The present invention relates to exhaust systems for combustion engines and, more particularly, to a catalytic converter cartridge for use in such systems. In accordance with this invention, the catalytic converter cartridge is in the shape of rectangular, square, triangular or other flat sided cartridge.
Exhaust systems for a combustion engine generally include a manifold connected to the combustion engine at one end and bolted to an exhaust pipe at the other end. The exhaust pipe extends a distance from the manifold and generally has a catalytic converter system bolted thereto. These catalytic converter systems generally include a ceramic substrate having a catalyst coated thereon and a metal housing or shell surrounding the substrate. A compressible support mat is usually placed between the ceramic substrate and the surrounding metal housing shell. This support mat functions to accommodate differentials in expansion between the ceramic substrate and the surrounding metal housing shell, as well as to protect the relatively fragile ceramic substrate from vibration and jarring movement of the engine and exhaust system so well as to accommodate variances in the shape and size of the substrate and metal shell.
Relatively recently, there has developed a market for rectangular or square cross section substrates, particularly for use in large engine applications. The practice, because such converters are so large, has been to make the converter of multiple substrate modules, assemble them into an array and then slide the assembly into a single large sheet metal frame. One advantage of this practice is that the converter may be adjusted and sized for varying applications by adding additional rows of modules having a common service part.
There are three fundamental problems with rectangular or square cross section converters which must be overcome before such converters can be economically manufactured. The first problem occurs as a consequence of the relative fragility of the ceramic substrates. The corners are so fragile that the typical mounting mat design will over-compress and crack the ceramic.
The second problem occurs because the traditional “stuffing operation” and the traditional tourniquet wrap operation conventionally used commercially to encase round, oval or “race track” cross sectional-shaped modules within a sheet metal shell will damage and crack square or rectangular cross sectional-shaped substrates.
The third problem occurs as a consequence of the lack of flatness of the sides of a flat sided ceramic substrate. The last step in the manufacture of a ceramic substrate is one of baking or heating to cure the substrate. But in the course of baking the substrate, the substrate shrinks more at the center of a side than at the edges with the result that the center of one side will shrink more than the corners. For example, a six inch cube of substrate may shrink two or three millimeters at the center of one side and only one millimeter at the corner. When this substrate is encased in a compressible mat, six millimeters in thickness for example, and then forced onto a metal shell, there will be substantially more compression and holding force of the mat at the corners than at the center of the substrate because of this slight concavity of the sides of the substrate. This greater compression of the mat at the corners of the substrate often causes breakage of the corners of the substrate.
It has therefore been an objective of this invention to provide a rectangular, square or other flat sided catalytic converter which overcomes all of the problems of corner cracking of the substrates during assembly of the mats and substrates within metal shells.
The disclosure of this invention comprises a catalytic converter cartridge having multiple rectangular or square cross sectional modules, each module of which comprises a catalyst coated ceramic or other conventional material substrate surrounded and retained within a compressible supporting mat. The multiple modules are assembled into a rectangular, square or other flat sided package or array which is then surrounded and retained within a sheet metal shell. Preferably, the individual modules are separated by sheet metal spacers.
In a preferred embodiment of this invention, the compressible mat surrounding each of the sides of the ceramic substrate is in the shape of individual flat sheets of compressible mat material shaped to cover each side of the substrate and with each sheet of mat material connected by a tongue and groove connector to the mat on each of the adjacent sides of the substrate. Those flat sheets of mat material are preferably glued or otherwise adhesively secured to the flat sides of the substrate such that all sides of the substrate are covered and secured to mat material.
In one preferred embodiment, the complete cartridge is assembled by placing multiple modules in an array separated by sheet metal spacers. These spacers comprise slotted sheets of sheet metal assembled into a right angular relationship with two modules contacting each side of the spacer. The assembly is then compressed and placed in a surrounding sheet metal shell. The shell in one embodiment comprises two right angular bent sheets of metal seam welded at the corners to create a rectangular shell. An appropriate number of tack welds are then made between the spacers and the surrounding sheet to hold the complete cartridge in an assembled relationship.
This invention will be more readily apparent from the following description of the drawings, in which:
With reference to
As best illustrated in
With reference now to
In the course of manufacturing the catalytic converter cartridge 10, the sheets of cold mat material 14a are first cut and sized so as to cover the four sides of the substrate 5. The substrate is preferably a catalyst coated ceramic substrate. Each substrate 5 is then secured within the covering mat material by having four sheets of mat material 14a fixedly secured to the four sides of the substrate, as illustrated in
The four mat covered substrates are arranged in a square or rectangular array as illustrated in
As best illustrated in
In the practice of this invention, the sheet metal spacers 18a, 18b may, in some cases, be omitted, but in the event that spacers are used, the sheet metal spacers and the sheet metal shell are preferably made from stainless steel to facilitate use of the cartridge in an environment in which other steels would be adversely affected by the environment in which the catalytic converter cartridges are utilized.
In the course of assembly, the cartridge 10, and as best illustrated in
With reference now to
With reference to
With reference now to
In one preferred embodiment of this invention, the substrate 5 is a conventional catalyst-coated ceramic substrate, but of course, other conventional substrates could be utilized in the practice of this invention. The compressible mat material 14 is, in one embodiment, a cold hold material identified as XPE-MP available from Unifax Corp. of Niagara Falls, N.Y., but of course, other conventional mat materials could be used in the practice of this invention. These sheets of mat material are preferably adhesively secured to the four sides of the substrate by a conventional sprayed adhesive. One suitable adhesive utilized in the practice of the invention is Super77 Spray adhesive manufactured by Minnesota Mining & Manufacturing Co. (3M). In one preferred embodiment of the invention, the sheet metal spacers and the metal shell are manufactured from 304 stainless steel, but of course, other spacers and shell materials could be utilized in the practice of this invention, depending upon the application of the cartridge. Furthermore, in some applications, the spacers 18a, 18b may be omitted.
As illustrated in the one preferred embodiment of the invention illustrated and described hereinabove, substrates 5 are in the shape of a cube, but they could as well be shaped as other rectangular parallelepipeds or even triangular cross sectional solids. Additionally, there could be more than four modules 12 of varying shape enclosed within a shell, and there could be more than one cartridge 10 utilized to make up a complete catalytic converter.
We have also illustrated the flat sheets of mat material as being interconnected by one tongue and groove connection, but there could, of course, be more than one tongue and groove connection between each pair of sheets of mat material, or the tongue and groove connections could, in some applications, even be omitted if the mats and metal shell are sufficiently accurately sized so as to avoid blow by of exhaust gases in applications of the cartridges in catalytic converters.
While we have illustrated and described several preferred embodiments of this invention, persons skilled in this art will appreciate further changes and modifications which may be made without departing from the spirit of our invention.