Catalyst for the production of ethylene and acetic acid

Information

  • Patent Grant
  • 5260250
  • Patent Number
    5,260,250
  • Date Filed
    Friday, January 29, 1993
    32 years ago
  • Date Issued
    Tuesday, November 9, 1993
    31 years ago
Abstract
A catalyst for the production of ethylene and/or acetic acid by oxidation of ethane and/or ethylene with a molecular oxygen-containing gas in the presence of a catalyst composition comprising the elements A, X and Y in the combination with oxygen, the gram-atom ratios of the elements A:X:Y being a:b:c;wherein A=Mo.sub.d Re.sub.e W.sub.f ; X=Cr, Mn, Nb, Ta, Ti, V and/or W; Y=Bi, Ca, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl and/or U; a=1; b=0 to 2; c=0 to 2; d+e+f+a; d is either zero or greater than zero; e is greater than zero; and f is either zero or greater than zero.
Description

The present invention relates to a process and catalyst for the production of ethylene and acetic acid.
The catalyst dehydrogenation of ethane is described in a number of patent publications, representative of which may be mentioned for example U.S. Pat. Nos. 4,250,346; 4,524,236 and 4,568,790 and European Patent Publication No. 0294845.
U.S. Pat. No. 4,250,346 discloses the oxidative dehydrogenation of ethane to ethylene in a gas phase reaction at relatively high levels of conversion, selectivity and productivity at a temperature less than 500.degree. C. using as catalyst a composition comprising the elements molybdenum, X and Y in the ratio
Mo.sub.a X.sub.b Y.sub.c
wherein
X is Cr, Mn, Nb, Ta, Ti, V and/or W, and preferably Mn, Nb, V and/or W
Y is Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl and/or U, and preferably Sb, Ce and/or U,
a is 1,
b is 0.05 to 1.0, and
c is 0 to 2, and preferably 0.05 to 1.0, with the proviso that the total value of c for Co, Ni and/or Fe is less than 0.5.
U.S. Pat. No. 4,524,236 discloses the use of a calcined catalyst of the formula Mo.sub.a V.sub.b Nb.sub.c Sb.sub.d X.sub.e for the oxydehydrogenation of ethane to produce ethylene.
U.S. Pat. No. 4,568,790 discloses a process for the low temperature catalytic oxydehydrogenation of ethane to ethylene in a gas phase using as catalyst a calcined composition of Mo.sub.a V.sub.b Nb.sub.c Sb.sub.d wherein:
a=0.5 to 0.9
b=0.1 to 0.4
c=0.001 to 0.2
d=0.001 to 0.1
The aforesaid patent publications, although acknowledging the co-production of acetic acid, are primarily concerned with ethylene formation. Recently however in EP-A-0294845 attention has been given to the production of acetic acid.
EP-A-0294845 discloses a process for the selective production of acetic acid by reacting ethane, ethylene or mixtures of ethane and ethylene with oxygen over a catalyst mixture containing (A) a calcined ethane oxidation catalyst containing molybdenum and vanadium and which may optionally contain at least one other metal atom as represented by the general formula Mo.sub.x V.sub.y Z.sub.z in which the metal elements are in combination with oxygen in the form of various oxides and (B) an ethylene hydration catalyst and/or an ethylene oxidation catalyst. In the general formula Z can be nothing or one or more of Li, Na, Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Sc, Y, La, Ce, Al, Tl, Ti, Zr, Hf, Pb, Nb, Ta, As, Sb, Bi, Cr, W, U, Te, Fe, Co, Ni and x is equal to 0.5 to 0.9, y is equal to 0.1 to 0.4 and z is equal to 0 to 1.
None of the aforesaid patent publications mention the use of rhenium as a catalyst component, through from U.S. Pat. No. 4,148,757 rhenium is mentioned as one of a multitude of possible components in possibly similar catalysts for the oxidation and/or ammoxidation of olefins.
It has now been found that molybdenum in the aforesaid oxidative dehydrogenation catalysts can be replaced either wholly or partially by either rhenium alone or a combination of rhenium and tungsten and that the product composition depends on the extend and nature of the molybdenum substitution, for example the total substitution of molybdenum by rhenium can substantially eliminate the formation of acetic acid, whereas the partial substitution of molybdenum by rhenium can increase the selectively to acetic acid.
Accordingly the present invention provides a process for the production from gaseous ethane and/or ethylene of a product comprising ethylene and/or acetic acid, by contacting the ethane and/or ethylene and a molecular oxygen-containing gas at elevated temperature with a calcined molybdenum-containing ethane oxidative dehydrogenation catalyst composition characterized in that molybdenum in the oxidative dehydrogenation catalyst composition is replaced in whole or in part by either rhenium or a combination of rhenium and tungsten.
Also according to the present invention there is provided a molybdenum - containing ethane oxidative dehydrogenation catalyst composition characterised in that molybdenum is replaced in whole or in part by either rhenium or a combination of rhenium and tungsten.
Suitably the catalyst composition comprises the elements A, X and Y in combination with oxygen, the gram-atom ratios of the elements A:X:Y being a:b:c,
wherein
A=Mo.sub.d Re.sub.e W.sub.f,
X=Cr, Mn, Nb, Ta, Ti, V and/or W, and preferably Mn, Nb, V and/or W,
Y=Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl and/or U, and preferably Sb, Ce and/or U,
a=1,
b=0 to 2, preferably 0.05 to 1.0,
c=0 to 2, preferably 0.001 to 1.0, and more preferably 0.05 to 1.0 with the proviso that the total value of c for Co, Ni, and/or Fe is less than 0.5,
d+e+f=a,
d is either zero or greater than zero,
e is greater than zero, and
f is either zero or greater than zero.
Preferred catalyst compositions comprise the elements A, Nb, Sb and Z in combination with oxygen, the gram-atom ratios of the elements A:Nb:Sb:Z being a:b:c:g,
wherein
A is the same as hereinbefore defined,
Z is at least one of Ca, Ru and Ga, preferably Ca,
a, b and c are the same as hereinbefore defined, and
g is 0 to 2, preferably greater than zero.
More preferred catalyst compositions comprise the elements A, V, Nb, Sb and Z in combination with oxygen, the gram-atom ratios of the elements A:V:Nb:Sb:Z being a:h:b:c:g
wherein
A and Z are the same as hereinbefore defined,
a, b, c and g are the same as hereinbefore defined, and
h is 0 to 1.0.
Examples of catalysts suitable for use in the process of the invention include:
Mo.sub.0.56 Re.sub.0.06 V.sub.0.26 Nb.sub.0.07 Sb.sub.0.03 Ca.sub.0.02(III)
Mo.sub.0.37 Re.sub.0.25 V.sub.0.26 Nb.sub.0.07 Sb.sub.0.03 Ca.sub.0.02(IV)
W.sub.0.37 Re.sub.0.25 V.sub.0.26 Nb.sub.0.07 Sb.sub.0.03 Ca.sub.0.02(V)
Mo.sub.0.24 Re.sub.0.37 V.sub.0.26 Nb.sub.0.07 Sb.sub.0.04 Ca.sub.0.02, and (VI)
Re.sub.0.61 V.sub.0.26 Nb.sub.0.07 Ca.sub.0.02 Sb.sub.0.04 (VII)
It will be understood that the elements are present in combination with oxygen.
As mentioned hereinabove, catalysts (III) to (VI) containing Mo in combination with Re, produce acetic acid from ethane at selectivities which are generally greater than those reported for prior at oxidative dehydrogenation catalysts. On the other hand catalyst (VII) containing Re in the total absence of Mo can produce, from ethane, ethylene substantially free from acetic acid.
The catalyst compositions may be prepared by any of the methods conventionally employed for the preparation of catalysts. Suitably the catalyst may be prepared from a solution of soluble compounds and/or complexes and/or compounds of each of the metals. The solution is preferably an aqueous system having a pH in the range from 1 to 12, preferably from 2 to 8, at a temperature of from 20.degree. to 100.degree. C.
Generally, a mixture of compounds containing the elements is prepared by dissolving sufficient quantities of soluble compounds and dispersing any insoluble compounds so as to provide a desired gram-atom ratio of the elements in the catalyst composition. The catalyst composition may then be prepared by removing the solvent from the mixture. The catalyst may be calcined by heating to a temperature of from 200.degree. to 550.degree. C., suitably in air or oxygen, for a period of from 1 minute to 24 hours. Preferably, the air or oxygen is slowly flowing.
The catalyst may be used unsupported or supported. Suitable supports include silica, alumina, zirconia, titania, silicon carbide and mixtures of two or more thereof.
Further details of a suitable method for preparing a catalyst composition may be found in, for example, EP-A-0166438.
The catalyst may be used in the form of a fixed or a fluidized bed.
The feed gas comprises ethane and/or ethylene, preferably ethane. Ethane produces ethylene and optionally acetic acid. Ethylene products acetic acid.
Ethane and/or ethylene may be used in substantially pure form or admixed with one or more of nitrogen, methane, carbon dioxide and water in the form of steam, which may be present in major amounts, for example greater than 5 volume percent or more of hydrogen, carbon monoxide, C.sub.3 /C.sub.4 alkenes and alkenes, which may be present in minor amounts, for example less than 5 volume percent.
The molecular oxygen-containing gas may be air or a gas richer or poorer in molecular oxygen than air, for example oxygen. A suitable gas may be, for example, oxygen diluted with a suitable diluent, for example nitrogen.
It is preferred to feed, in addition to ethane and/or ethylene and the molecular oxygen-containing gas, water (steam) because this can improve the selectivity to acetic acid.
The elevated temperature may suitably be in the range of from 200.degree. to 500.degree. C., preferably from 200.degree. to 400.degree. C.
The pressure may suitably be atmospheric or superatmospheric, for example in the range from 1 to 50 bar, preferably from 1 to 30 bar.
Operating conditions and other information applicable to the performance of the invention may be found in the aforesaid prior art, for example U.S. Pat. No. 4,250,346.





The process of the invention will now be further illustrated by reference to the following Examples. In the Examples the following terms are used:
GHSV=Gas Hourly Space Velocity=Volume of gas following through catalyst bed (ml/hr)/Volume of catalyst bed (ml). ##EQU1## wherein []=concentration in mol % and [C.sub.2 H.sub.6 ]=concentration of uncoverted ethane.
CATALYST PREPARATION
In the examples the catalyst compositions are expressed in terms of relative gram-atoms of elements. It will be understood that the elements are present in combination with oxygen.
CATALYST (III)
A catalyst was prepared with the following composition.
Mo..sub.56 Re..sub.06 V..sub.26 Nb..sub.07 Sb..sub.03 Ca..sub.02
Ammonium metavanadate (7.4 g) was added to 80 ml of water and heated at 70.degree. C. with stirring for 15 minutes. To a mixture of niobium pentachloride (4.7 g), antimony trichloride (1.6 g), calcium nitrate (1.0 g) and ammonium perrhenate (4.0 g) was added 40 ml of water. Oxalic acid (7.5 g) dissolved in 40 ml of water was then added and the resulting solution heated at 70.degree. C. with stirring for ca. 15 minutes. The first solution was combined with the second solution and the combined solution heated at 70.degree. C. for 15 minutes. Ammonium molybdate (23.8 g) was dissolved in 80 ml of water with stirring and heated at 70.degree. C. for 15 minutes. This third solution was then added to the combined first and second solutions and the final mixture heated at 70.degree. C. for 15 minutes. The resulting mixture was evaporated to dryness in a large evaporating basin over a hot water bath together with the use of a hot air gun to remove the water as quickly as possible. The solid was dried for 16 hours at 110.degree. C. and then sieved to afford catalyst particles of the correct dimensions. The dried catalyst was calcined at 360.degree. C. for 3.5 hours under a flow of air.
CATALYST (IV)
A catalyst was prepared with the following composition:
Mo..sub.37 Re..sub.25 V..sub.26 Nb..sub.07 Sb..sub.03 Ca..sub.02
Ammonium metavanadate (7.4 g) was added to 80 ml of water and heated at 70.degree. C. with stirring for 15 minutes. To a mixture of niobium pentachloride (4.7 g), antimony trichloride (1.6 g), calcium nitrate (1.0 g) and ammonium perrhenate (16.0 g) was added to 40 ml of water. Oxalic acid (7.5 g) dissolved in 40 ml of water was then added and the resulting solution heated at 70.degree. C. with stirring for ca. 15 minutes. The first solution was combined with the second solution and the combined solution heated at 70.degree. C. for 15 minutes. Ammonium molybdate (15.9 g) was dissolved in 80 ml of water with stirring and heated at 70.degree. C. for 15 minutes. This third solution was then added slowly to the combined first and second solutions and the final mixture heated at 70.degree. C. for 15 minutes. The resulting mixture was evaporated to dryness and the solid broken up and calcined as outlined previously.
CATALYST (V)
A catalyst was prepared with the following composition:
W..sub.37 Re..sub.25 V..sub.26 Nb..sub.07 Sb..sub.03 Ca..sub.02
Ammonium metavanadate (7.4 g) was added to 80 ml of water and heated at 70.degree. C. with stirring for 15 minutes. To a mixture of niobium pentachloride (4.7 g), antimony trichloride (1.6 g) calcium nitrate (1.0 g) and ammonium perrhenate (16.0 g) was added 40 ml of water. Oxalic acid (7.5 g) dissolved in 40 ml of water was then added and the resulting solution heated at 70.degree. C. with stirring for ca. 15 minutes. The first solution was combined with the second solution and the combined solution heated at 70.degree. C. for 15 minutes. Ammonium tungstate (23.5 g) was suspended in 60 ml of water and 52 ml of hydrogen peroxide added with stirring. This solution was then heated at 70.degree. C. for 15 minutes. This third solution was then added to the combined first and second solutions and the final mixture heated at 70.degree. C. for 15 minutes. The resulting mixture was evaporated to dryness and the solid broken up and calcined as outlined previously.
CATALYST (VI)
A catalyst was prepared with the following composition:
Mo..sub.24 Re..sub.37 V..sub.26 Nb..sub.07 Sb..sub.04 Ca..sub.02
Ammonium matavanadate (1.7 g) was added to 25 ml of water and heated at 70.degree. C. with stirring for 15 minutes. To a mixture of niobium pentachloride (1.05 g), antimony trichloride (0.5 g), calcium nitrate (0.3 g) and ammonium perrhenate (5.5 g) was added 15 ml of water. Oxalic acid (1.7 g) dissolved in 15 ml of water was then added and the resulting solution heated at 70.degree. C. with stirring for ca. 15 minutes. The first solution was combined with the second solution and the combined solution heated at 70.degree. C. for 15 minutes. Ammonium molybdate (2.4 g) was dissolved in 25 ml of water with stirring and heated at 70.degree. C. for 15 minutes. This third solution was then added to the combined first and second solutions and the final mixture heated at 70.degree. C. for 15 minutes. The resulting mixture was evaporated to dryness and the solid broken up and calcined as outlined previously.
CATALYST (VII)
A catalyst was prepared with the following composition:
Re..sub.61 V..sub.26 Nb..sub.07 Ca..sub.02 Sb..sub.04
Ammonium metavanadate (2.5 g) was added to 40 ml of water and heated at 70.degree. C. with stirring for 15 minutes. To a mixture of niobium pentachloride (1.55 g), antimony trichloride (0.7 g) and calcium nitrate (0.4 g) was added 20 ml of water. Oxalic acid (3.7 g) dissolved in 20 ml of water was then added and the resulting solution heated at 70.degree. C. with stirring for ca. 15 minutes. The first solution was combined with the second solution and the combined solution heated at 70.degree. C. for 15 minutes. Ammonium perrhenate (13.4 g) was dissolved in 100 ml of water with stirring and heated at 70.degree. C. for 15 minutes. This third solution was then added to the combined first and second solutions and the final mixture heated at 70.degree. C. for 15 minutes. The resulting mixture was evaporated to dryness and the solid broken up and calcined as outlined previously.
CATALYST (VIII)
A catalyst was prepared with the following composition:
Mo..sub.37 Re..sub.25 V..sub.26 Nb..sub.07 Sb..sub.03 Ca..sub.02
A first solution was prepared by dissolving ammonium perrhenate (10.0 g) and ammonium molybdate (9.7 g) in 50 ml of water. A second solution was prepared by adding ammonium metavanadate (4.5 g) to 50 ml of water. A third solution was prepared by adding niobium oxalate (10.2 g), antimony oxalate (1.34 g) and calcium nitrate (0.58 g) to 50 g of water. The solutions were each heated separately, at 70.degree. c. with stirring for 15 minutes. Then the third solution was added to the second solutions. The combined solution was heated at 70.degree. C. with stirring for 15 minutes before being added to the first solution and then the resulting mixture was heated at 70.degree. C. with stirring for 15 minutes. The water was evaporated on a hot plate to produce a thick paste before drying at 120.degree. C. in an oven overnight. The resulting solid was ground and screened to 10/30 mesh followed by calcination at 300.degree. C. for 5 hours in static air and screening to 0.5 to 1.0 mm diameter.
CATALYST IX
A catalyst was prepared with the following composition:
Mo..sub.0.52 Re..sub.0.1 V..sub.26 Nb..sub.07 Sb..sub.03 Ca..sub.02
by the same method as was used for the preparation of Catalyst (VIII), but with the required adjustment in the relative amounts of ammonium perrhenate and ammonium molybdate used.
CATALYST TESTING
Catalyst Testing Method
3 ml of catalyst was loaded into a corrosion resistant stainless steel tube of internal diameter 5.6 mm, and the reactor tube assembly placed in a tubular furnace. The catalyst was then heated to 250.degree. C. at 5.degree. C./min under a flow or air. The desired ethane:air:nitrogen feed gas ratio was then set up in a gas mixing manifold and allowed to pass initially through a preheater zone held at 200.degree. C. and then over the catalyst. The pressure was then adjusted to the required value using a back pressure regulator. Water was added when required into the preheater zone where vaporization and mixing with the feed gas occurred prior to meeting the catalyst. The product vapours and gases leaving the reactor were sampled and analysed by gas-liquid chromatography (GLC). The temperature was measured by means of a thermocouple inserted into the catalyst bed.
GLC SPECIFICATION:
Gas Analysis: 3 m Carbosieve S2 Column & Molecular Sieve Column.
Liquid Analysis: 2.5 m CarboPack B/Peg 20M Column
REACTION CONDITIONS
Reactor Pressure: 14 barg
GHSV: approx. 3500 hr.sup.-1
Feed Composition (by volume): 21% Ethane, 3.8% Oxygen, 75.2% Nitrogen
Reactor Temperature: In the range 250.degree.-380.degree. C.
Water Addition Rate: ca 4:1 (Total Gas Feed:Water mole Ratio)
Catalyst Particle Size: 0.5-1.0 mm diameter.
The normal procedure in screening a catalyst was to set up the feed ratio and flow rates and then increase the temperature in steps, monitoring conversions and selectivities as the experiment progressed. The oxygen concentration slowly decreased with increasing temperature (increasing ethane conversion/combustion) and, as total oxygen deletion approached, water was then cofed to examine the effect on selectivity etc. The results are shown in Table 1.
TABLE 1______________________________________ Ethane Ethy- Acetic Acetic Acid Con- lene Acid Select. (withEx- Bed ver- Selec- Selec- wateram- Cata- Temp. sion tivity tivity co-feed)ple lyst .degree.C. % % % %______________________________________1 (III) 325 15 70 21 --2 (IV) 328 12 57 19 433 (V) 334 11 53 21 494 (VI) 332 6 53 28 375 (VII) 325 2 61 0 0______________________________________
CATALYST TESTING AT HIGHER PRESSURE
The catalyst testing method was repeated at 28 barg using Catalyst (VIII) with catalyst particle size of 0.5-1.00 mm dia with 0.27 g/liter gas water co-feed and a feed gas composition of 70% (v/v) ethane, 6.3% v/v oxygen and balance helium. The results are shown in Table 2 in which the contact time is calculated from the ratio of catalyst bed volume to gas flow rate, corrected for temperature and pressure.
TABLE 2______________________________________CATALYST (VIII) AceticBed Contact Ethane Acid EthyleneTemperature time Conversion Selectivity Selectivity.degree.C. (Seconds) % % %______________________________________270 22 5.6 72.6 16.7270 27 7.3 70.5 18.4270 35 7.7 65.7 20.4270 55 13.3 77.5 12.3277 55 14.3 78.0 12.1288 35 10.9 69.5 17.9303 25 9.1 60.4 26.7326 20 9.9 53.3 35.0300 25 8.9 62.8 25.0300 40 12.5 70.2 16.7______________________________________
Catalysts (VIII) and (IX) with catalyst particle sizes of 0.5-1.0 mm diameter were also tested at 28 barg with 0.27 g water per liter of gas in feed and a feed gas composition of 70% (v/v) ethane, 6.3% (v/v) oxygen and balance helium. The results are shown in Table 3 which shows the effect on selectivity of varying the amount of rhenium in the catalyst.
TABLE 3______________________________________ Bed Ethane Acetic Ethylene Con- Temp- Con- Acid Selec-Cata- tact erature version Selec- tivitylyst Time .degree.C. % tivity % %______________________________________(VIII) 22 267 5.3 73.1 16.1(IX) 22 267 4.98 48.0 39.8(VIII) 20.7 303 8.17 61.1 27.2(IX) 20.7 303 10.81 51.5 34.7(VIII) 20.0 325 9.955 53.0 34.8(IX) 20.0 325 9.05 46.1 42.2______________________________________
Claims
  • 1. A catalyst composition comprising the elements A, X and Y in combination with oxygen, the gram-atom ratios of the elements A:X:Y being a:b:c, wherein A=Mo.sub.d Re.sub.e W.sub.f,
  • X represents at least one element selected from the group consisting of Cr, Mn, Nb, Ta, Ti, V and W,
  • Y represents at least one element selected from the group consisting of Ce, Sb and U,
  • a=1,
  • b=0.05 to 1.00,
  • c=0.001 to 1.0,
  • d+e+f=a,
  • d is zero or greater than zero,
  • e is greater than zero, and
  • f is zero or greater than zero.
  • 2. A catalyst composition as claimed in claim 1 in which X represents at least one element selected from the group consisting of Mn, Nb, V and W.
  • 3. A catalyst composition comprising the elements A, Nb, Sb and Z in combination with oxygen, the gram-atom ratios of the elements A:Nb:Sb:Z being a:b:c:g
  • wherein
  • A, a, b and c are as defined in claim 1,
  • Z represents at least one element selected from the group consisting of Ca, Ru and Ga, and
  • g is 0 to 2.
  • 4. A catalyst composition comprising the elements, A,V,Nb,Sb and Z in combination with oxygen, the gram-atom ratios of the elements A:V:Nb:Sb:Z being a:h:b:c:g
  • wherein
  • A and Z are as defined in claim 3,
  • a, b, c and g are as defined in claim 3, and
  • h is 0 to 1.0.
  • 5. A catalyst composition selected from the group consisting of:
  • Mo.sub.0.56 Re.sub.0.06 V.sub.0.26 Nb.sub.0.07 Sb.sub.0.03 Ca.sub.0.02,
  • Mo.sub.0.37 Re.sub.0.25 V.sub.0.26 Nb.sub.0.07 Sb.sub.0.03 Ca.sub.0.02,
  • W.sub.0.37 Re.sub.0.25 V.sub.0.26 Nb.sub.0.07 Sb.sub.0.03 Ca.sub.0.02,
  • Mo.sub.0.24 Re.sub.0.37 V.sub.0.26 Nb.sub.0.07 Sb.sub.0.03 Ca.sub.0.02,
  • Re.sub.0.61 V.sub.0.26 Nb.sub.0.07 Ca.sub.0.02 Sb.sub.0.04, and
  • Mo.sub.0.52 Re.sub.0.1 V.sub.0.26 Nb.sub.0.07 Sb.sub.0.03 Ca.sub.0.02,
  • the elements being present in combination with oxygen.
Priority Claims (1)
Number Date Country Kind
8915410 Jul 1990 GBX
Parent Case Info

This is a division of application Ser. No. 07/896,904, filed Jun. 11, 1992, and now U.S. Pat. No. 5,210,293, which is a continuation of application Ser. No. 07/540,262, filed Jun. 19, 1990, now abandoned.

US Referenced Citations (31)
Number Name Date Kind
RE31088 Grasselli et al. Nov 1982
2020671 Dreyfus Nov 1935
3567773 Yamaguchi et al. Mar 1971
3751512 Woskow et al. Aug 1973
3769239 Jogwin Oct 1973
3840595 Grasselli et al. Oct 1974
3856880 Woskow et al. Dec 1974
3893951 Grasselli et al. Jul 1975
3956377 Dolhyj et al. May 1976
3956378 Grasselli et al. May 1976
4017423 White et al. Dec 1977
4041093 Smirnov et al. Aug 1977
4042533 Shaw et al. Aug 1977
4082698 Shaw et al. Apr 1978
4085065 White et al. Apr 1978
4139719 White et al. Feb 1979
4148757 Brazdil et al. Apr 1979
4157987 Dolhyj et al. Jun 1979
4163862 Dolhj et al. Aug 1979
4165300 Dolhj et al. Aug 1979
4250346 Young et al. Feb 1981
4256915 Shaw et al. Mar 1981
4301038 Shaw et al. Nov 1981
4339355 Deeker et al. Jul 1982
4358608 Shaw et al. Nov 1982
4410450 Sasaki et al. Oct 1983
4520223 McGinnis et al. May 1985
4524236 McCain Jun 1985
4568790 McCain Feb 1986
4596787 Manyik et al. Jul 1986
4892856 Kawajki et al. Jan 1990
Foreign Referenced Citations (14)
Number Date Country
0043684 Jan 1982 EPX
0167109 Jan 1986 EPX
0166438 Jun 1986 EPX
0261264 Mar 1988 EPX
0294845 Dec 1988 EPX
1468542 Apr 1970 DEX
1542024 Apr 1972 DEX
132335 Sep 1978 DEX
2118155B2 Oct 1979 DEX
WO8606003 Oct 1986 WOX
721914 Jan 1955 GBX
1309083 Mar 1973 GBX
1398385 Jun 1975 GBX
1538107 Jan 1979 GBX
Non-Patent Literature Citations (8)
Entry
Chemical Abstracts #1195848f, vol. 81, 1974, Kaneko et al., "Catalytic Oxidation of Olefins", p. 450.
Abstract of U.S. Pat. No. 4,358,608, Jul. 1991.
Abstract of U.S. Pat. No. 4,250,054, Jul. 1991.
Abstract of U.S. Pat. No. 4,223,161, Jul. 1991.
Abstract of U.S. Pat. No. 4,138,366, Jul. 1991.
Abstract of U.S. Pat. No. 4,115,441, Jul. 1991.
Abstract of U.S. Pat. No. 4,101,448, Jul. 1991.
Abstract of U.S. Pat. No. 4,042,533, Jul. 1991.
Divisions (1)
Number Date Country
Parent 896904 Jun 1992
Continuations (1)
Number Date Country
Parent 540262 Jun 1990