalyst for the hydrodemetallization of residua and heavy crudes, according to claim 1, wherein support is constituted by aluminum oxide (boehmite) wherein the catalyst is in the form of extrudates of about 2.5 mm in diameter and 6 mm length, wherein the catalyst is of a size and shape adapted for down flow and up flow fixed bed reactor.
  • 3. A procedure to obtain a catalyst for the hydrodemetallization of residua and heavy crudes, according to claims 1 and 2, wherein said catalyst comprises the oxides or sulfides of a Group VI or Group VIII metal, or mixtures thereof, on a porous support.
  • 4. A procedure to obtain a catalyst for the hydrodemetallization of residua and heavy crudes, according to claims 1 to 3 wherein said catalyst comprises about 2 to 2.5% by weight cobalt oxide and from about 8 to 12% by weight molybdenum oxide.
  • 5. A procedure to obtain a catalyst for the hydrodemetallization of residua and heavy crudes, according to claims 1 to 4 wherein said hydrocarbon is a heavy crude oil or residua, which include vanadium and/or nickel and/or iron and/or sodium and/or calcium and/or magnesium.
  • 6. A procedure to obtain a catalyst for the hydrodemetallization of residua and heavy crudes, according to claims 1 to 5, wherein the catalyst is used for demetallization treatment of heavy oil containing 100-325 ppm by weight of nickel and vanadium.
  • 7. A procedure to obtain a catalyst for the hydrodemetallization of residua and heavy crudes, according to claims 1 to 6, wherein the catalyst is used for deasphaltening treatment of heavy oil containing 5-15 weight % or more asphaltene component.
  • 8. A procedure to obtain a catalyst for the hydrodemetallization of residua and heavy crudes, according to claims 1, to 7, in which the hydrotreatment process (hydrodesulfurization, hydrodenitrogenation and hydrodeasphaltenization) is carried out at temperature of 350 to 450° C., at a partial pressure of hydrogen of about 5 to 10 MPa, at a space velocity (LHSV) of about 1 to 2 h−1.
  • 9. A procedure to obtain a catalyst for the hydrodemetallization of residua and heavy crudes, according to claims 1, to 8, wherein the catalyst has stability at longer time on stream (TOS) evaluated at the reaction conditions with feedstocks consisting of heavy crude oils in agreement with the claims 5, 6 and 7.
  • 10. A procedure to obtain a catalyst for the hydrodemetallization of residua and heavy crudes, according to claims 1 to 3, 7 and 9, wherein the catalyst exhibits an effective amount of metal deposition that is 3-30 g or more per 100 g of fresh catalyst.
Priority Claims (1)
Number Date Country Kind
MX/A/2007/009504 Aug 2007 MX national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/MX2008/000064 5/26/2008 WO 00 3/23/2010