Catalytic compositions

Abstract
Catalyst compositions are described which comprise crystalline molecular sieve zeolites and an aluminum phosphate component having a surface area of less than about 50 m.sup.2 /g and a high degree of attrition resistance. The catalysts are particularly effective for the catalytic cracking of high molecular hydrocarbon feedstocks to obtain enhanced yields of C.sub.3 and C.sub.4 olefins such as isobutylene.
Description

The present invention relates to improved catalytic cracking catalysts, and more specifically to attrition resistant zeolite/aluminum phosphate (AlPO.sub.4) containing FCC catalysts that are particularly selective for the production of C.sub.3 and C.sub.4 olefins.
Catalysts and zeolites which include a phosphorus component are described in the following references.
U.S. Pat. No. 3,354,096 describes zeolite containing adsorbent and catalyst compositions which contain a phosphate binding agent to improve physical strength.
U.S. Pat. No. 3,649,523 describes hydrocracking catalysts which comprise a zeolite and an aluminum phosphate gel matrix.
U.S. Pat. Nos. 4,454,241, 4,465,780, 4,498,975 and 4,504,382 describe zeolite catalysts that are prepared from clay which are further modified by the addition of a phosphate compound to enhance catalytic activity.
U.S. Pat. Nos. 4,567,152, 4,584,091, 4,629,717 and 4,692,236 describe zeolite containing catalytic cracking catalysts that include phosphorus containing alumina.
U.S. Pat. Nos. 4,605,637, 4,578,371, 4,724,066 and 4,839,319 describe phosphorus and aluminum phosphate modified zeolites such as ZSM-5, Beta and ultrastable Y that are used in the preparation of catalytic compositions, including catalytic cracking catalysts.
U.S. Pat. No. 4,765,884 and U.S. Pat. No. 4,873,211 describe the preparation of cracking catalysts which consist of a zeolite and a precipitated alumina phosphate gel matrix.
While the prior art describes phosphorus modified zeolite and catalyst compositions which possess desirable catalytic or physical properties, highly attrition resistant catalytic cracking catalysts that are capable of producing high yields of C.sub.3 and C.sub.4 olefins, and isobutylene in particular have not been described.
It is therefore an object of the present invention to provide improved catalytic compositions which include a zeolite and aluminum phosphate.
It is a further object to provide a method for preparing zeolite/alumina phosphate catalytic cracking catalysts which are highly attrition resistant and selective for the production of C.sub.3 and C.sub.4 olefins.
It is yet a further object to provide a fluid catalytic cracking (FCC) catalyst which is resistant to attrition and capable of producing enhanced yields of isobutylene.
It is still a further object to provide an FCC process which is capable of producing high yields of isobutylene that may be used in the production of methyl tertiary butyl ether (MTBE).





These and still further objects will become apparent to one skilled-in-the-art from the following detailed description and drawing wherein FIG. 1 is a flow diagram which illustrates a preferred process for preparing the novel catalysts of the present invention; and FIGS. 2 through 9 are graphic presentations of data obtained during evaluation of catalyst compositions of the present invention in which FIG. 2 plots C.sub.3 and C.sub.4 olefin agent vs. conversion; FIG. 3 plots C.sub.5 +gasoline yield vs. conversion; FIG. 4 plots PONA RON (the research octane number of the parafins, olefins, naphthenes and aromatics contained in the C.sub.5 +gasoline fraction) vs. conversion; FIG. 5 plots PONA MON (motor octane number vs. conversion; FIG. 6 plots isobutylene yields vs. wt. % Beta catalyst in catalyst blend; FIG. 7 plots isobutylene selectivity vs. wt. % Beta catalyst in the catalyst blend; FIG. 8 plots PONA aromatics vs. wt. % Beta catalyst in the catalyst blend; and FIG. 9 plots PONA olefin yields vs. wt. % Beta catalyst in the catalyst blend.





Broadly, our invention contemplates a catalyst which comprises a zeolite and an aluminum phosphate component having a surface area of below about 50 m.sup.2 g.
More specifically, we have found that highly active and attrition resistant catalysts may be prepared by mixing a solution of aluminum phosphate having a pH of about 0 to 1 and preferably 0.1 to 0.7, with a crystalline zeolite, and optionally a finely divided particulate inorganic oxide component such as clay, and with the resultant mixture having a pH of about 0 to 2, preferably 0.1 to 0.9, and forming/drying the mixture to obtain catalytic composites having desired shape and size.
A preferred method for preparing the FCC catalysts of the present invention is outlined in FIG. 1 wherein an aluminum salt solution (1), preferably an aluminum nitrate solution containing 29 to 61 wt. % Al(NO.sub.3).sub.3 .multidot.9 H.sub.2 O is combined with phosphoric acid solution (2) preferably containing 20 to 86 wt. % H.sub.3 PO.sub.4 to obtain an aluminum phosphate solution (3) having a pH of preferably 0.5 to 0.9 and an Al to PO.sub.4 mol ratio of preferably 0.4 to 1.4. The aluminum phosphate solution is combined with aqueous slurries of (4) zeolite such as Beta and clay, (5) preferably kaolin, under high shear mixing conditions at (6) to obtain a spray drier feed slurry (7) that contains 20 to 45% solids which preferably comprises (dry basis) 8 to 25 wt. % aluminum phosphate, 10 to 40 wt. % zeolite and 35 to 82 wt. % kaolin.
The catalyst slurry is held in a spray dryer feed storage tank (8) under mixing conditions until spray dried at (9) at a temperature of 200.degree. to 400.degree. C. During the drying process the aluminum phosphate solution is converted into a binder. The particulate spray dried FCC catalyst has a particle size range of 20 to 150 microns and is held in an FCC catalyst storage container prior to use.
The FCC catalyst may be used in a conventional FCC unit wherein the catalyst is reacted with a hydrocarbon feedstock at 400.degree. to 700.degree. C. and regenerated at 500.degree. to 850.degree. C. to remove coke. Typically, the catalyst possesses a Davison attrition index (DI) of 0 to 25, and preferably 0 to 7, as determined by the Davison Attrition Index Test described as follows.
A 7.0 gram sample of catalyst is screened to remove particles in the 0 to 20 micron size range. The particles above 20 microns are then subjected to a 1 hour test in a standard Roller Particle Size Analyzer using a hardened steel jet cup having a precision bored orifice. An air flow of 21 liters a minute is used. The Davison Index is calculated as follows: ##EQU1##
The aluminum salt solution may contain aluminum nitrate, chloride, or other suitable soluble aluminum salts and is combined with phosphoric acid in amounts to obtain an Al to PO.sub.4 ratio of 0.4 to 1.4 and preferably 1 to 1, a pH of below 2 and preferably 0.1 to 0.9 and a solid concentration of 7 to 17 wt. % as aluminum phosphate. The zeolite component may comprise any acid resistant zeolite or molecular sieve having a silica to alumina molar ratio in excess of about 8 and preferably from about 15 to infinity. Particularly preferred zeolite/molecular sieves include zeolite Beta, ZSM zeolites such as ZSM-5, ZSM-11, ZSM-12, ZSM-20, ZSM-23, ZSM-35, ZSM-38, and ZSM-50, ultrastable Y zeolite (USY), mordenite, SAPO, aluminum phosphate and mixtures thereof. In particular, ZSM-5 is described in U.S. Pat. No. 3,702,886; zeolite Beta in U.S. Pat. No. 3,308,069; and ultrastable Y zeolite in U.S. Pat. Nos. 3,293,192 and 3,449,070.
While clay, such as kaolin, having a surface area of about 40 to 60 m.sup.2 /g, is preferably included as a component of FCC catalyst prepared in accordance with the present invention, other finely divided inorganic components such as other types of clays, silica, alumina, silica-alumina gels and sols may be included.
The pH of the resulting mixture consisting of zeolite, aluminum phosphate-tinder, clay, other inorganic oxides, and water should have a pH of below 2 and preferably 0.1 to 0.9.
Typical FCC catalyst compositions will include the following range of ingredients:
______________________________________Aluminum Phosphate: 10 to 44 wt. %Zeolite/Molecular Sieve: 2 to 70 wt. %Inorganic Solid: 0 to 88 wt %______________________________________
While spray drying at gas inlet/outlet temperatures of 600.degree. to 750.degree. F./280.degree.-350.degree. F. is used in the preparation of FCC catalysts, other forming/drying techniques such as pelletizing and extruding may be used to prepare catalysts/catalyst supports which are useful in catalytic processes such as hydrocracking, hydrotreating, isomerization, dewaxing, etc.
Preferred FCC catalysts which contain from about 5 to 60 wt. % Beta zeolite, 0 to 78 wt. % kaolin, and 12 to 46 wt. % aluminum phosphate are used to crack feedstocks such as gas-oil, residual oil and mixtures thereof which may contain up to 1.0 wt. % Conradson Carbon and 300 to 8000 ppm Ni & V. Based on MAT data, the anticipated cracked product stream obtained using these preferred catalysts will typically contain from 13 to 32 wt. % C.sub.3 and C.sub.4 olefins of which 2 to 6 wt. % comprises isobutylene which is particularly valuable for the production of MTBE.
It is found that the dried aluminum phosphate binder possesses a surface area of less than about 5 m.sup.2 /g as determined by the nitrogen BET method, and a total pore volume of less than 0.10 cc/g as determined from the adsorption isotherm for nitrogen at liquid nitrogen temperatures and at a relative pressure (P/Po) of at least 0.97. When an additional matrix component such as silica, alumina, magnesia or silica-alumina sols or gels is added the matrix component of the catalyst may have a surface area of up to 300 m.sup.2 /g and more preferably up to 100 m.sup.2 /g.
Having described the basic aspect of our invention the following specific examples are given to illustrate specific preferred embodiments.
EXAMPLE 1
Preparation of Aluminum Phosphate Binder Solution With an Al.sub.2 O.sub.3 /P.sub.2 O.sub.5 Ratio of 0.68
2439 g of a 60.2% (wt.) Al(NO.sub.3).sub.3 .multidot.9H.sub.2 O solution were added to 758.7 g of 75% phosphoric acid solution and mixed well. The pH of the resulting solution was less than 0.5.
EXAMPLE 2
Preparation of Aluminum Phosphate Binder Solution With an Al.sub.2 O.sub.3 /P.sub.2 O.sub.5 Ratio of 1.0
2548.8 g of a 60.2% (wt.) Al(NO.sub.3).sub.3 .multidot.9H.sub.2 O solution were added 1004.7 g of 40% phosphoric acid solution and mixed well. The pH of the resulting solution was less than 0.5.
The procedures of Examples 1 and 2 illustrate the production of low pH aluminum phosphate binder solution at an Al.sub.2 O.sub.3 /P.sub.2 O.sub.5 molar ratio of 0.68 and 1.0, respectively. The material isolated from this binder system either by spray drying or by removing the water at 110.degree. C. is a highly crystalline, low surface area, low pore volume material. Table I below summarizes the typical chemical/physical and X-ray diffraction data of the aluminum phosphate of Example 2.
TABLE I______________________________________Chemicals. wt. %Al.sub.2 O.sub.3 41.80%P.sub.2 O.sub.5 58.20%Surface area 1 m.sup.2 /g --Pore Volume (N.sub.2) 0.017 cc/g --X-Ray Diffraction Pattern (Example 2)d spacings I/Io d spacing I/Io______________________________________4.362 100 2.511 204.122 97 2.409 43.857 49 2.326 73.376 10 2.143 43.278 11 2.107 53.205 5 2.063 43.156 62.998 112.867 7______________________________________
EXAMPLE 3
Preparation of ZSM-5 Containing Catalyst Using Aluminum Phosphate Binder
700 g of ZSM-5, 3258.4 g of kaolin clay and 3298.4 g of water were added to 3197.7 g of aluminum phosphate binder as prepared in Example 1. The resulting mixture (pH .about.0.5) was mixed well before being spray dried. The chemical physical properties of three samples of catalyst prepared as above and designated as Catalyst A1, A2, and A3 are presented in Table 2.
TABLE II______________________________________CHEMICAL/PHYSICAL PROPERTIES Catalyst ID: Catalyst A1 Catalyst A2 Catalyst A3______________________________________Chemical Properties, wt. %Al.sub.2 O.sub.3 37.24 37.36 37.04SiO.sub.2 49.98 49.37 50.80Na.sub.2 O.sub.3 0.13 0.14 0.13SO.sub.4 0.41 0.43 0.30TiO.sub.2 1.82 1.77 1.85Fe.sub.2 O.sub.3 1.06 1.07 1.06P.sub.2 O.sub.5 9.01 9.52 8.25Physical PropertiesABD.sup.(1), cc/g 0.82 0.81 0.81DI.sup.(2) 0 3 2SA.sup.(3), m.sup.2 /g 53 52 55______________________________________ .sup.(1) Average Bulk Density .sup.(2) Davison Index .sup.(3) BET Surface Area
EXAMPLE 4
Preparation of ZSM-5 Containing Catalyst Using Aluminum Phosphate Binder
1000 g of ZSM-5, 3706 g of kaolin clay, 3000 g of Ludox silica-sol AS-40, and 4900 g of water were added to 5320.4 g of aluminum phosphate binder as prepared in Example 2. The resulting mixture (pH .about.0.5) was mixed well before being spray dried. The chemical physical properties of this catalyst, designated as Catalyst B, are presented in Table III.
EXAMPLE 5
Preparation of High Ratio ZSM-5 Containing Catalyst Using Aluminum Phosphate Binder
1000 g of high ratio (SiO.sub.2 /Al.sub.2 O.sub.3 =.about.500) ZSM-5, 3706 g of kaolin clay, 3000 g of Ludox AS-40, and 4900 g of water were added to 5320.4 g of aluminum phosphate binder as prepared in Example 2. The resulting mixture (pH .about.0.5) was mixed well before being spray dried. The chemical physical properties of this catalyst, designated as Catalyst C, are presented in Table III.
EXAMPLE 6
Preparation of BETA Zeolite Containing Catalyst Using Aluminum Phosphate Binder
A BETA zeolite slurry was made by mixing 1743 g of BETA zeolite powder and 3079 g of water. Dry powdered kaolin (1617 g) was added to 5655 g of an aluminum phosphate binder solution as prepared in Example 2 above. The BETA slurry was added to the aluminum phosphate/clay slurry and the resulting mixture was mixed well before being spray dried. The resulting catalyst had a formulation of 40% BETA, 22% aluminum phosphate, and 38% Clay. The chemical physical properties of this catalyst, designated as Catalyst D, are presented in Table III.
EXAMPLE 7
Preparation of Low Cell Size USY Containing Catalyst Using Aluminum Phosphate Binder With Al.sub.2 O.sub.3 /P.sub.2 O.sub.5 Ratio of 1.0
A slurry containing 1200 g of low soda, low cell size USY (24.39 .ANG., 0.53% Na.sub.2 O, 700 m.sup.2 /g) and 2800 g of water were added to a slurry containing 1482.4 g of kaolin clay and 3837.8 g of an aluminum phosphate binder solution prepared as in Example 2. The resulting slurry (pH .about.0.6) was mixed well before being spray dried. The chemical physical properties of this catalyst, designated as Catalyst E, are presented in Table III.
EXAMPLE 8
Preparation of Low Cell Size USY Containing Catalyst Using Aluminum Phosphate Binder
A slurry containing 1800 g of low soda, low cell size USY (24.39 .ANG., 0.53% Na.sub.2 O, 700 m.sup.2 /g) and 4200 g of water were added to a slurry containing 529.4 g of kaolin clay and 5330.5 g of an aluminum phosphate binder solution prepared as in Example 2. The resulting slurry (pH .about.0.6) was mixed well before being spray dried. The chemical physical properties of this catalyst, designated as Catalyst F, are presented in Table III.
EXAMPLE 9
Preparation of BETA Zeolite Catalyst with SiO.sub.2 Sol
A slurry containing 2000 g of BETA zeolite (SiO.sub.2 /Al.sub.2 O.sub.3 basis) and 4643 g of water was acidified to a pH of 4.0 with 20% H.sub.2 SO.sub.4. To this slurry was added 10,000 g of silica sol (prepared from sodium silicate and acid alum) and 2353 g of kaolin clay (TV=15%) and the resulting mixture was spray dried. The catalyst, which had a formulation of 40% BETA, 20% SiO.sub.2 sol, and 40% Clay, was successfully ion-exchanged with 3% ammonium sulfate solution. The chemical physical properties of this catalyst, designated as Catalyst G, are presented in Table III.
EXAMPLE 10
Preparation of BETA Zeolite Catalyst with Alumina Sol
2471 g of kaolin clay and 3830 g of aluminum chlorhydrol sol having 23% Al.sub.2 O.sub.3 and a Cl/Al mol ratio of 0.5 were mixed using a high shear mixer. To this was added 7143 g of a BETA zeolite slurry containing 2000 g of BETA zeolite and 4643 g of water. The mixture was spray dried and calcined for 2 hours at 1000.degree. F. The finished catalyst had the following composition: 40% BETA, 18% Al.sub.2 O.sub.3, 42% Clay. The chemical physical properties of this catalyst, designated as Catalyst H, are presented in Table III.
EXAMPLE 11
Preparation of ZSM-5 Zeolite Catalyst With SiO.sub.2 Sol
A slurry containing 1436.7 g of ZSM-5 and 2873.3 g of water was acidified to a pH of 4.0 with 20% H.sub.2 SO.sub.4. To this slurry was added 11,000 g of silica sol (prepared from sodium silicate and acid alum) and 3116 g of kaolin clay (TV=15%) and the resulting mixture was spray dried. The catalyst, which had a formulation of 25% ZSM-5, 22% SiO.sub.2 sol, and 53% Clay, was successfully ion-exchanged with 3% ammonium sulfate solution. The chemical and physical properties of this catalyst, designated as Catalyst I, are presented in Table III.
EXAMPLE 12
Preparation of High Ratio ZSM-5 Zeolite Catalyst With SiO.sub.2 Sol
The catalyst was prepared as described in Example 11 with the exception that 1436.7 g of high ratio ZSM-5 was used. The chemical physical properties of this catalyst, designated as Catalyst J, are presented in Table III.
EXAMPLE 13
Preparation of ZSM-5 Containing Catalyst Using Aluminum Phosphate Binder and With Calcined Silica Replacing Clay
A slurry consisting of 1142.9 g of ZSM-5, 5523.4 g of a calcined silica gel, and 13,333.7 g of water was milled in a Drais Mill at a rate of 0.5 liters/minute. The resulting slurry was remilled at the same milling rate. To 12,500 g of this doubled milled ZSM-5/silica slurry was added 3553.6 g of aluminum phosphate binder as prepared in Example 2. The resulting mixture (pH .about.0.85) was mixed well before being spray dried. The chemical physical properties of this catalyst, designated as Catalyst K, are presented in Table III.
TABLE III__________________________________________________________________________Properties of Catalysts Catalyst ID Catalyst Catalyst Catalyst Catalyst B C D E Catalyst F Catalyst G Catalyst H Catalyst I Catalyst Catalyst K (Example) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)__________________________________________________________________________Composition, wt. %Al.sub.2 O.sub.3 28.70 28.33 28.57 35.73 31.90 22.26 39.91 26.64 25.51 7.57SiO.sub.2 60.66 61.02 56.23 50.30 52.23 74.88 57.22 69.86 71.07 84.43Na.sub.2 O 0.25 0.28 0.18 0.33 0.39 0.11 0.19 0.11 0.13 0.26SO.sub.4 1.06 1.05 0.37 0.55 0.43 0.86 0.66 1.03 0.95 0.42P.sub.2 O.sub.5 7.23 7.20 13.01 11.53 14.30 0.08 0.09 0.11 0.13 7.02Physical PropertiesDavison At- 1 3 32 0 10 10 5 5 10 >60trition Index(DI)Bulk Density 0.92 0.87 0.66 0.71 0.62 0.74 0.76 0.85 0.79 0.32(g/cm.sup.3 )Surface Area -- -- 291 238 339 275 257 113 115 --(m.sup.2 /g)__________________________________________________________________________
The use of alumina phosphate binder compositions of Examples 1 and 2 for the production of enhanced activity, attrition resistant (low DI) catalysts containing ZSM-5 (SiO.sub.2 /Al.sub.2 O.sub.3 ratios of .about.26 and .about.500, kaolin clay and from 0 to 20% wt. of a highly reactive colloidal silica sol is shown in Examples 3-5. An example in which all of the kaolin clay diluent has been replaced with an unreactive, calcined silica gel is given in Example 13. In this case, the catalyst produced by spray drying the ZSM-5, the silica gel and the aluminum phosphate binder produced a soft (high DI, low attrition resistant) catalyst.
The use of the aluminum phosphate binder system for the production of enhanced activity catalysts containing BETA zeolite, and low cell size, low soda (.about.24.39 .ANG., 0.5% Na.sub.2 O) USY (at 40% and 60% wt. in catalyst) in combination with kaolin clay are shown in Examples 6-8.
The procedure used in making comparison catalysts containing ZSM-5 and BETA bound using standard silica sol and alumina sol binders are given in Examples 9-12.
Chemical/physical properties of the above catalysts are presented in Tables II and III.
EXAMPLE 14
Data which illustrates the hydrocarbon cracking activity enhancement, after a steam deactivation, imparted to the catalysts by the low pH aluminum phosphate binder system of the present invention are presented in Tables IV to VIII and in FIGS. 2-8.
Catalysts of the invention and comparison catalysts were tested for cracking activity in a standard microactivity test (MAT) as described in Oil and Gas Journal, 1976, vol. 64, pages 7, 84, 85 and Nov. 22, 1971, pages 60-68. This same test is described in the ASTM standard microactivity test method D 3907-8. The characteristics of the feedstock used in the test are given in Table IV.
Before testing, all catalysts were steamed in a fluidized bed steamer for 4 hours at 815.degree. C. under 100% wt. % steam at 0 psig. In the examples illustrated below where the catalysts were tested as additives, the catalysts were blended on a wt. %/wt. % basis with OCTACAT.RTM., a commercially available USY containing cracking catalyst manufactured by the Davison Chemical Company.
TABLE IV______________________________________Feedstock Characteristics______________________________________API Gravity @ 60.degree. F. 22.5Specific Gravity @ 60.degree. F. 0.9186Aniline Point: .degree.F. 163Sulfur: wt. % 2.59Total Nitrogen: ppm 860Basic Nitrogen: ppm 350Conradson Carbon: wt. % 0.25Ni: ppm 0.8V: ppm 0.6Fe: ppm 0.6Cu: ppm <0.1Na: ppm 0.6Br: ppm <5Cl: ppm <20D-1160 DistillationVol. %, .degree.F. @ 1 atm.IBP 423 5 58510 61520 64930 68440 72050 75560 79470 83480 88190 93295 976EP 1027 (99%)Watson "K-Factor" 11.52______________________________________
TABLE V__________________________________________________________________________Interpolated Data MAT Product Distribution for Blends of OCTACAT andZSM-5 Catalysts Catalyst: 90% Octacat 90% Octacat 90% Octacat 90% Octacat 10% Catalyst I 10% Catalyst B 10% Catalyst J 10% Catalyst C Octacat (Comparison) (Invention) (Comparison) (Invention)__________________________________________________________________________As Synthesized SiO.sub.2 /Al.sub.2 O.sub.3 .about.26:1 .about.26:1 .about.500:1 .about.500:1Framework Ratiosof ZSM-5 Zeolites:Wt. % ZSM-5 Zeolite 25% 15% 25% 15%in Catalyst Additive:Binder Type: SiO.sub.2 Binder AlPO.sub.4 Binder SiO.sub.2 Binder AlPO.sub.4 BinderYields (wt. %)Conv. (wt. %) 60.0 60.0 60.0 60.0 60.0H.sub.2 0.085 0.094 0.090 0.094 0.094C.sub.1 + C.sub.2 1.60 1.70 1.70 1.75 1.75C.sub.3 = 3.8 5.8 8.1 5.2 5.8Total C.sub.3 's 4.6 6.8 8.9 6.2 6.6Total C.sub.3 = + C.sub.4 = 9.2 12.7 16.2 12.0 13.1C.sub.4 = 5.4 6.9 8.1 6.8 7.3i-C.sub.4 2.4 2.9 3.1 2.3 2.5n-C.sub.4 0.5 0.6 0.6 0.5 0.5Total C.sub.4 's 8.3 10.4 11.8 9.9 10.3C.sub.5 + Gasoline 43.5 38.5 35.2 39.6 39.0Coke 1.90 2.20 2.20 2.20 2.20PONA RON 90.9 91.9 93.1 91.8 92.3PONA MON 79.9 80.6 81.0 80.6 81.0__________________________________________________________________________
TABLE VI______________________________________Interpolated DataMAT Product Distribution Catalyst: Catalyst H Catalyst G Catalyst D 40% BETA 40% BETA 40% BETA OCTA- in Al.sub.2 O.sub.3 in SiO.sub.2 in AlPO.sub.4 CAT Matrix Matrix Matrix______________________________________C/O 3.9 4.2 5.2 3.7Conversion, wt. 60 60 60 60YIELDS, WT. %H2 0.090 0.121 0.061 0.053Total Cl + C2 1.75 2.10 2.60 1.76C3= 4.3 7.0 9.4 6.1Total C3's 5.0 8.3 10.6 7.01-Butene 1.2 1.6 1.8 1.6Isobutylene 1.6 3.8 4.2 3.6trans-2-Butene 1.7 2.7 3.1 2.4cis-2-Butene 1.1 1.5 1.8 1.5Total C4= 5.7 9.7 10.9 9.1i-C4 2.4 2.0 2.9 2.5n-C4 0.5 0.7 0.7 0.6Total C4's 8.6 12.4 14.6 12.2C5 + Gasoline 42.4 33.4 29.5 37.1Coke, wt. % 2.20 3.65 2.66 1.91FeedPONA RON 91.2 94.1 95.4 93.6PONA MON 80.2 80.0 81.6 80.2Wt % C5 +Gasoline Frac-tion:iso-Paraffins 29.8 17.2 17.4 20.6Olefins 26.6 47.8 44.6 42.6Aromatics 29.7 22.1 26.1 23.7C4 OlefinSelectivities:1-Butene/C4= 0.21 0.16 0.17 0.18Isobutylene/ 0.28 0.39 0.39 0.40C4=trans-2-Butene/ 0.30 0.28 0.28 0.26C4=cis-2-Butene/ 0.19 0.15 0.17 0.16C4=______________________________________
TABLE VII__________________________________________________________________________Interpolated MAT Product Distribution Data Catalyst I.D. 90% 80% 100% OCTACAT OCTACAT 70% OCTACAT 60% OCTACAT 50% OCTACAT 100% OCTACAT 10% Cat. D 20% Cat. D 30% Cat. D 40% Cat. D 50% Cat. Cat.__________________________________________________________________________ DConversion, wt. % 60.0 60.0 60.0 60.0 60.0 60.0 60.0YIELDS, WT. %H2 0.093 0.082 0.079 0.082 0.079 0.082 0.069Total C1 + C2 2.00 1.90 1.70 1.80 1.70 1.80 1.70C3= 4.3 4.4 4.3 4.7 4.7 5.1 6.3Total C3's 5.1 5.1 5.1 5.2 5.6 5.9 7.11-Butene 1.2 1.2 1.2 1.2 1.3 1.3 1.6Isobutylene 1.7 1.8 2.0 2.2 2.2 2.4 3.4trans-2-Butene 1.8 1.9 1.9 1.9 1.9 2.0 2.4cis-2-Butene 1.1 1.2 1.1 1.2 1.2 1.3 1.5Total C4= 5.8 6.1 6.2 6.4 6.6 7.0 8.9Total C4's 8.7 9.0 9.1 9.4 9.8 10.3 12.3C5 + Gasoline 41.9 41.6 41.8 41.2 40.6 39.6 36.5Coke, wt. % Feed 2.2 2.3 2.2 2.3 2.2 2.3 2.3PONA RON 91.2 91.4 91.2 91.7 91.7 92.3 93.7PONA MON 80.3 80.1 79.8 80.1 80.0 80.3 80.3Wt. % C5 + GasolineFraction:iso-Paraffins 30.4 29.1 28.2 27.4 27.0 26.2 21.8Olefins 26.7 28.9 30.2 31.6 31.6 33.4 41.4Aromatics 29.1 28.0 27.2 26.9 27.2 26.7 23.8C4 Olefin Selectiv-ities:1-Butene/C4= 0.21 0.20 0.19 0.19 0.20 0.19 0.18Isobutylene/C4= 0.29 0.30 0.32 0.34 0.33 0.34 0.38trans-2-Butene/C4= 0.31 0.31 0.31 0.30 0.29 0.29 0.27cis-2-Butene/C4= 0.19 0.20 0.18 0.19 0.18 0.19 0.17__________________________________________________________________________
TABLE VIII______________________________________ Catalyst: Catalyst E Catalyst F (40% USY/ (60% USY/ OCTACAT 18% AlPO4) 25% AlPO4)______________________________________C/O 4.6 4.0 2.8Conversion, wt. % 65 65 65YIELDS, WT. %H2 0.113 0.062 0.062Total Cl + C2 2.3 2.3 2.3C3= 5.2 4.6 4.4Total C3's 6.1 5.8 5.51-Butene 1.4 1.2 1.1Isobutylene 1.7 1.2 1.0trans-2-Butene 2.0 1.8 1.6cis-2-Butene 1.3 1.1 1.0Total C4= 6.4 5.2 4.7i-C4 2.9 3.4 3.4n-C4 0.6 0.8 0.8Total C4's 9.9 9.4 8.9C5 + Gasoline 44.0 44.8 45.6Coke, wt. % Feed 2.6 2.6 2.6PONA RON 91.5 90.4 89.3PONA MON 80.8 80.8 80.8Wt. % C5 +Gasoline Fraction:iso-Paraffins 30.1 36.1 36.1Olefins Z4.4 17.4 17.4Aromatics 32.3 33.2 33.2C4 Olefin Selectivities:1-Butene/C4= 0.22 0.23 0.23Isobutylene/C4= 0.27 0.23 0.21trans-2-Butene/C4= 0.31 0.35 0.34cis-2-Butene/C4= 0.20 0.21 0.21______________________________________
The micro activity test data plotted in FIGS. 2-5 illustrate the effect of the aluminum phosphate binder component on the activity of the ZSM-5 containing catalyst. Catalyst A1, with its aluminum phosphate binder, shows a substantial increase in activity over the standard catalyst, Catalyst 1, made the conventional route with standard silica sol. These results are quite impressive considering the fact that the sieve content of the Catalyst 1 blend is 2.5 wt. % where as Catalyst A1 blend contains only 1.5 wt. % zeolite. Based on these light olefin yield shifts, Catalyst A1 exhibits over four times the activity of Catalyst 1. Adjusting to activity per unit zeolite, Catalyst A1 provides a six fold activity increase. The MAT yield structure, at constant conversion, for blends containing catalysts of this invention and of comparison catalysts, is presented in Table V. Although the increase in activity of the higher silica alumina ratio ZSM-5 zeolite is not as great as the lower ratio material, the activity is directionally the same.
The advantages in hydrocarbon cracking activity and selectivity of the BETA Zeolite catalyst with its aluminum phosphate binder, Catalyst D, compared to BETA Zeolite bound by the conventional silica sol, Catalyst G, and alumina sol, Catalyst H, binders, are presented in Table VI. At a constant MAT conversion, Catalyst D is more active, as evidenced by the lower catalyst to oil ratio, and produces less hydrogen, total C.sub.1 +C.sub.2 hydrocarbons, and coke, but substantially more C.sub.5 +gasoline. Compared to OCTACAT.RTM., Catalyst D has equivalent activity, produces lower hydrogen and coke and produces almost 2.5 times the isobutylene. In addition, the C.sub.5 +gasoline fraction produced is lower in aromatics and higher in olefins than that produced by OCTACAT. Table VII and FIGS. 6-9 show MAT results, at constant conversion, for blends of OCTACAT and Catalyst D. These results show an increase in isobutylene yield and selectivity and a shift to lower aromatics and higher olefins in the C.sub.5 +gasoline fraction as the amount of Catalyst D in the blend increases.
Table VIII compares the MAT results, at constant conversion, for OCTACAT and aluminum phosphate bound USY catalysts, Catalyst E (40% USY/18% AIPO.sub.4) and Catalyst F (60% USY/25% AIPO.sub.4). These results show that, compared to OCTACAT, Catalysts E and F have higher activity, produce lower hydrogen and C.sub.3 +C.sub.4 hydrocarbons and have a higher C.sub.5 +gasoline yield. The motor octanes for these C.sub.5 +gasoline fractions, as determined by a gas chromatographic method, are all equivalent, indicating a greater octane barrel potential for Catalysts D and E over OCTACAT.
EXAMPLE 15
The MAT data in Table IX listed below for steam deactivated silica sol (Ludox AS-40) bound clay and aluminum phosphate (of this invention) bound clay illustrate the lack of cracking activity for the crystalline low surface area aluminum phosphate binder of this invention and the lack of the ability of this aluminum phosphate binder system to impact any activity to an inert catalyst component such as clay.
TABLE IX______________________________________ Catalyst Composition: (wt.%) 70% Clay 70% Clay 30% AlPO.sub.4 30% SiO.sub.2______________________________________Catalyst to Oil 2.96 2.97Conversion wt. % 11.0 12.4H.sub.2 0.02 0.05Total C.sub.1 + C.sub.2 0.79 0.77Total C.sub.3 's 0.7 0.7Total C.sub.4 Olefins 0.5 0.5Total C.sub.4 's 0.6 0.6C.sub.5 + Gasoline 8.1 9.2Coke, wt. % feed 0.70 0.9______________________________________
Claims
  • 1. A catalyst composition comprising a zeolite/molecular sieve, and crystalline aluminum phosphate binder, said binder having a surface area of less than 20 m.sub.2 /g.
  • 2. The composition of claim 1 wherein said catalyst has a Davison Attrition Index of 0 to 10.
  • 3. The composition of claim 1 wherein the aluminum to phosphate ratio of the aluminum phosphate component is from 0.65 to 1.1.
  • 4. The composition of claim 1 wherein the crystalline aluminum phosphate binder has a surface area of less than 5 m.sup.2 /g and a total pore volume of less than 0.10 cc/g.
  • 5. The composition of claim 1 wherein the aluminum phosphate is a crystalline material having a surface area less than 5 m.sup.2 /g and a pore volume of less than 0.10 cc/g measured from the nitrogen adsorption isotherm.
  • 6. The composition of claim 1 which contains clay.
  • 7. The composition of claim 1 which includes an aluminum phosphate binder/matrix having a surface area of up to 300 m.sup.2 /g.
  • 8. The composition of claim 7 wherein said surface area is less than 100 m.sup.2 /g.
  • 9. The composition of claim 7 wherein said matrix includes a member selected from the group consisting of clay, alumina, silica, magnesia and mixtures thereof.
  • 10. The composition of claim 1 wherein said zeolite/molecular sieve is selected from the group comprising zeolite Beta, ZSM, ALPO, SAPO, ultrastable Y zeolite and mixtures thereof.
  • 11. A fluid catalytic cracking catalyst which comprises a zeolite/molecular sieve, and a crystalline phosphate binder having a surface area of less than 20 m.sup.2 /g, said catalyst having a Davison Attrition Index of 0 to 10.
  • 12. The composition of claim 11 wherein said zeolite/molecular sieve is zeolite Beta, ZSM-5, ultrastable Y zeolite and mixtures thereof.
  • 13. The composition of claim 11 which contains up to 88 weight percent clay.
  • 14. The composition of claim 11 which contains from about 2 to 70 weight percent zeolite/molecular sieve.
  • 15. The composition of claim 11 which contains 10 to 30 weight percent binder.
  • 16. A method for producing catalyst compositions which comprises mixing a zeolite/molecular sieve with a solution of aluminum phosphate having a pH of less than 2, and forming and drying the mixture.
  • 17. The method of claim 16 wherein the pH is from 0.1 to 0.9.
  • 18. The method of claim 16 wherein said mixture contains clay.
  • 19. The method of claim 16 wherein the mixture is spray dried.
US Referenced Citations (27)
Number Name Date Kind
3271299 Kearby Sep 1966
3342750 Kearby Sep 1967
3354096 Young Nov 1967
3609103 Gladrow Sep 1971
3649523 Bertolacini et al. Mar 1972
3904550 Pine Sep 1975
4080311 Kehl Mar 1978
4158621 Swift et al. Jun 1979
4179358 Swift et al. Dec 1979
4222896 Swift et al. Sep 1980
4454241 Pine et al. Jun 1984
4465780 Pine Aug 1984
4498975 Pine et al. Feb 1985
4504382 Pine Mar 1985
4567152 Pine Jan 1986
4570025 Nowack et al. Feb 1986
4578371 Rieck et al. Mar 1986
4584901 Pine Apr 1986
4605637 Chang et al. Aug 1986
4629717 Chao Dec 1986
4692236 Sato et al. Sep 1987
4724066 Kirker et al. Feb 1988
4765884 Walker et al. Aug 1988
4839319 Schuette et al. Jun 1989
4873211 Walker et al. Oct 1989
4970183 Nakamoto et al. Nov 1990
4977122 Eberly Dec 1990