The present invention relates to a catalytic composition for the synthesis of carbon nanotubes and more particularly to a catalytic composition comprising a mixture of active iron and cobalt sites on an exfoliated vermiculite support. The invention also relates to a method for the synthesis of the catalytic composition and of the carbon nanotubes obtained by means of this catalytic composition. The invention is also directed to polymeric composites comprising the thereby obtained carbon nanotubes with their improved electric features.
Supported catalysts on exfoliated vermiculite for the synthesis of carbon nanotubes are known from the state of the art. Qiang Zhang, in his article «Mass production of aligned carbon nano tube arrays by fluidized bed catalytic chemical vapor deposition» in CARBON 48 (2010)1196-1209 discloses an iron-molybdenum-based supported catalyst on vermiculite. In this document, the exfoliated vermiculite had a particle size comprised between 100 and 250 μm. For the synthesis of the supported catalyst, this vermiculite was suspended in an aqueous solution of Fe(NO3)3.9H2O and of (NH4)6Mo7O24.4H2O.
The synthesis of carbon nanotubes is carried out according to a fluidized bed method and the yields which are relatively low, are located between 0.224 and 1.167 grams of carbon nanotubes per gram of catalyst for a variable synthesis time ranging up to 30 minutes.
Moura et al. in their article «Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic «nanosponges» for oil spill remediation” in Applied catalysis B: Environmental, 2009, vol. 90, pages 436-440, also discloses a supported catalyst based on iron, on molybdenum or on an iron-molybdenum mixture on exfoliated vermiculite. For this purpose, the vermiculite was exfoliated at 1,000° C. for 60 seconds and impregnated with a solution of Fe(NO3)3 and of MoO2(acac)2 by using water or methanol as a solvent. Only the iron-molybdenum combinations give rise to a synthesis of carbon nanotubes.
Vermiculite is a clayey hydrated mineral with a lamellar structure of aluminum, iron and magnesium silicates resembling muscovites like mica and when they are subject to heat, they exfoliate depending on the steam generated between the lamellas. Vermiculite is inert and non-combustible, it has a melting temperature around 1,300° C. and a unit weight between 40 and 80 g/l when it is exfoliated.
Document U.S. Pat. No. 3,062,753 A and document U.S. Pat. No. 5,879,600 disclose methods for exfoliating vermiculite and document U.S. Pat. No. 7,541,311 discloses a catalyst using vermiculite. The information on vermiculite contained in these three documents is representative of the knowledge of the person skilled in the art on vermiculite.
The present invention aims at providing an improved catalytic composition allowing the synthesis of carbon nanotubes with particular features.
It also aims at providing a method for synthesizing carbon nanotubes with said catalyst.
The invention finally aims at disclosing polymeric composites with improved physical properties and obtained by means of the carbon nanotubes synthesized by means of the catalytic composition according to the invention.
The present invention discloses a catalytic composition for the synthesis of carbon nanotubes comprising an active catalyst and a catalytic support, the active catalyst comprising a mixture of iron and cobalt in any oxidation form and the catalytic support comprising exfoliated vermiculite.
The particular embodiments of the present invention comprise at least one or a suitable combination of the following features:
The present invention also discloses a method for synthesizing the catalytic composition according to the invention comprising the following steps:
According to particular embodiments, the method comprises at least one or a suitable combination of the following features:
The present invention also discloses a method for synthesizing carbon nanotubes by decomposing a gaseous hydrocarbon on a catalytic composition according to the invention comprising the following steps:
According to a particular embodiment of the method for synthesizing carbon nanotubes, the supply of catalytic composition and the extraction of synthesized carbon nanotubes is continuous.
The present invention also discloses polymeric composites comprising carbon nanotubes obtained according to the method of the invention.
The invention consists in producing a catalytic composition with an active catalyst and a catalytic support, the active catalyst comprising a mixture of cobalt and iron on a catalytic support comprising exfoliated vermiculite. This catalytic composition allows to obtain carbon nanotubes which, when they are dispersed in polymeric matrices, provide a high electric conductivity level with low concentrations of carbon nanotubes. The invention also describes a method for the synthesis of the catalytic composition.
The method for preparing the catalytic composition comprises the following steps:
Influence of Different Parameters on the Yield of the Catalytic Composition According to the Invention
A) The Co/Fe Ratio
Preparation Conditions
Results
B) Percentage of Metal in the Catalytic Composition
Results
C) The Vermiculite Type
Results
D) Synthesis Time
Results
E) Influence of the Type of Solvents
Results
F) The Water Impregnation Volume
Results
Number | Date | Country | Kind |
---|---|---|---|
11158890 | Mar 2011 | EP | regional |
This patent application is a divisional of co-pending U.S. patent application Ser. No. 14/005,043, filed Nov. 7, 2013, which claims priority to PCT/EP2012/054029, filed Mar. 8, 2012, which claims priority to European Application No. 11158890.1, filed Mar. 18, 2011, the entire teachings and disclosure of which are incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
3062753 | Hayes | Nov 1962 | A |
5879600 | Symons | Mar 1999 | A |
7541311 | Chen et al. | Jun 2009 | B2 |
20080213160 | Silvy et al. | Sep 2008 | A1 |
20120121891 | Kim | May 2012 | A1 |
Number | Date | Country |
---|---|---|
101073934 | Nov 2007 | CN |
101348249 | Jan 2009 | CN |
100569509 | Dec 2009 | CN |
1674154 | Jun 2006 | EP |
Entry |
---|
Flavia C.C. Moura et al.; Catalytic Growth of Carbon Nanotubes and Nanofibers on Vermiculite to Produce Floatable Hydrophobic “Nanosponges” for Oil Spill Remediation; Applied Catalysis B: Environmental; 2009; 5 pages. (436-440); vol. 90. |
Quiang Zhang et al.; Energy-Absorbing Hybrid composites Based on Alternate Carbon-Nanotube and Inorganic Layers; Advanced Materials; 2009; 5 pages. (2876-2880); vol. 21. |
Qiang Zhang et al.; Mass Production of Aligned Carbon Nanotube Arrays by Fluidized Bed Catalytic Chemical Vapor Deposition; Carbon; 2010; 14 pages (1196-1209); vol. 48. |
Kathyayinia et al. (“Synthesis of carbon nanotubes over transition metal ions supported on Al (OH)3.” Indian Journal of Chemistry, 47A, pp. 663-668, May 2008). |
Zhang et al. (“Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition.” Carbon, 47, pp. 2600-2610, May 24, 2009). |
Zhao et al. (Large scale intercalated growth of short aligned carbon nanotubes among vermiculite layers in a fluidized bed reactor. JPC of Solids, 71, pp. 624-626, Aug. 29, 2009). |
Su (“The use of natural materials in nanocarbon syntheis.” ChemSusChem, 2, pp. 1009-1020, 2009). |
Number | Date | Country | |
---|---|---|---|
20170282158 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14005043 | US | |
Child | 15628049 | US |