Catalyst Systems Based on Phenolate Complexes for Immortal Ring-Opening Polymerization of Cyclic Esters and Carbohydrates

Abstract
A method can include immortal ring-opening homopolymerisation of cyclic carbonates or cyclic esters in the presence of a catalytic system, or sequential two-step ring-opening block copolymerisation of one or more cyclic monomers selected from cyclic carbonates or cyclic esters in the presence of the catalytic system. The catalytic system can include a phenolate supported metallic complex. The catalytic system can also include an alcohol or a primary amine containing aliphatic and/or aromatic moieties. The alcohol or primary amine can be present in a molar ratio with respect to the metallic complex that is larger than 1.
Description
FIELD OF THE INVENTION

The present invention discloses new catalytic systems based on phenolate-supported metallic complexes for the immortal ring-opening polymerisation of cyclic esters and cyclic carbonates.


BRIEF DESCRIPTION OF THE PRIOR ART

Ring-opening polymerisation (ROP) of cyclic esters is the most convenient way to generate bio-degradable aliphatic polyesters as described in thorough details for example in review articles by Uhrich et al. (K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, Chem. Rev., 1999, 99, 3181-3198), or in Ikada and Tsuji (Y. Ikada, H. Tsuji, Macromol. Rapid. Commun., 2000, 21, 117-132) or in Langer (R. Langer, Acc. Chem. Res., 2000, 33, 94-101) or in Okada (M. Okada, Prog. Polym. Sci., 2002, 27, 87-133).


The emphasis was initially placed on the (co)polymerisation of ε-caprolactone (CL) and glycolide (GL) to generate polymers suitable for applications in the biomedical field as disclosed for example in Vert (M. Vert, Biomacromolecules 2005, 6, 538-546) or in Albertsson and Varma (A.-C. Albertsson, I. K. Varma, Biomacromolecules 2003, 4, 1466-1486) or in Sudesh et al. (K. Sudesh, H. Abe, Y. Doi Prog. Polym. Sci. 2000, 25, 1503-1555) or in Nair and Laurence (L. S. Nair, C. T. Laurence, Prog. Polym. Sci. 2007, 32, 762-798).


Many research groups have however recently shifted their attention towards the polymerisation of cyclic di-esters derived from lactic acid and more particularly to the polymerisation of L-lactide (L-LA=S,S-lactide) as described for example in Mecking (S. Mecking, Angew. Chem. Int. Ed., 2004, 43, 1078-1085) or in Dechy-Cabaret et al. (O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev., 2004, 104, 6147-6176). L-LA is a bio-renewable resource, which can be derived from the fermentation of sugar-containing plants, e.g., sugar-roots, potatoes and corn. Tin-based catalyst systems, based typically on tin(II) 2-ethyl-hexanoate (often referred to as “tin octanoate”, hereafter abbreviated Sn(oct)2), are commonly used in industry for the ROP of L-LA, other stereoisomers of lactide (e.g., meso-LA and rac-LA, a 50:50 mixture of L- and D-LA) and other cyclic monomers. The popularity of Sn(oct)2 as catalyst for the ROP of lactides owes very much to its low cost, its robustness (being both little sensitive to impurities and capable of polymerizing molten lactide to high molecular weight materials at temperatures as high as 180° C.) and its versatility. On the other hand, these catalytic systems are overall slow, rather poorly controlled and may present issues revolving around the heavy tin element, as discussed for example in Drumright et al. (R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater., 2000, 12, 1841-1846) or in Okada (M. Okada, Prog. Polym. Sci., 2002, 27, 87-133).


Recently, several well-defined metallic initiators have been developed for the controlled, living ROP of the various isomers of LA, namely rac-, L-, D- and meso-LA, as disclosed for example in O'Keefe et al. (B. J. O'Keefe, M. A. Hillmyer, W. B. Tolman, J. Chem. Soc., Dalton Trans., 2001, 2215-2224), or in Lou et al. (Lou, C. Detrembleur, R. Jérôme, Macromol. Rapid. Commun., 2003, 24, 161-172), or in Nakano et al. (K. Nakano, N. Kosaka, T. Hiyama, K. Nozaki, J. Chem. Soc., Dalton Trans., 2003, 4039-4050), or in Dechy-Cabaret et al. (O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev., 2004, 104, 6147-6176), or in Wu et al. (Wu, T.-L Yu, C.-T. Chen, C.-C. Lin, Coord. Chem. Rev., 2006, 250, 602-626), or in Amgoune et al. (Amgoune, C. M. Thomas, J.-F. Carpentier, Pure Appl. Chem. 2007, 79, 2013-2030).


They are based mostly on:

    • non-toxic zinc (M. Cheng, A. B. Attygalle, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc., 1999, 121, 11583-11584; B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc., 2001, 123, 3229-3238; C. K. Williams, L. E. Breyfogle, S. K. Choi, W. Nam, V. G. Young Jr., M. A. Hillmyer, W. B. Tolman, J. Am. Chem. Soc., 2003, 125, 11350-11359; G. Labourdette, D. J. Lee, B. O. Patrick, M. B. Ezhova, P. Mehrkhodavandi, Organometallics, 2009, 28, 1309-1319; Z. Zheng, G. Zhao, R. Fablet, M. Bouyahyi, C. M. Thomas, T. Roisnel, O. Casagrande Jr., J.-F. Carpentier, New J. Chem., 2008, 32, 2279-2291),
    • aluminium (N. Spassky, M. Wisniewski, C. Pluta, A. LeBorgne, Macromol. Chem. Phys., 1996, 197, 2627-2637; T. M. Ovitt, G. W. Coates, J. Am. Chem. Soc., 1999, 121, 4072-4073; M. Ovitt, G. W. Coates, J. Am. Chem. Soc., 2002, 124, 1316-1326; N. Nomura, R. Ishii, Y. Yamamoto, T. Kondo, Chem. Eur. J., 2007, 13, 4433-4451; H. Zhu, E. Y.-X. Chen, Organometallics, 2007, 26, 5395-5405) or
    • group 3 metals and lanthanides (C.-X. Cai, A. Amgoune, C. W. Lehmann, J.-F. Carpentier, Chem. Commun., 2004, 330-331; A. Amgoune, C. M. Thomas, T. Roisnel, J.-F. Carpentier, Chem. Eur. J., 2006, 12, 169-179; A. Amgoune, C. M. Thomas, S. Ilinca, T. Roisnel, J.-F. Carpentier, Angew. Chem. Int. Ed., 2006, 45, 2782-2784).


Some of these single-site complexes are also efficient for the ROP of β-butyrolactone (BBL), producing poly(3-hydroxybutyrate)s, a naturally-occurring highly crystalline thermoplastic resin produced by several algae and bacteria as their isotactic stereoisomer, some catalytic systems leading to syndiotactic polymers as discussed by Amgoume et al. A. (Amgoune, C. M. Thomas, S. Ilinca, T. Roisnel, J.-F. Carpentier, Angew. Chem. Int. Ed., 2006, 45, 2782-2784), or by Rieth et al. (L. R. Rieth, D. R. Moore, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc., 2002, 124, 15239-15248) or by Ajellal et al. (N. Ajellal, D. M. Lyubov, M. A. Sinenkov, G. K. Fukin, A. V. Cherkasov, C. M. Thomas, J.-F. Carpentier, A. A. Trifonov, Chem. Eur. J., 2008, 14, 5440-5448) or by Ajellal et al. (N. Ajellal, M. Bouyahyi, A. Amgoune, C. M. Thomas, A. Bondon, I. Pillin, Y. Grohens, J.-F. Carpentier, Macromolecules, 2009, 42, 987-993).


The ROP of trimethylene carbonate (TMC) has also started to attract considerable attention in the past years as disclosed in S. Matsumura Adv. Polym. Sci. 2005, 194, 95-132, or in Hellaye et al. (M. Le Hellaye, N. Fortin, J. Guilloteau, A. Soum, S. Lecommandoux, S. M. Guillaume Biomacromolecules, 2008, 9, 1924-1933) or in Darensbourg et al. (D. J. Darensbourg, W. Choi, P. Ganguly, C. P. Richers Macromolecules, 2006, 39, 4374-4379) or in Helou et al. (M. Helou, O. Miserque, J.-M. Brusson, J.-F. Carpentier, S. M. Guillaume, Chem. Eur. J., 2008, 14, 8772-8775) or in European patent application no 08290187.7. TMC can be a bio-resourced monomer derived from glycerol, itself a by-product of the degradation of triglycerides. Unlike LA, TMC is not issued from the exploitation of resources otherwise used in the food chain as discussed by Zhou et al. (C.-H. Zhou, J. N. Beltramini, Y.-X. Fan, G. Q. Lu Chem. Soc. Rev. 2008, 37, 527-549) or by Behr et al. (A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner Green Chem. 2008, 10, 13-30).


In addition to the metal-based catalytic systems, one must mention the reports of Kamber et al. (N. E. Kamber, W. Jeong, R. M. Waymouth, R. C. Pratt, B. G. G. Lohmeijer, J. L. Hedrick, Chem. Rev., 2007, 107, 5813-5840 and Bourissou et al. (D. Bourissou, S. Moebs-Sanchez, B. Martin-Vaca, C. R. Chimie, 2007, 10, 775-794) who have pioneered the development of organocatalysts for the controlled ROP of the abovementioned heterocyclic monomers.


Significant advances have been achieved in the ROP of these monomers, most notably with respect to the catalyst productivity. Industrially, these systems must be able to polymerise several thousands of equivalents of monomer to yield hundreds of polymer chains per active centre. One way to reliably achieve such goal in the field of ROP is to operate chain transfer during the course of a so-called “immortal” living polymerisation, thanks to the addition of a chain-transfer agent, as described for example in European patent application no 08290187.7 or in Asano et al. (S. Asano, T. Aida, S. Inoue, J. Chem. Soc., Chem. Commum., 1985, 1148-1149) or in Aida et al. (T. Aida, Y. Maekawa, S. Asano, S. Inoue, Macromolecules, 1988, 21, 1195-1202) or in Aida and Inoue (T. Aida, S. Inoue, Acc. Chem. Res., 1996, 29, 39-48) or in Martin et al. (E. Martin, P. Dubois, R. Jérôme, Macromolecules, 2000, 33, 1530-1535) or in Amgoume et al. (A. Amgoune, C. M. Thomas, J.-F. Carpentier, Macromol. Rapid. Commun., 2007, 28, 693-697). For instance, European patent application no 08290187.7 disclosed that the binary system (BDI)ZnN(SiMe3)2/Bn-OH wherein BDI=(2,6-iPr2—C6H3)N═C(Me)-CH═C(Me)-N(2,6-iPr2—C6H3) and Bn-=C6H5CH2— could be employed with great efficiency for the ROP of TMC, allowing the controlled polymerisation of up to 50 000 equivalents of TMC in presence of 50 equivalents of benzyl alcohol. The method used from 20 to 100 ppm of metal catalyst, thus minimising metal residues in the final polymers. Yet, although this metal catalyst is based on zinc, a so-called “bio-metal”, the BDI ligand that supports the active metal center contains aromatic amine moieties that may be associated to potential toxicity issues.


There is therefore still a need to develop more active and productive catalyst systems for the ROP of cyclic (di)esters, which are ideally based based on non-toxic metals and that do not release toxic compounds from the ancillary ligands associated to the metal in the catalyst.


There is however large space left for improvement of these catalytic systems.





LIST OF FIGURES


FIG. 1 represents the solid state structure of the metallic complex Sn(O-2,6-ditBuPh)2



FIG. 2 represents the solid state structure of the metallic complex [LO3]SnN(SiMe3)2.



FIG. 3 represents the 1H NMR spectra (500 MHz, toluene-d8) of the metallic complex [LO3]SnN(SiMe3)2 at various temperatures.



FIG. 4 represents the solid state structure of the metallic complex [Ln3O]SnOSiPh3.



FIG. 5 represents the 1H NMR spectrum (500 MHz, toluene-d8) of the metallic complex [LO3]SnOSiPh3.



FIG. 6 represents the conversion rate, expressed in percent, as a function of time, expressed in minutes, for catalysts Sn(Oct)2 and Sn(OAr)2 and for a ratio ([LA]0/[Sn]0/[Octanol]0 of 6 000/1/14.8.



FIG. 7 represents the conversion rate, expressed in percent, as a function of time, expressed in minutes, for catalysts Sn(Oct)2 and Sn(OAr)2 and for a ratio ([LA]0/[Sn]0/[Octanol]0 of 72 000/1/178.



FIG. 8 represents the 1H NMR spectrum (400 MHz, CDCl3, 298 K) of a poly(L-lactide) obtained with the catalytic system Sn(O-2,6-tBu-Ph)2/PrOH binary systems using a [L-lactide]/[Sn]/[iPrOH] in a 1 000:1:20 ratio with an 87% conversion (*13C satellites).



FIG. 9 represents the MALDI-TOF mass spectrum (main population: Na+, minor population K+) of a poly(L-lactide) sample (Mn,SEC=6 300 g·mol−1) prepared with [L-lactide]/Sn(O-2,6-tBu-Ph)2/[iPrOH] ratio of 1 000:1:20 and 87% conversion. Observed molecular weights for the on-matrix compounds and those calculated using the (H)(C4H8O4)n(O-iPr).Na+ formula, where n represents the degree of polymerisation differ by less than 1 Da.


SUMMARY OF THE INVENTION

It is an objective of the present invention to prepare new phenolate-based metallic complexes.


It is also an objective of the present invention to use the metallic complexes in catalytic systems for the controlled immortal ROP of cyclic (di)esters and cyclic carbonates.


It is a further objective of the present invention to prepare (multi)block copolymers of esters and carbonates.


The foregoing objectives have been carried out as described in the independent claims. Preferred embodiments are described in the dependent claims.





DETAILED DESCRIPTION OF THE INVENTION

Accordingly, the present invention discloses a catalytic system for the immortal ring-opening homopolymerisation, or the two-step, sequential ring-opening block copolymerisation of cyclic carbonates and cyclic esters, said catalytic system comprising:

    • a) a metallic complex of formula M(OAr)nXm wherein M is a metal selected from Sn, Zn, Al, OAr is a phenolate ligand, substituted or not, wherein X is alkyl having from 1 to 6 carbon atoms selected from methyl, ethyl, n-butyl, or phenyl, or an amido group selected from N(SiMe3)2, NMe2, NEt2, NiPr2, or an alkoxide group selected from OEt, OiPr, OtBut, OCH2Ph or OSiPh3, and wherein n is at least 1 and n+m is the valence of metal M;
    • b) an external nucleophile such as an alcohol ROH or a primary amine RNH2 wherein R is an hydrocarbyl group, linear or branched, having from 1 to 20 carbon atoms, containing aliphatic and/or aromatic moieties, and used in excess with respect to the metallic complex.


Metal M ispreferably selected from Sn or Zn, more preferably Sn. Preferably, m is equal to 0.


OAr is a phenolate-type ligand. The corresponding starting phenol pro-ligand has the formula:




embedded image


wherein

    • R1, R2 and R3 are the same or are different and are hydrogen or are hydrocarbyl group having 1 to 20 carbon atoms, preferably selected from methyl, ethyl, iso-propyl, tert-butyl, neo-pentyl, cumyl, trityl or from phenyl, 2,4,6-trimethylphenyl, 2,6-diisopropylphenyl, or


wherein

    • R1 and/or R3 groups also contain functional coordinating moieties, including N, O, S, P elements. Notably, R1 and/or R3 are/is of the type




embedded image


or (CH2)mN(CH2CH2OCH3)2 or (CH2)mN-morpholine, wherein m is 1, 2 or 3 and n≧1, and R2 is hydrocarbyl having up to 10 carbon atoms.


These pro-ligands can be prepared following any method known in the art. The present method for preparing the pro-ligands and metal complexes is a modification of the method described in Schanmuga et al. (S. Shanmuga Sundara Raj, M. N. Ponnuswamy, G. Shanmugam, M. Kandaswamy, J. Crystallogr. Spectrosc. Res., 1993, 23, 607-610) or in Teipel et al. (S. Teipel, K. Griesar, W. Haase, B. Krebs, Inorg. Chem., 1994, 33, 456-464). The complete syntheses of ligands and the further syntheses of metal complexes can be achieved in at most 48 h to give analytically pure compounds on a multi-gram scale. For comparison, the synthesis of (BDI)ZnN(SiMe3)2, which is a very efficient zinc-based initiator for the ROP of LA, BBL or TMC, requires two full weeks and harsh conditions.


The pro-ligands are then used to prepare complexes of divalent metals of Groups 2 and 12 of the Periodic Table. The preferred metals Zn and Sn. The complexes are prepared by reacting the pro-ligand with a precursor M(X)2 wherein X is either an alkyl having from 1 to 6 carbon atoms such as for example methyl, ethyl, n-butyl, phenyl, or an amido group such as for example N(SiMe3)2, NMe2, NEt2, NiPr2, or an alkoxide group such as for example OEt, OiPr, OtBu, OCH2Ph, OSiPh3.


The present phenolate ligands are stabilising ligands, imactive by themselves, contrary to alkoxides ligands which act as initiators of the ring opening polymerisation of cyclic seters or carbonates.


In an embodiment according to the present invention R1 is




embedded image


referred to as [LO3] or is CH2N-morpholine) referred to as [LO2].


Preferably R2 and R3 are the same and are ter-butyl.


In another embodiment according to the present invention, R1 and R3 are the same and are tert-butyl, and R2 is hydrogen or methyl, preferably hydrogen. It has surprisingly been observed that the metallic complex based on said ligand is very active in the homo- or co-ring opening polymerisation of cyclic esters or cyclic carbonates.


In the alcohol or the amine, preferably R is a primary or secondary alkyl residue or a benzylic group, more preferably it is iso-propyl (iPr) or benzyl (Bn). It can also be a poly-ol such as a diol, triol or higher functionality polyhydridic alcohol, typically selected from 1,3-propanediol or trimethylolpropane, possibly derived from biomass such as glycerol or any other sugar-based alcohol such as for example erythritol or a cyclodextrine. All alcohols or amines can be used individually or in combination.


More preferably the alcohol is selected from iso-propanol, sec-butanol or benzyl alcohol.


In the presence of 1 to 1,000 equivalents, preferably of 5 to 200 equivalents of alcohol, amine or poly-ol with respect to metal, these metal complexes are very active and productive catalytic precursors for the controlled immortal ROP of lactides, cyclic esters and 5- to 7-membered cyclic carbonates. The polymerisation can be carried out in solution in an organic solvent or in melt, in the absence of solvent, at a temperature ranging from 20° C. to 250° C., preferably from 50° C. to 180° C. Typically, the conversion of at least 50 000 and up to 500 000 equivalents of monomer, preferably 50 000 to 100 000 equivalents, can be achieved in the presence of up to hundreds of equivalents of alcohol per metal centre.


Preferably, the cyclic esters are selected from L-lactide (L-LA), rac-lactide (rac-LA), ε-caprolactone or δ-valerolactone.


The preferred cyclic carbonates are selected from TMC and its substituted derivatives. Non-limitative examples are shown below:




embedded image


The polymers thus prepared show typically a unimodal molecular weight distribution that ranges from 1.1 to 5.0, more typically from 1.1 to 2.5.


The number average molecular weight Mn can be tuned by the monomer-to-alcohol or monomer-to-amine ratio and ranges from 1 000 to 100 000 g/mol, more typically from 10 000 to 50 000 g/mol. In addition, the experimental molecular weights, as determined by size exclusion chromatoghraphy (SEC), are in good agreement with molecular weights calculated from the monomer-to-alcohol(amine) ratio and monomer conversion.


Another embodiment according to the present invention discloses a method for preparing a block copolymer comprising polyesterblocks and polycarbonate blocks in a sequential, two-step method comprising the steps of:

    • a) Injecting the metallic complex, alcohol in excess and a first cyclic monomer in the reactor;
    • b) Maintaining under first polymerisation conditions in order to form a first polymer block ending with a OH group;
    • c) Injecting a second cyclic monomer in the same reactor;
    • d) Maintaining under second polymerisation conditions in order to form a second polymer block attached to the first block.


EXAMPLES

Anhydrous SnCl2 (Acros, 98%) and LiNMe2 (Aldrich, 95%) were used as received. Sn(NMe2)2 was prepared as reported for example in Schaeffer and Zuckerman (Schaeffer, C. D. and Zuckerman, J. J., in J. Am. Chem. Soc., 96, 7160-7162, 1974), or in Foley and Zeldin (Foley, P. and Zeldin, M., in Inorg. Chem., 14, 2264-2267, 1975) or in Wang and Roskamp (Wang, W. B. and Roskamp E. J., in. J. Am. Chem. Soc., 115, 9417-9420, 1993).



119Sn NMR spectra were recorded on Bruker AC-300 and AM-400 spectrometers and were externally calibrated vs. SnMe4


Synthesis of Sn(O-2,6-tBu-Ph)2.


Complex Sn(O-2,6-tBu-Ph)2 (1) was prepared by reacting two equivalents of 2,6-tBu-phenol with 1 equivalent of the amido precursor Sn[N(SiMe3)2]2 in diethyl ether at room temperature. Sn[N(SiMe3)2]2 0.88 g (2.0 mmol) of Sn[N(SiMe3)2]2 were added with a bent finger to a solution of 0.82 g of 2,6-tBu-phenol (4.0 mmol) in 30 mL of diethyl ether at room temperature. The resulting mixture was stirred for 16 h at room temperature; fast formation of a yellow precipitate was observed. The solvent was then removed by filtration and the resulting powder was washed twice with 10 mL of pentane, yielding, after drying under vacuum, 0.86 g of the homoleptic complex Sn(O-2,6-tBu-Ph) with a yield of 87%.


NMR (1H, 13C, 119Sn) spectroscopy of the resulting yellow powder, which is insoluble in aliphatic hydrocarbons and partly soluble in aromatic solvents, confirmed the expected nature of the product in solution. 1H NMR (C6D6, 400.13 MHz, 25° C.): δH 7.37 (4H, d, 3JHH=7.8 Hz, arom-H), 6.90 (2H, t, 3JHH=7.8 Hz, arom-H), 1.58 (36H, br s, C(CH3)3) ppm. 13C{1H} NMR (C6D6, 75.47 MHz, 25° C.): δC 157.9, 139.5, 125.2, 119.1 (aromatic), 34.9 (C(CH3)3), 30.0 (C(CH3)3) ppm. 119Sn{1H} NMR (C6D6, 149.20 MHz, 25° C.): δSn −216 ppm.


Its solid-state structure was determined by X-ray diffraction crystallography and is represented in FIG. 1. It revealed a monomeric species with a tight O—Sn—O angle of 88.9°, evidencing the influence of the electrons' Ione pair of the tin center. Despite the lack of chelation, the complex proved perfectly stable in solution (C6D6) with no decomposition observed over the course of several days.


Synthesis of [LO3]2Sn (16)


A solution of 1.43 g of [LO3]H (3.28 mmol) in 30 mL of pentane was added at room temperature to a solution of 0.329 g of Sn[NMe2]2 (1.59 mmol) in 30 mL of pentane. The resulting mixture was stirred for 3 h at room temperature; fast formation of a white precipitate was observed. After concentration of the solution, the solvent was removed by filtration and the resulting solid was washed twice with 10 mL of pentane, yielding, after drying under vacuum, 1.40 g of homoleptic complex 16 with a yield of 89%. Elem. Anal. Found: C 60.6%, H 8.4%, N 2.7%. C50H84N2O10Sn requires: C 60.5%, H 8.5%, N 2.8%. 1H NMR (C6D6, 500.13 MHz, 25° C.): δH=7.64 (2H, d, 4JHH=2.7 Hz, arom-H), 6.94 (2 H, d, 4JHH=2.7 Hz, arom-H), 4.80 (2H, br s, Ar—CH2—N), 3.95-3.70 and 3.45-3.25 (38H, br m, O—CH2, N—CH2—CH2, N—CH2—Ar), 3.04 (4H, br s, N—CH2—CH2), 1.75 (9H, s, C(CH3)3), 1.46 (9H, s, C(CH3)3) ppm. 13C{1H} NMR (C6D6, 125.76 MHz, 25° C.): δC=159.2, 137.5, 137.2, 127.1, 123.7, 123.0 (aromatics), 71.0, 70.3, 70.2, 66.4 (O—CH2), 56.0 (Ar—CH2—N), 50.2 (N—CH2—CH2), 35.2 (C(CH3)3), 33.8 (C(CH3)3), 31.8 (C(CH3)3), 30.2 (C(CH3)3) ppm. 119Sn{1H} NMR (C6D6, 149.20 MHz, 25° C.): δSn=−566 ppm.


Synthesis of [LO3]SnNMe2 (17)


A solution of 0.43 g of [LO3]H (0.98 mmol) in 15 mL of pentane was added at a temperature of −80° C. over a period of 10 min to a solution of 0.21 g of Sn[NMe2]2 (1.01 mmol) in 30 mL of pentane. The resulting mixture was stirred for a period of time of 2 h and the temperature raised up to −30° C.; formation of a precipitate was observed. The volatiles were then removed under vacumm at room temperature and the resulting solid was washed three times with 3 mL of pentane, dried in vacuo to give complex 17 contaminated by less than 5% of homoleptic 16 (0.28 g, 48%). 1H NMR (C6D6, 500.13 MHz, 25° C.): δH=7.63 (1H, d, 4JHH=2.5 Hz, arom-H), 6.91 (1H, d, 4JHH=2.5 Hz, arom-H), 4.20-2.50 (22H, br m, O—CH2, N—CH2—CH2, N—CH2—Ar), 3.26 (6H, s, N—CH3), 1.77 (9H, s, C(CH3)3), 1.44 (9H, s, C(CH3)3) ppm. 13C{1H} NMR (C6D6, 125.76 MHz, 25° C.): δC=159.3, 139.1, 137.5, 125.9, 124.0, 122.6 (aromatics), 71.4, 69.9, 65.8 (O—CH2, N—CH2—CH2), 57.3 (Ar—CH2—N), 40.9 (N—CH3), 35.2 (C(CH3)3), 33.9 (C(CH3)3), 31.9 (C(CH3)3), 30.2 (C(CH3)3) ppm. 119Sn{1H} NMR (C6D6, 149.20 MHz, 25° C.): δSn=−147 ppm.


Synthesis of [LO3]SnN(SiMe3)2 (18)


A solution of 2.77 g of [LO3]H (6.32 mmol) in 30 mL of diethyl ether was added at a temperature of −80° C. over a period of time of 60 min to a solution of 2.92 g of Sn[N(SiMe3)2]2 (6.64 mmol) in 50 mL of diethyl ether. It turned from a deep orange solution to a pale yellow solution. The resulting mixture was stirred for a period of time of 90 min, letting the temperature warm up to −40° C. and the volatiles were removed under vacuum. The resulting powder was washed three times with 10 mL of cold pentane at a temperature of −20° C. and dried in vacuo to give 4.1 g of 18 as a white powder with a yield of 91%. Single-crystals suitable for X-ray diffraction were obtained by re-crystallisation from a cold pentane solution. The solid state structure of complex 18 is represented in FIG. 2 and the 1H NMR is represented in FIG. 3. 1H NMR (C6D6, 500.13 MHz, 25° C.): δH=7.63 (1H, d, 4JHH=2.6 Hz, arom-H), 7.00 (1H, d, 4JHH=2.6 Hz, arom-H), 4.18 (1H, br s, Ar—CH2—N), 3.88, 3.79, 3.64, 3.64 (4H, br s, N—CH2—CH2), 3.47-3.17 (15H, br m, O—CH2, N—CH2—CH2, Ar—CH2—N), 2.88 (2H, br s, N—CH2—CH2), 1.70 (9H, s, C(CH3)3), 1.39 (9H, s, C(CH3)3), 0.50 (18 H, s, N(Si(CH3)3)2) ppm. 13C{1H} NMR (C6D6, 125.76 MHz, 25° C.): δC=158.4, 140.33, 139.13, 126.6, 124.5, 124.3 (aromatics), 71.0, 70.2 (O—CH2), 65.5, 65.2 (N—CH2—CH2), 57.2 (Ar—CH2—N), 53.1, 51.8 (N—CH2—CH2), 34.9 (C(CH3)3), 33.9 (C(CH3)3), 31.7 (C(CH3)3), 30.3 (C(CH3)3), 6.5 (N(Si(CH3)3)2) ppm. 29Si{1H} NMR (C7D8, 79.49 MHz, 25° C.): δSi=−0.49 ppm. 119Sn{1H} NMR (C6D6, 149.20 MHz, 25° C.): δSn=−55 ppm.


Synthesis of [LO3]SnOSiPh3 (21)


A solution of 0.63 g of [LO3]H (1.44 mmol) in 10 mL of diethyl ether was added at a temperature of −50° C. over a period of time of 20 min to a solution of 0.64 g of Sn[N(SiMe3)2]2 (1.46 mmol) in diethyl ether (20 mL). The resulting mixture was stirred for further 20 min at a temperature of −50° C. before adding dropwise a solution of 0.41 g of HOSiPh3 (1.39 mmol) in 10 mL of diethyl ether. The resulting solution was stirred for another 20 min at a temperature of −30° C. and the volatiles were then removed under vacuum. The resulting solid was washed three times with 10 mL of pentane and dried under vacuum, yielding 1.0 g of 21 as a white powder with a yield of 88%. Single-crystals suitable for X-ray diffraction were obtained by re-crystallization from a pentane solution. The solid state structure of complex 21 is represented in FIG. 4 and its 1H NMR is represented in FIG. 5. Elem. Anal. Found: C 62.3, H 6.8, N 1.6%. C43H57NO6SiSn requires: C 62.2, H 6.9, N 1.7%. 1H NMR (C6D6, 500.13 MHz, 25° C.): δH=8.06 (6H, m, arom-H), 7.66 (1H, d, 4JHH=2.6 Hz, arom-H), 7.24 (6H, m, arom-H), 7.29 (3 H, m, arom-H), 6.80 (1H, d, 4JHH=2.6 Hz, arom-H), 4.63 (1H, m, Ar—CH2—N), 3.91 (1H, br m, N—CH2—CH2), 3.64 (1H, br m, N—CH2—CH2), 3.57 (1H, br m, N—CH2—CH2), 3.27, 3.20, 3.14-2.92 (14H, br m, O—CH2, N—CH2—CH2), 2.82 (2H, br m, Ar—CH2—N, N—CH2—CH2), 2.43, 2.09 (2 H, br s, N—CH2—CH2), 1.81 (9H, s, C(CH3)3), 1.44 (9H, s, C(CH3)3) ppm. 13C{1H} NMR (C6D6, 125.76 MHz, 25° C.): δC=158.9, 140.7, 138.5, 137.0, 135.6, 128.7, 128.0 (overlapped with C6D6), 128.5, 124.1, 122.0 (aromatics), 70.8, 70.6, 69.5, 69.0 (O—CH2), 66.2, 64.5 (N—CH2—CH2), 58.9 (Ar—CH2—N), 53.8, 48.6 (N—CH2—CH2), 35.2 (C(CH3)3), 33.9 (C(CH3)3), 31.9 (C(CH3)3), 30.1 (C(CH3)3) ppm. 29Si{1H} NMR (C6D6, 79.49 MHz, 25° C.): δSi=−22.2 ppm. 119Sn{1H} NMR (C6D6, 149.20 MHz, 25° C.): δSn=−459 ppm.


Synthesis of [LO2]SnN(SiMe3)2 (23)


A solution of 0.25 g of [LO2]H (0.81 mmol) in 20 mL of diethyl ether was added at a temperature of −45° C. over a period of time of 15 min to a solution of 0.37 g of Sn[N(SiMe3)2]2 (0.84 mmol) in 20 mL of diethylether. The resulting mixture was stirred for a period of time of 15 minutes at a temperature of −45° C. and the volatiles were then removed under vacuum. The sticky solid was stripped with six times 5 mL of pentane, but complete removal of the amine could not be achieved. A small quantity of avout 30 g of 23 could be obtained completely pure by precipitation over weeks of a concentrated solution in pentane at a temperature of −50° C. 1H NMR (C6D6, 400.13 MHz, 25° C.): 67H=7.68 (1H, d, 4JHH=2.6 Hz, arom-H), 6.80 (1H, d, 4JHH=2.6 Hz, arom-H), 4.3-1.8 (10H, br m, Ar—CH2—N—CH2—CH2—O), 1.68 (9H, s, C(CH3)3), 1.41 (9H, s, C(CH3)3), 0.45 (18H, s, N(Si(CH3)3)2) ppm. 13C{1H} NMR (C6D6, 100.62 MHz, 25° C.): δC 157.8, 139.8, 138.8, 125.6, 124.1, 122.3 (aromatics), 64.0 (O—CH2), 60.1 (Ar—CH2—N), 52.4 (N—CH2—CH2), 34.3 (C(CH3)3), 33.4 (C(CH3)3), 31.1 (C(CH3)3), 29.7 (C(CH3)3), 5.8 (N(Si(CH3)3)2) ppm. 29Si{1H} NMR (C7D8, 79.49 MHz, 25° C.): δSi=0.14 ppm. 119Sn{1H} NMR (C7D8, 149.20 MHz, 25° C.): δSn=−42 ppm.


Polymerisation Results.


The ring opening polymerisation of L-lactide was carried out in toluene with [L-LA]0 2.0M or 4.0 M as indicated in Table 1.


Various metallic pre-catalysts were used with an excess of iPrOH as indicated in Table 1. The amount of monomer, polymerisation temperature and time and polymerisation results are also indicated in Table 1.

















TABLE 1







T
[L-LA]
Time

Mncalc
MnSEC



Complex
La/Sn/alcohol
° C.
mol/L
min
Yield %
g/mol
g/mol
Mw/Mn























17
1000/1/10
60
2
90
82
11800
10600
1.09


17
1000/1/10
60
2
180
89
12800
11400
1.11


18
 500/1/10
60
2
150
91
6600
7700
1.17


18
1000/1/10
60
2
180
87
12500
11900
1.11


18
1000/1/5
60
2
180
87
25100
28800
1.29


18
1000/1/20
60
2
180
91
6600
7600
1.15


23
1000/1/10
60
2
180
83
11900
1300
1.11


16
1000/1/10
60
2
180
88
12700
14000
1.17


21
 500/1/10
60
2
300
0





Sn(O-2,6-tBu—Ph)2
1000/1/10
60
2
180
90
13000
15000
1.14


Sn(O-2,6-tBu—Ph)2
1000/1/5
60
2
180
92
26500
28400
1.23


Sn(O-2,6-tBu—Ph)2
1000/1/20
60
2
180
87
6300
7700
1.11


Sn(Oct)2
1000/1/10
60
2
180
0





Sn(Oct)2
1000/1/10
60
2
1440
72
10300
11600
1.07


Sn(O-2,6-tBu—Ph)2
5000/1/25
110
4
120
95
27600
32900
1.85a


Sn(Oct)2
5000/1/25
110
4
120
75
21500
23700
1.11a


Sn(O-2,6-tBu—Ph)2
5000/1/25
110
4
120
56
16100
15700
1.12b






amade with ultra pure monomer




bmade with technical monomer (wet)







The polydispersity index is represented by the ratio Mw/Mn of the weight average molecular weight Mw over the number average molecular weight Mn.


The number average molecular weight is measured by size exclusion chromatography (SEC) vs. polystyrene standards and corrected by a factor of 0.58. It is calculated from formula Mn=[L-lactide]0[iPrOH]0×monomer conversion×ML-lactide+MiPrOH, wherein ML-lactide=144 g·mol−1 and MiPrOH=60 g·mol−1


Additional examples were prepared with non purified and twice purified L-LA, using the catalyst systems Sn(Oct)2/octanol or Sn(O-2,6-tBu-Ph)2/octanol. The copolymerisation conditions and results for the non purified L-LA are summarised in Table 2. The copolymerisation conditions and results for the twice purified L-LA are summarised in Table 3.
















TABLE 2







T
Time

Mncalc
MnSEC



Complex
La/Sn/octanol
° C.
min
Yield %
g/mol
g/mol
Mw/Mn






















Sn(Oct)2
 6 000/1/14.8
185
5
25





Sn(Oct)2
 6 000/1/14.8
185
15
79





Sn(Oct)2
 6 000/1/14.8
185
30
92
53 838
41 260
1.60


Sn(O-2,6-tBu—Ph)2
 6 000/1/14.8
185
5
47.5





Sn(O-2,6-tBu—Ph)2
 6 000/1/14.8
185
15
89.6





Sn(O-2,6-tBu—Ph)2
 6 000/1/14.8
185
30
92.9
54 364
45 850
1.43


Sn(Oct)2
72 000/1/178
185
60
42.4





Sn(Oct)2
72 000/1/178
185
180
85.6





Sn(Oct)2
72 000/1/178
185
300
89.6
52 319
40 812
1.62


Sn(O-2,6-tBu—Ph)2
72 000/1/178
185
60
42.9





Sn(O-2,6-tBu—Ph)2
72 000/1/178
185
180
84.8





Sn(O-2,6-tBu—Ph)2
72 000/1/178
185
300
91
53 135
42 150
1.41























TABLE 3







T
Time

Mncalc
MnSEC



Complex
La/Sn/octanol
° C.
min
Yield %
g/mol
g/mol
Mw/Mn






















Sn(Oct)2
 6 000/1/14.8
185
1
0





Sn(Oct)2
 6 000/1/14.8
185
5
79





Sn(Oct)2
 6 000/1/14.8
185
15
91.4





Sn(Oct)2
 6 000/1/14.8
185
30
92.1
53 896
49 321
1.65


Sn(O-2,6-tBu—Ph)2
 6 000/1/14.8
185
1
84.7





Sn(O-2,6-tBu—Ph)2
 6 000/1/14.8
185
5
88





Sn(O-2,6-tBu—Ph)2
 6 000/1/14.8
185
15
91.9





Sn(O-2,6-tBu—Ph)2
 6 000/1/14.8
185
30
93
54 421
56 326
1.46


Sn(Oct)2
72 000/1/178
185
5
0





Sn(Oct)2
72 000/1/178
185
10
62.2





Sn(Oct)2
72 000/1/178
185
20
88.2
51 504
44 231
1.61


Sn(O-2,6-tBu—Ph)2
72 000/1/178
185
5
51.7





Sn(O-2,6-tBu—Ph)2
72 000/1/178
185
10
66.9





Sn(O-2,6-tBu—Ph)2
72 000/1/178
185
20
92.3
53 892
49 985
1.43









The conversion rate, expressed in percent, as a function of time, expressed in minutes, is represented in FIG. 6 for the two catalysts Sn(Oct)2 and Sn(OAr)2 and for a ratio ([LA]0/[Sn]0/[Octanol]0 of 6 000/1/14.8. It is represented in FIG. 7 for the same two catalysts and a ratio ([LA]0/[Sn]0/[Octanol]0 of 72 000/1/178.


Ring opening polymerisation of twice purified L-LA has also been carried out with catalyst system Zn(LO3)2/octanol.


Synthesis of Zn(LO3)2


A solution of 2.20 g of [LO3]H (5.02 mmol) in 50 mL of toluene was added at room temperature to a solution of 0.92 g of Zn[N(SiMe3)2]2 (2.39 mmol) in 40 mL of toluene. The resulting mixture was stirred at a temperature of 40° C. for a period of time of 3 h and volatiles were removed under vacuum. Pentane was added to the resulting oil until a white solid precipitated. The solid was isolated by filtration and washed 3 times with 10 mL of pentane to afford 2.20 g of Zn(LO3)2 with a yield of 98%, as a colorless powder which was dried in vacuo.


Found: C 64.2, H 8.8, N 2.9%. C50H84N2O10Zn requires: C 64.0, H 9.0, N 3.0%.



1H NMR (C6D6, 500.13 MHz, 25° C.): δH=7.57 (2H, d, 4JHH=2.6 Hz, arom-H), 6.94 (2H, d, 4JHH=2.6 Hz, arom-H), 4.3-3.0 (44H, br m, macrocyclic-H), 1.69 (18H, s, C(CH3)3), 1.45 (18H, s, C(CH3)3) ppm.



13C{1H} NMR (C6D6, 100.03 MHz, 25° C.): δC=163.9, 137.9, 134.8, 125.9, 124.0, 119.8 (aromatics), 71.1, 70.8, 70.5 (br), 67.0, 65.4, 61.2, 54.3, 49.8, 35.3 (C(CH3)3), 33.8 (C(CH3)3), 31.9 (C(CH3)3), 30.0 (C(CH3)3) ppm.


The polymerisation conditions and results are displayed in table 4.
















TABLE 4






La/
T
Time
Yield
Mncalc
MnSEC
Mw/


Complex
Sn/octanol
° C.
min
%
g/mol
g/mol
Mn






















Zn(LO3)2
6 000/1/14.8
185
10
0





Zn(LO3)2
6 000/1/14.8
185
20
9





Zn(LO3)2
6 000/1/14.8
185
30
20





Zn(LO3)2
6 000/1/14.8
150
10
0





Zn(LO3)2
6 000/1/14.8
150
20
0





Zn(LO3)2
6 000/1/14.8
150
30
0





Zn(LO3)2
6 000/1/14.8
110
10
21.2





Zn(LO3)2
6 000/1/14.8
110
20
46.4





Zn(LO3)2
6 000/1/14.8
110
30
76.4
45 118
42 250
1.63









A yellow solution and very poor conversions were observed at temperatures of 150° C. and 185° C. It seems that a temperature of 110° C. is most appropriate to carry out the efficient and controlled ROP of L-La.


The controlled immortal ROP process was observed using the catalytic systems based on these Sn(OAr)2/iPrOH as it could be clearly seen that the molecular weights were determined by the monomer/alcohol ratio. The corresponding polydispersity indices were also very narrow.


NMR spectroscopy (FIG. 8), and MALDI-ToF-MS (FIG. 9) analysis of the resulting polymers confirmed their expected structure, especially the nature of their chain-ends, even if quantitative transesterification reactions appeared to occur as detected by the increment between two consecutive signals of the MALDI-ToF mass spectrum which was measured as 72 Da instead of 144 Da. These results obtained with complexes Sn(O-2,6-tBu-Ph)2 of the type are particularly suitable for industrial applications as they are very robust, cheap and as efficient as more complex heteroleptic complexes such as [LO3]SnNMe2 or [LO3]SnN(SiMe3)2. It has been surprisingly observed that they were more efficient than the currently used Sn(Oct)2.


It must be added that the present catalyst precursors, Sn-bis(phenolates or [LO3]SnNMe2 or [LO3]SnN(SiMe3)2, based on phenolate ligands, are better catalyst precursors than Sn(Oct)2, meaning that for an equivalent amount of Sn precursor the polymerisation reaction is faster than with Sn(Oct)2 precursor. As a result, less precursor is needed than with the prior art systems, thereby leaving less residual metal in the final polymer.


Large loadings of monomer of about 5 000 equivalents were fully converted, with a polymerisation temperature of 110° C. It must be noted that an overestimated reaction time generally results in a larger than usual distribution of molecular weights. A comparative study with the archetypal Sn(Oct)2 confirmed the superiority of Sn(O-2,6-tBu-Ph)2 regarding catalytic activities at 60° C. at all monomer loadings and polymerisation temperatures.


Sequential Block Copolymerization of Trimethylene Carbonate and Lactide.


The ring opening polymerisation of trimethylene carbonate (1000 equiv vs Sn) was carried out with the Sn(O-2,6-tBu-Ph)2/BnOH system (1:10) in toluene solution with [TMC]0=2.0M, at a temperature of 60° C. for 3 h. After this time period, an aliquot of the reaction mixture was sampled, and analysed by 1H NMR and SEC. This revealed 96% cony of TMC and the production of a BnO-PTMC-OH polymer with Mn=9,800 g/mol and Mw/Mn=1.25. Then, L-Lactide (1000 equiv. vs Sn) was introduced in the reaction vessel, under controlled atmosphere, and the reaction mixture was heated at 60° C. for an additional 3 h period. The mixture was analysed by 1H NMR and SEC. This revealed 90% cony of L-LA and the production of a BnO-PTMC-b-PLLA-OH block copolymer with Mn=22,800 g/mol and Mw/Mn=1.30. The block copolymer was isolated by precipitation after adding methanol to the reaction mixture.

Claims
  • 1-12. (canceled)
  • 13. A method comprising: immortal ring-opening homopolymerisation of cyclic carbonates or cyclic esters in the presence of a catalytic system, or sequential two-step ring-opening block copolymerisation of one or more cyclic monomers selected from cyclic carbonates or cyclic esters in the presence of the catalytic system, wherein the catalytic system comprises: a metallic complex of formula M(OAr)nXm; wherein M is a metal selected from Sn, Zn or Al; wherein OAr is a phenolate ligand; wherein X is an alkyl having from 1 to 6 carbon atoms, an amido group, or an alkoxide group; and wherein n is at least 1 and n+m is the valence of M; andan alcohol ROH or a primary amine RNH2; wherein R is an hydrocarbyl group, linear or branched, having from 1 to 20 carbon atoms, containing aliphatic and/or aromatic moieties; and wherein the alcohol or the primary amine is present in a molar ratio with respect to the metallic complex that is larger than 1;wherein the phenolate ligand is prepared from a phenol-based pro-ligand of formula
  • 14. The method of claim 13, wherein the immortal ring-opening homopolymerisation of the cyclic carbonates or the cyclic esters in the presence of the catalytic system is performed.
  • 15. The method of claim 13, wherein the sequential two-step ring-opening block copolymerisation of the one or more cyclic monomers selected from the cyclic carbonates or the cyclic esters in the presence of the catalytic system is performed.
  • 16. The method of claim 15, wherein R1 and/or R3 contain functional coordinating moieties.
  • 17. The method of claim 16, wherein the functional moieties included N, O, S, or P.
  • 18. The method of claim 15, wherein R1 and/or R3 are (CH2)mNCH2CH2(OCH2CH2)n or (CH2)mN(CH2CH2OCH3)2; wherein m is 1, 2 or 3 and n≧1.
  • 19. The method of claim 18, wherein R1 is (CH2)NCH2CH2(OCH2CH2)4 or CH2N-morpholine, wherein R2 and R3 are the same and are tert-butyl, and wherein M is tin(II).
  • 20. The method of claim 13, wherein M is Sn.
  • 21. The method of claim 13, X is selected from: methyl, ethyl, n-butyl, or phenyl;N(SiMe3)2, NMe2, NEt2, or NiPr2; orOEt, OiPr, OtBu, OCH2Ph, or OSiPh3.
  • 22. The method of claim 13, wherein R1 and R3 are the same and are tert-butyl, wherein R2 is hydrogen, wherein M is tin(II), wherein n=2, and wherein m=0.
  • 23. The method of claim 13, wherein R, in the alcohol ROH or the primary amine RNH2 is a primary or secondary alkyl residue, a benzylic group, a poly-ol, or a combination thereof.
  • 24. The method of claim 23, wherein the poly-ol is a diol, a triol, or a higher functionality polyhydridic alcohol.
  • 25. The method of claim 23, wherein R is iPr, a benzyl group, or (CH2)7CH3.
  • 26. The method of claim 13, wherein a molar ratio alcohol/metal ranges between 1 and 1000.
  • 27. The method of claim 26, wherein the molar ratio alcohol/metal ranges between 5 and 200.
  • 28. The method of claim 13, wherein a molar ratio monomer/metal ranges between 500 and 500,000.
  • 29. The method of claim 28, wherein the molar ratio monomer/metal ranges between 1,000 and 100,000.
  • 30. The method of claim 12, wherein the cyclic ester is selected from L-lactide (L-LA), rac-lactide (rac-LA), ε-caprolactone, or δ-valerolactone, and wherein the cyclic carbonate is selected from TMC and substituted derivatives of TMC.
  • 31. The method of claim 30, wherein the cyclic carbonate is selected from:
  • 32. The method of claim 13, wherein a block copolymer comprising polyester blocks and polycarbonate blocks is prepared in a sequential, two-step method by: injecting the metallic complex, more than one equivalent of the alcohol with respect to M, and a first cyclic monomer in a reactor;maintaining under first polymerisation conditions in order to form a first polymer block ending with an OH group;injecting a second cyclic monomer in the reactor; andmaintaining under second polymerisation conditions in order to form a second polymer block attached to the first block.
Priority Claims (1)
Number Date Country Kind
11290394.3 Sep 2011 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2012/066939 8/31/2012 WO 00 4/29/2014