The present invention relates to catalytic converters and catalytic converter elements for diesel engines having overhead exhaust manifold systems.
Two-stroke and four stroke medium speed diesel engines such as those manufactured by Electromotive Diesels (EMD) of LaGrange, Ill. (formerly a division of General Motors) are used in locomotives, in power generating systems, and in marine propulsion applications. An example of one common type of diesel engine, depicted in
As is also known in the art, another common type of diesel engine is a turbocharged engine which is similar to the roots-blown engine 2 depicted in
Turbocharged and roots-blown diesel engines typically have either 8, 12 or 16 cylinders arranged in a V configuration. Consequently, the manifold legs 6 of the exhaust system extend upwardly from the cylinder ports to the overhead exhaust manifold 4 in a series of four, six or eight opposing pairs. The overhead exhaust manifold 4 is typically formed of a series of manifold sections 10 such that two opposing pairs of the manifold legs 6 are connected to each manifold section 10. Each manifold section 10 also typically includes a flange 12 on one or both of the longitudinal ends thereof for bolting to flanged expansion joints positioned between the other manifold sections 10.
A need presently exists for an effective catalytic converter system for treating the exhaust gas from diesel engines. The application of catalytic converter devices to the exhaust systems of two-stroke and four-stroke diesel engines has been difficult for several reasons. In many cases, particularly in locomotive applications, there is not sufficient space around the engine for installation of a catalytic converter system. In addition, the temperature of the exhaust from two-stoke and four-stroke engines is relatively low in terms of the temperature necessary to “light-off” the catalyst to initiate and maintain the conversion reaction. Further, these engines have a relatively high lube oil consumption rate. In addition, it is difficult in locomotive and other applications to remove the exhaust manifolds from the engines due to a lack of sufficient overhead space for the lifting equipment. Also, the back pressure limits of the turbocharged diesel engines are typically very low.
The present invention provides an improved exhaust system which is well suited for use on diesel engines of the type discussed above. The inventive system satisfies the needs and alleviates the various problems already mentioned. The inventive system allows the integration of the diesel oxidation catalyst into the exhaust manifold system without significantly disturbing exhaust flow. In addition, the inventive system provides a large catalytic surface contact area which produces efficient emissions reduction while maintaining a low back pressure. Moreover, the inventive system does not require any significant amount of additional space, does not block the engine access covers, and does not interfere with engine maintenance. Also, the catalytic elements of the inventive system are easily removable for inspection and replacement without dismantling any portion of the exhaust manifold.
In one aspect, there is provided an improved exhaust system for a diesel engine wherein the exhaust system includes a series of pairs of upwardly extending exhaust port legs having upper outlet ends for delivering exhaust into an overhead exhaust manifold extending substantially horizontally over the diesel engine. The improvement comprises a plurality of catalytic converter elements removably positionable in the overhead exhaust manifold over the upper outlet ends of the exhaust port legs.
In another aspect, the improvement to the exhaust system preferably comprises a separate one of the catalytic converter elements being removably positionable in the overhead exhaust manifold over each of the upper outlet ends of the exhaust port legs. Further, the improvement preferably comprises the catalytic converter elements being removably positionable in the overhead exhaust manifold in opposing pairs, each of the opposing pairs of the catalytic converter elements forming a lateral V arrangement.
In another aspect, there is provided an improved overhead exhaust manifold segment for a diesel engine wherein the exhaust manifold segment has a longitudinal interior passage, a longitudinal wall surrounding the longitudinal interior passage, and a plurality of openings in a lower portion of the longitudinal wall for receiving an engine exhaust. The improvement comprises one or more catalytic converter elements removably insertable in the overhead exhaust manifold segment in a manner effective such that the engine exhaust will flow through the one or more catalytic converter elements into an upper longitudinal portion of the interior passage.
In another aspect, the improvement to the overhead exhaust manifold segment preferably further comprises four of the catalytic converter elements being insertable in the overhead exhaust manifold segment in two opposing pairs. In addition, the improvement preferably comprises the four catalytic converter elements being insertable in the overhead exhaust manifold segment in a manner such that each of the opposing pairs forms a lateral V arrangement.
In another aspect, there is provided an exhaust system for a diesel engine comprising an overhead exhaust manifold extending substantially horizontally over the diesel engine, the overhead exhaust manifold having a longitudinal outer wall and a plurality of openings through a longitudinal bottom portion of the longitudinal outer wall for receiving an engine exhaust. The improvement comprises: (a) a plurality of catalytic converter elements insertable in the overhead exhaust manifold through insert openings in the longitudinal outer wall in a manner effective such that the engine exhaust will flow through the catalytic converter elements into a longitudinal interior flow passage in the overhead exhaust manifold; (b) element holding slots positioned in the overhead exhaust manifold for receiving the catalytic converter elements when the catalytic converter elements are inserted through the insert openings; and (c) holding means for holding the catalytic converter elements in the holding slots. Examples of suitable holdings means include: (a) one or more biasing springs (e.g., leaf springs); (b) two or more bolts extending through opposing side rails of the element holding slots; and/or (c) at least one cam element which is rotatable for locking engagement with the catalytic converter element.
In another aspect, there is provided a catalytic converter element comprising a substrate having at least one catalytic material thereon and a retainer (e.g., a band or frame) at least partially surrounding the substrate. The improvement comprises at least one retaining rod extending through the substrate, the retaining rod having a first end secured to the retainer at a first location and a second end secured to the retainer at a second location.
In another aspect, there is provided a catalytic converter element comprising a substrate having at least one catalytic material thereon and a retainer at least partially surrounding the substrate. The improvement comprises at least one retaining lip extending along at least a segment of the retainer such that the retaining lip projects from the retainer into the substrate.
In another aspect, there is provided an apparatus for treating an engine exhaust stream comprising: an exhaust manifold; at least one catalytic converter element insertable in the exhaust manifold through an insert opening in the exhaust manifold; and a cover positionable on the insert opening for closing the insert opening. The cover includes a stabilizer wherein, when the catalytic converter element is inserted into the exhaust manifold and the cover is positioned on the insert opening, the stabilizer will be received on an outer end portion of the catalytic converter element in a manner effective for restricting movement of the catalytic converter element in the exhaust manifold.
In another aspect, there is provided an exhaust system for a diesel engine comprising an overhead exhaust manifold extending substantially horizontally over the diesel engine, the overhead exhaust manifold having a plurality of openings through a longitudinal bottom portion of the overhead exhaust manifold for receiving an engine exhaust. The improvement comprises: (a) a plurality of catalytic converter elements insertable in the overhead exhaust manifold in a manner effective such that the engine exhaust will flow through the catalytic converter elements into a longitudinal interior flow passage in the overhead manifold and (b) a plurality of flow distributors positioned in the overhead exhaust manifold between the openings and the catalytic converter elements. The flow distributors have a plurality of flow perforations therein such that the engine exhaust must first flow through the flow perforations before reaching the catalytic converter elements.
In another aspect, there is provided an exhaust system for a diesel engine comprising an overhead exhaust manifold extending substantially horizontally over the diesel engine, the overhead exhaust manifold having a plurality of openings through a longitudinal bottom portion of the overhead exhaust manifold. The improvement comprises: (a) a plurality of catalytic converter elements insertable in the overhead exhaust manifold in a manner effective such that an engine exhaust received through the openings will flow through the catalytic converter elements into a longitudinal interior flow passage in the overhead exhaust manifold and (b) a plurality of vertical coupling manifolds wherein a separate one of said vertical coupling manifolds extends from each one of the openings. Each vertical coupling manifold is configured to receive the engine exhaust from a pair of cylinders of the diesel engine to form a combined exhaust stream and to deliver the resulting combined exhaust stream from the pair of cylinders to one of the openings.
Further aspects, features, and advantages of the present invention will be apparent to those of ordinary skill in the art upon examining the accompanying drawings and upon reading the following detailed description of the preferred embodiments.
An embodiment 20 of an improved overhead exhaust manifold segment for a diesel engine exhaust system is depicted in
The inventive manifold segment 20 comprises: a longitudinal interior passage 22; a longitudinal outer cylindrical wall 24 which surrounds the internal passage 22; a plurality of (preferably at least two and most preferably four) openings 26 in the bottom of the cylindrical wall 24 which are in fluid communication with the upper outlet ends of the manifold legs 6 extending from the engine cylinder exhaust ports; and one or more (preferably a plurality of) catalytic converter elements 28 which are removably insertable in the longitudinal passage 22 such that substantially all of the engine exhaust gas received in the overhead exhaust manifold via the vertical manifold legs 6 will flow through the catalytic converter element(s) 28 into an upper longitudinal portion 30 of the longitudinal interior passage 22. The upper longitudinal portion 30 of the exhaust manifold above the converter element(s) 28 provides a longitudinal interior flow discharge passage for the treated exhaust.
The catalytic converter element(s) 28 will preferably comprise a diesel oxidation catalyst on a metal foil substrate. Catalysts and catalyst substrates of this type are known in the art and are available, for example, from EcoCat Oy. Such catalysts and catalyst substrates are also described, for example, in Heikki Tuomola, et al., “A New Metallic Catalyst”, SAE Technical Paper Series, 2002. The substrate can be constructed of layers of corrugated foil with angled channels which are spot welded or otherwise welded together. Alternatively, the layers of foil substrate can be brazed together and to the retainer (e.g., the retaining band or frame) 54 which surrounds the substrate.
Each catalytic converter element 28 will preferably comprise a durable metal foil substrate (e.g., preferably EcoXell or Vortex) which is resistance welded together in a solid block configuration. This construction helps the element 28 withstand the high exhaust pressure pulsations produced at the discharge of each engine cylinder. The substrate is preferably coated with a sulfur tolerant, alumina-based washcoat impregnated with an active catalyst material (preferably platinum) for oxidation of diesel exhaust. Examples of alternative oxidation catalyst materials include, but are not limited to, palladium and rhodium.
The catalytic converter element(s) 28 can also include other catalytic materials in combination with or instead of the oxidation catalyst material. Examples of other catalytic materials include, but are not limited to: selective catalytic reduction coatings such as vanadium oxide, titanium oxide, or zeolites; NOx adsorber catalyst coatings; and hydrocarbon SCR coatings.
The catalytic converter element(s) 28 can also be formed using, or be replaced with, alternative types of substrate materials and/or filter systems. Examples of other suitable substrate materials or systems include, but are not limited to: extruded ceramic monoliths such as those formed of cordierite or silicon carbide; wall flow diesel particulate filters such as those which are also formed of cordierite or silicon carbide; or metal mesh substrates such as those used in partial flow filters.
The inventive manifold segment 20 preferably further comprises one or more track slots 34 or other types of slots which extend into the longitudinal interior passage 22 for removably receiving and holding the catalytic converter elements 28. The elements 28 can be any desired shape but are preferably rectangular. The track slots 34 for the elements 28 preferably have a corresponding U-shape and comprise an opposing pair of track side rails 44. Flanged openings 36 are provided through the manifold segment wall 24 at the outer ends of the slots 34 for receiving and removing the catalytic converter elements 28. Covers 38 are removably attachable to the flanged openings 36 using bolts or other suitable attachments for closing the flanged openings 36. A sealing gasket 40 is preferably attached around the perimeter of each of the catalytic converter elements 28 for sealing against the bottom wall 42 and side rails 44 of the U-shaped slots 34 and for sealing against the inner surfaces of the covers 38.
The inventive manifold segment 20 can use a single catalytic element 28, a series of at least two catalytic elements 28, or one or more pairs of opposing catalytic elements 28. If a single element 28 or a series of single elements 28 is/are used, each element can be positioned at any desired orientation ranging from horizontal to vertical but will preferably be inserted laterally in a substantially horizontal orientation. If one of more pairs of opposing elements 28 are used, each pair will preferably be inserted in an upright V arrangement as illustrated in
In addition, rather than having pairs of openings 26 in the bottom thereof wherein each individual opening 26 receives exhaust from a separate engine cylinder, the inventive manifold segment can alternatively have a smaller number of larger openings 26 such that at least some of the openings 26 receive exhaust from more than one engine cylinder.
Although generally any number of catalytic converter elements 28 could be used in the inventive manifold segment 20, the inventive manifold segment 20 most preferably includes two pairs of opposing slots 34 which hold a total of four catalytic converter elements 28. The inventive manifold segment 20 thus most preferably provides separate catalytic converter elements 28 positioned over each of the exhaust gas openings 26 in the bottom of the manifold segment 20. Additionally, each opposing pair of slots 34 and the corresponding pair of catalytic converter elements 28 positioned therein preferably form an upright V arrangement as illustrated in
Although cut away to some extent in
As will thus be apparent, the inventive system provides convenient access to the catalytic elements 28 for removal, inspection, cleaning, and/or replacement without requiring that the overhead manifold or the overhead manifold segments 20 be removed. The preferred V arrangement of the catalytic elements 28 further provides a large catalyst flow area which minimizes pressure drop through the inventive system. Further, the catalytic converter elements 28 are located in close proximity to the exhaust ports of the engine so that the temperature of the exhaust as it passes through the catalytic converter elements 28 is maximized in order to improve the operation and efficiency of the converter catalyst.
As will also be understood by those in the art, the inventive system can further optionally include: (a) electrical heating elements positioned for adding additional heat to the engine exhaust in order to improve the performance of the converter elements and/or to allow the on-line regeneration of the converter catalyst and/or any filter elements used in conjunction therewith; (b) injectors, preferably positioned in the manifold legs 6, for injecting urea, ammonia, or other material to promote SCR catalyst reactions; or (c) fuel injectors, preferably positioned in the manifold legs 6, for injection fuel into the exhaust for fueling catalyst SCR reactions or to heat the exhaust for regenerating any filter elements included in the system.
Further improvements provided by the present invention are illustrated in
The additional improvements embodied in the inventive catalytic converter element 60 include: (a) an upper retaining lip 66 which extends centrally along the length of the interior side of the upper horizontal segment 68 of the retaining band or frame 64 and projects a short distance into the horizontal top side edge 70 of the substrate 62; (b) a lower retaining lip 72 which extends centrally along the length of the interior side of the lower horizontal segment 74 of the retaining band or frame 64 and projects a short distance into the horizontal bottom side edge 76 of the substrate 62; and (c) one or more support pins 78 (preferably two parallel support pins 78) which extend horizontally through the substrate 62, each of pins 78 having one end connected to one side 80 of the retaining band or frame 64 and the other end connected to the opposite side 82 of the retainer 64. It will also be understood that retaining lips could alternatively or additionally be provided along the interior faces of the retainer side segments 80 and 82.
The interior retaining lips 66 and 72 and the support pin(s) 78 provide additional support area for the substrate 62 to push against when exposed to pressure pulses. However, the retaining lips 66 and 72 and the support pin(s) 78 do not block the flow area through the substrate 62 to any significant degree.
In another improvement,
In another improvement,
In another improvement,
When the catalytic converter elements 28 or 60 are installed in opposing pairs in the inventive system in an upright V relationship as illustrated in
Thus, when the elements 28 or 60 are installed in an upright V arrangement above a combined distribution structure 90, the exhaust gas flowing through the perforations 87 in the angled left side 89 of the distribution structure 90 will be directed to the left element 28 or 60 of the V arrangement and the exhaust gas flowing through the perforations 87 in the angled right side 91 of the distribution structure 90 will be directed to the right element 28 or 60 of the V.
Additional improvements which operate to further secure the catalytic converter elements 28 or 60 within the manifold segments are illustrated in
In the embodiment shown in
Thus, the present invention is well adapted to carry out the objectives and attain the ends and advantages mentioned above as well as those inherent therein. While presently preferred embodiments have been described for purposes of this disclosure, numerous changes and modifications will be apparent to those of ordinary skill in the art. Such changes and modifications are encompassed within the spirit of this invention as defined by the claims.
This is a continuation-in-part application of U.S. patent application Ser. No. 11/311,868, filed Jan. 19, 2005, which application is incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
2423602 | Magdeburger | Jul 1947 | A |
3644098 | De Palma et al. | Feb 1972 | A |
4091616 | Loweg | May 1978 | A |
4151717 | Katsumoto et al. | May 1979 | A |
4748807 | Vladimir | Jun 1988 | A |
4758410 | Grimm et al. | Jul 1988 | A |
5209062 | Vollenweider | May 1993 | A |
5373630 | Lucier et al. | Dec 1994 | A |
5388407 | Capers et al. | Feb 1995 | A |
5722237 | Iida et al. | Mar 1998 | A |
6082103 | Sugiura et al. | Jul 2000 | A |
6151890 | Hoshi | Nov 2000 | A |
6622481 | Ruman et al. | Sep 2003 | B1 |
6837335 | Jankowski | Jan 2005 | B2 |
6976479 | Gottemoller et al. | Dec 2005 | B1 |
7157060 | Newburry | Jan 2007 | B1 |
7290391 | Rezabek | Nov 2007 | B2 |
7410621 | Muter et al. | Aug 2008 | B2 |
7919052 | Ahmed | Apr 2011 | B2 |
20020083703 | Werth et al. | Jul 2002 | A1 |
20050271561 | Lancaster et al. | Dec 2005 | A1 |
20060096273 | Soliman et al. | May 2006 | A1 |
20070209544 | Caro et al. | Sep 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080229733 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11311868 | Dec 2005 | US |
Child | 12059472 | US |