The present disclosure is related to a method and system for managing the operation of a plant, such as a chemical plant or a petrochemical plant or a refinery, and more particularly to a method for improving operations in a plant that uses a catalyst. Typical plants may be those that provide catalytic dehydrogenation or hydrocarbon cracking, or catalytic reforming, or other process units.
A plant or refinery may use a catalyst along with a reactant to produce a product, such as a product gas. Over time, the performance of the catalyst may degrade. A plant or refinery might not have the ability to track catalyst health on a regular basis, but rather may rely on external periodic testing of a catalyst. As such, a plant or refinery may have difficulty planning if and when to change a catalyst and/or modify operating conditions of the catalyst in view of catalyst health. Moreover, if a problem occurs and a catalyst is deactivated, it is often too late to take remedial action to improve the health of the catalyst. There is thus an ongoing need to improve tracking the catalyst health.
The following summary presents a simplified summary of certain features. The summary is not an extensive overview and is not intended to identify key or critical elements.
One or more embodiments may include methods, computing devices, or systems for receiving plant data from a plant using a catalyst to produce a product and, based on the plant data received, determining the health of the catalyst. A plant monitoring computing platform may be configured to receive plant data from a plant. The plant may be configured to use a catalyst with a reactant to produce a product. The plant may be further configured with one or more sensors and computing devices that report measurements to the plant monitoring computing platform. Based on the plant data, the plant monitoring computing platform may determine equilibrium conditions for the plant. The plant monitoring computing platform may modify the equilibrium conditions based on, for example, a machine learning algorithm or operator input. The plant monitoring computing platform may compare plant data to the equilibrium conditions. Based on the comparison, the plant monitoring computing platform may trigger a notification. The notification may comprise an indication of the health of the catalyst.
Other technical features may be readily apparent to one skilled in the art from the following figures, descriptions, and claims.
The present disclosure is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
In the following description of various illustrative embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments in which aspects of the disclosure may be practiced. It is to be understood that other embodiments may be utilized, and structural and functional modifications may be made, without departing from the scope of the present disclosure.
It is noted that various connections between elements are discussed in the following description. It is noted that these connections are general and, unless specified otherwise, may be direct or indirect, wired or wireless, and that the specification is not intended to be limiting in this respect.
Chemical Plants and Catalysts
As a general introduction, chemical plants, petrochemical plants, and/or refineries may include one or more pieces of equipment that process one or more input chemicals to create one or more products. For example, catalytic dehydrogenation can be used to convert paraffins to the corresponding olefin, e.g., propane to propene, or butane to butene. To produce one or more products, a chemical plant or a petrochemical plant or a refinery may use catalysts. A catalyst is a substance that may be used in particular conditions (e.g., at a particular temperature, with a particular reactant, and/or in a particular quantity) to produce a chemical reaction and to produce a product. For example, naphtha, derived from crude oil, may undergo multiple processes using multiple catalysts to ultimately become a product such as gasoline. Virtually all portions of a chemical plants, petrochemical plants, and/or refineries wear down with age, and catalysts are no exception. In the process of producing a product, a catalyst may be consumed, become inactive, and/or may otherwise be expended over time. Operators of chemical plants, petrochemical plants, and/or refineries must therefore rejuvenate and/or replace catalysts in order to maintain peak operational efficiency.
References herein to a “plant” are to be understood to refer to any of various types of chemical and petrochemical manufacturing or refining facilities. References herein to a plant “operators” are to be understood to refer to and/or include, without limitation, plant planners, managers, engineers, technicians, and others interested in, overseeing, and/or running the daily operations at a plant.
The reactor section 10 includes one or more reactors 25. A hydrocarbon feed 30 is sent to a heat exchanger 35 where it exchanges heat with a reactor effluent 40 to raise the feed temperature. The hydrocarbon feed 30 is sent to a preheater 45 where it is heated to the desired inlet temperature. The preheated feed 50 is sent from the preheater 45 to the first reactor 25. Because the dehydrogenation reaction is endothermic, the temperature of the effluent 55 from the first reactor 25 is less than the temperature of the preheated feed 50. The effluent 55 is sent to interstage heaters 60 to raise the temperature to the desired inlet temperature for the next reactor 25.
After the last reactor, the reactor effluent 40 is sent to the heat exchanger 35, and heat is exchanged with the feed 30. The reactor effluent 40 is then sent to the product recovery section 20. The catalyst 65 moves through the series of reactors 25. When the catalyst 70 leaves the last reactor 25, it is sent to the catalyst regeneration section 15. The catalyst regeneration section 15 includes a regenerator 75 where coke on the catalyst is burned off and the catalyst may go through a reconditioning step. A regenerated catalyst 80 is sent back to the first reactor 25.
The reactor effluent 40 is compressed in the compressor or centrifugal compressor 82. The compressed effluent 115 is introduced to a cooler 120, for instance a heat exchanger. The cooler 120 lowers the temperature of the compressed effluent. The cooled effluent 125 (cooled product stream) is then introduced into a chloride remover 130, such as a chloride scavenging guard bed. The chloride remover 130 includes an adsorbent, which adsorbs chlorides from the cooled effluent 125 and provides a treated effluent 135. Treated effluent 135 is introduced to a drier 84.
The dried effluent is separated in separator 85. Gas 90 is expanded in expander 95 and separated into a recycle hydrogen stream 100 and a net separator gas stream 105. A liquid stream 110, which includes the olefin product and unconverted paraffin, is sent for further processing, where the desired olefin product is recovered and the unconverted paraffin is recycled to the dehydrogenation reactor 25.
Monitoring of Plant Operating Conditions
The plant monitoring computing platform 410 may be one or more computing devices, such as one or more servers (e.g., a cloud computing platform) configured to receive plant data and determine catalyst health. Computing devices may comprise any form of device configured with one or more processors and/or memory storing instructions that, when executed by the processor, perform one or more steps. The plant monitoring computing platform may be configured to receive, from the plant 430, plant data comprising operational data such as sensor measurements. The plant monitoring computing platform may be configured to process the received plant data, such as by performing error detecting routines, organizing the plant data, reconciling the plant data with a template or standard, and/or store the received plant data, as discussed in greater detail below. Based on the plant data, the plant monitoring computing platform may be configured to determine an indication of the health of a catalyst. Though the plant monitoring computing platform 410 is depicted as a single element in
The plant monitoring computing platform 410 may comprise a plurality of different mechanisms by which received plant data may be processed and interpreted. The plant monitoring computing platform 410 may process and/or analyze received plant data. For example, computing devices of the plant monitoring computing platform 410 may be configured to execute code that compares all or portions of plant data to threshold values and/or ranges. Machine learning algorithms may be used to process and/or interpret received plant data. For example, the plant monitoring computing platform 410 may store and use old measurements to teach a machine learning algorithm acceptable ranges for plant data, and new plant data may be input into the machine learning algorithm to determine if an undesirable plant condition exists. Manual review by experts may be performed to process and/or interpret received plant data. For example, a certain range of plant data (e.g., unexpectedly high numbers) may require manual review by an expert (e.g., a plant employee) using a computing device associated with the plant monitoring computing platform 410.
The plant monitoring computing platform 410 may be configured such that, if a measurement (e.g., in plant data) deviates from the equilibrium conditions, a notification may be sent by the plant monitoring computing platform 410. For example, the plant monitoring computing platform 410 may be configured to determine a difference between a measurement and equilibrium conditions and, if the difference satisfies a threshold, send a notification. Such equilibrium conditions may be based on external data received from the external servers 450 and/or additional plant data received from the operator office 440. For example, temperature measurements may be analyzed in view of the ambient temperature of the plant 430 as determined via external data received from the external servers 450 and/or as determined via a thermometer at the operator office 440. The notification may, for example, be a text message, e-mail, or any other form of communication over the network 420.
Additionally or alternatively to sending a notification, the plant monitoring computing platform 410 may be configured to cause the plant 430 to perform an action. The plant monitoring computing platform 410 may be configured to cause the plant 430 to, for example, open or close one or more valves and/or drains, change the operating parameters of pumps, feed switchers, gates, and/or sprayers, or similar actions. The plant monitoring computing platform 410 may be configured to trigger an alarm at the plant 430, e.g., when unsafe operating conditions are determined. The plant monitoring computing platform 410 may cause the plant 430 to take actions which require manual intervention, such as initiating a process in which catalyst may be, in whole or in part, replaced.
The plant monitoring computing platform 410 may be configured to make determinations regarding the activity of a catalyst. The plant 430 may cease to be profitable if, for example, the yield of product via a catalyst drops below a threshold due to decreases in the activity of the catalyst. The plant monitoring computing platform 410 may, for example, determine that a catalyst will drop below a predetermined profitability limit in a time period (e.g., in an hour, in two weeks). The plant monitoring computing platform 410 may send a notification corresponding to such a determination. The plant monitoring computing platform 410 may cause computing devices associated with the operator office 440 to order additional catalyst from a supplier and/or send a notification to operators of the plant 430 that the catalyst must be replaced.
The network 420 may be a public network, a private network, or a combination thereof that communicatively couples the plant monitoring computing platform 410 to other devices. Communications between devices such as the computing devices of the plant 430 and the plant monitoring computing platform 410, may be packetized or otherwise formatted in accordance with any appropriate communications protocol. For example, the network 420 may comprise a network configured to use Internet Protocol (IP).
The plant 430 may be any of various types of chemical and petrochemical manufacturing or refining facilities. The plant 430 may be configured with one or more computing devices that monitor plant parameters and report such measurements to the plant monitoring computing platform 410. The plant 430 may comprise sensors that report measurements to the plant monitoring computing platform 410 via the network 420. The plant 430 may additionally or alternatively conduct tests (e.g., lab tests producing lab data), which may be sent to the plant monitoring computing platform 410. Such measurements may relate to the temperature, pressure, flow rate, composition, molecular weight, viscosity, pH, color, and/or the specific weight of liquids, gases, or solids (e.g., the temperature of a burner or an inlet valve). Additionally or alternatively, such measurements may comprise a ratio of dihydrogen (H2) to hydrocarbons and/or a measurement of hydrogen sulfide (H2S) levels. Techniques such as gas chromatography may be used to analyze such compounds. Measurements related to the plant 430, such as the amount of power used (e.g., by a machine) or the like may additionally or alternatively be measured. Reporting of such measurements may occur on a periodic basis (e.g., every ten seconds, every hour, for each plant cycle) or a continual basis.
The operator office 440 may be configured to, via one or more computing devices of the operator office 440, receive measurements and send such measurements to the plant monitoring computing platform 410, configure the plant 430, and/or communicate with and configure the plant monitoring computing platform 410. The operator office 440 may be where plant data is determined, such that plant data may originate from both or either the plant 430 and the operator office 440. The operator office 440 may be enabled to make plans with regard to the plant 430 based on output from the plant monitoring computing platform 410.
The data collection platform may be configured to collect plant data from one or more sensors and/or controllable devices and transmit that information, e.g., to the plant monitoring computing platform 410. Such sensors may comprise, for example, level sensors 431a, gas chromatographs 431b, orifice plate support sensors 431c, temperature sensors 431d, moisture sensors 431e, ultrasonic sensors 431f, thermal cameras 431g, disc sensors 431h, pressure sensors 431i, vibration sensors 431j, microphones 431k, flow sensors 431l, weight sensors 431m, capacitance sensors 431n, differential pressure sensors 431o, and/or venturi 431p. The data collection platform may additionally or alternatively be communicatively coupled to the control platform 432 such that, for example, the data collection platform 431 may receive, from the control platform 432 and/or any of the controllable devices 432a-f, operating information. The controllable devices 432a-f may comprise, for example, valves 432a, feed switchers 432b, pumps 432c, gates 432d, drains 432e, and/or sprayers 432f.
As part of the receipt of any plant data, the plant monitoring computing platform may be configured to process and/or analyze the data. The plant monitoring computing platform may, for example, execute an error correction algorithm to correct errors in received plant data. Based on determining only certain plant data is needed, a first portion of the received plant data (e.g., the certain plant data) may be stored, whereas a second portion of the received plant data (e.g., other plant data) may be discarded. Processing may comprise determining a reliability of received plant data. For example, impossible measurements (e.g., a temperature reading from a sensor indicating that a substance is hotter than the surface of the Sun) may be determined unreliable and potentially indicative of a malfunctioning sensor. As another example, based on previous measurements indicating a downward temperature trend, a most current measurement which indicates an extremely high temperature may be considered unreliable until multiple such measurements are received from a plant.
In step 502, based on the initial plant data received, equilibrium conditions may be determined for a plant. Equilibrium conditions may comprise any acceptable values, ranges of values, and/or criterion that indicate target operating conditions for a plant. For example, equilibrium conditions may be targeted measurements that indicate that a plant is successfully and/or profitably producing a product and that all machines and substances (e.g., catalysts) are functioning properly and are otherwise in good health. Equilibrium conditions may be determined based on the received initial plant data such that, for example, if temperature values received as part of initial plant data reported temperatures between a particular temperature range (e.g., between 1100 and 1200 degrees Fahrenheit), then this range may be considered equilibrium conditions for the temperature values. An equilibrium condition need not suggest that all measurements outside of particular equilibrium values/ranges/criterion indicate a malfunction. For example, an increase in temperature of an outlet valve—which may be detected by a temperature sensor attached to or otherwise monitoring that outlet valve—may be but one indicator of malfunction, but might not itself be dispositive of a malfunction. As such, equilibrium conditions may be conditional and/or may account for numerous portions of plant data. The equilibrium conditions may correspond to use of a catalyst, such that a first set of equilibrium conditions may correspond to a fresh catalyst, a second set of equilibrium conditions may correspond to a moderately used catalyst, and the like. Thus, equilibrium conditions for fresh catalyst need not be the same as equilibrium conditions for a well-used catalyst.
Equilibrium conditions may be based on the accuracy and/or fidelity of the initial plant data received. The initial data received in step 501 may comprise data that relates to break-in periods, such as a period when a catalyst is stabilized and/or when machines are warmed up, and the received data may be appropriately discounted based on its association with a break-in period. Discounting may comprise, for example, weighting plant data less in comparison to other plant data. For example, it can take three to four catalyst regeneration cycles for baseline catalyst properties to be measured. As such, the plant monitoring computing platform may be configured to identify such conditions and discard and/or discount such initial plant data.
Equilibrium conditions may comprise a flowchart or flowsheet comprising equilibrium states and/or models. For example, the equilibrium conditions may be a flowchart such that certain data is analyzed in the event that the outlet valve temperature exceeds a first predetermined value, but that other data is analyzed in the event that the outlet valve temperate is below the first predetermined value.
Equilibrium conditions may relate to product yield. For example, equilibrium conditions may relate to conditions in which a particular quantity of product may be produced (e.g., ten tons per hour). As another example, equilibrium conditions may relate to the profitability of product yield, such that the equilibrium conditions relate to an operational status of the plant where a certain amount of profit is made (e.g., where $100 per ton profit is made).
Determining equilibrium conditions may be, in whole or in part, effectuated using a machine learning algorithm. A machine learning algorithm may implement a neural network or similar computing device structure to allow one or more computing devices to learn based on data and later make classifications based on the learning. The initial plant data received may be input into a machine learning algorithm to allow the algorithm to determine associations and appropriate weightings for the data. Such learning may be supervised such that, for example, undesirable data is appropriately tagged as undesirable (e.g., as indicative of a plant issue) by an operator of the machine learning algorithm. As such, the equilibrium need not be a particular range, but may instead represent the learning of the machine learning algorithm. The equilibrium conditions may thus be reflected by the decision-making of the machine learning algorithm.
Determining equilibrium conditions may be based on the configuration of a plant. While two different plants may report the same or similar types of plant data, the data itself may vary based on the configuration of each individual plant. For example, different plant machinery may exhibit different ranges of temperatures, flow rates, and other measurable conditions. Such information may be used to determine equilibrium conditions. As a particular example, wellinsulated equipment may exhibit higher temperatures than poorly-insulated equipment, such that both may exhibit different temperature profiles under similar operating conditions.
Determining equilibrium conditions may involve, in whole or in part, manual entry of equilibrium conditions by a plant operator. For example, based on mechanical and/or safety limitations of machines in a plant, a plant operator may specify that a certain reactor temperature should not exceed a certain value under any circumstances. As another example, a desired chemical reaction involving a catalyst may never occur under a threshold temperature (e.g., 100° F.), such that the threshold temperature (e.g., 100° F.) may be established as the absolute lowest temperature for a particular reactor using the catalyst.
Determining equilibrium conditions may involve, in whole or in part, use of plant data from other plants. Certain measurements may be standardized across plants such that, for example, a certain catalyst, when used properly, must remain within a certain range of temperatures regardless of equipment or ambient conditions. Based on catalyst temperature ranges observed from other plants, the equilibrium conditions for a first plant may be determined. Use of multiple plants' data may additionally or alternatively be used to improve equilibrium condition fidelity. For example, the best range of reactor temperatures may be determined by analyzing multiple (e.g., hundreds of) different reactors associated with multiple (e.g., tens of) plants distributed worldwide, rather than use of measurements only from reactors from a single plant.
In step 503, the plant monitoring computing platform may determine whether to modify the equilibrium conditions. The plant monitoring computing platform may determine whether to modify the equilibrium conditions based on a comparison of the equilibrium conditions and data received from a plant and/or external data received from external servers (e.g., external servers 450). The plant monitoring computing platform may be configured to evaluate the accuracy of the equilibrium conditions and, if the equilibrium conditions do not have a level of accuracy that meets a threshold, the plant monitoring computing platform may be configured to collect additional data such that the equilibrium conditions may be revised. If the plant monitoring computing platform determines to modify the equilibrium conditions, the flow chart may return to step 501. Otherwise, the flow chart may proceed to step 504.
One example reason that the equilibrium conditions may be modified is to improve the fidelity of the equilibrium conditions. The initial plant data received in step 501 may be accurate but may be limited: for example, the initial plant data received in step 501 may comprise only one set of measurements, such that any equilibrium conditions determined from the initial plant data may be highly unreliable. The plant monitoring computing platform may require a threshold number of sets of measurements to determine equilibrium conditions, such that the equilibrium conditions may be modified based on determining that a number of sets of measurements received does not satisfy the threshold. Based on determining that the fidelity of the equilibrium conditions is inadequate, the flow chart may return to step 501 so that additional plant data may be received.
In step 504, plant data may be received. The plant data received in step 501 may be in a same or similar format as the initial plant data received in step 504. As such, the plant data in step 504 may additionally or alternatively be used to modify the equilibrium conditions determined in step 502.
In step 505, plant data may be compared to the equilibrium conditions determined in step 502. The comparison may comprise determining whether the plant data received in step 504 falls within a range of the equilibrium conditions, is one of a predetermined number of acceptable values, or other similar comparison methods. A degree of similarity to the equilibrium conditions (e.g., a delta value between the measured value and the equilibrium value) may be determined. The equilibrium conditions may comprise a conditional test, such that the comparison may comprise testing the plant data using the conditional test.
The plant data compared in step 505 need not comprise only the plant data received in step 504, but also previously-received plant data. For example, a weighted average of the plant data received in step 504 and previously received plant data may be determined, and that weighted average may be compared to the equilibrium conditions. In this manner, small fluctuations in measurements may be smoothed out and/or trends may be identified.
The plant monitoring computing platform may, based on the plant data, determine predicted future plant data and compare such predicted future plant data with the equilibrium conditions. For example, current temperature measurements may be rapidly rising such that future temperature measurements will likely indicate a problem at a plant. Accordingly, the plant monitoring computing platform may identify the rapidly rising conditions and compare a predicted, higher temperature with the equilibrium conditions.
In step 506, the plant monitoring computing platform may determine whether the comparison in step 505 indicates that a notification should be transmitted. A notification need not suggest a problem but may indicate, for example, that a catalyst may soon need to be replenished and/or replaced, that a machine may be wearing out, that an operating condition of the plant need to be modified for better performance, the health of all or a part of a plant, or the like. If the plant monitoring computing platform determines to transmit a notification, the flow chart may proceed to step 507 and send the notification and proceed to step 508. Otherwise, the flow chart may proceed to step 508.
The comparison of the plant data and the equilibrium conditions may relate to all or a portion of the plant. The comparison may indicate that all or a part of a catalyst is deactivated, that all or a portion of one or more reactors has a problem, potential issues with the flow rate of a catalyst or a reactant, undesirable build-up on all or part of a catalyst, issues with input or output, or the like. The comparison need not indicate a binary condition (e.g., the presence or absence of a problem), but may also suggest a measurement or calculation (e.g., an indication of the health of the catalyst, a percentage of deactivated catalyst, a time duration associated with the health of the catalyst). The notification may include information relating to the comparison of the plant data to the equilibrium conditions (e.g., that all or a portion of one or more reactors has a problem, identified potential issues with the flow rate of a catalyst or a reactant, undesirable build-up on all or part of a catalyst, identified issues with input or output, or the like).
As an illustrative example of steps 504 through 506, the plant data received by the plant monitoring computing platform may comprise reactor inlet temperatures as measured five times over the course of ten minutes. The measurements may be, for example, 701, 702, 705, 706, and 709 degrees Fahrenheit, wherein the temperature measurements are compared to some reference temperature (e.g., Δ_ values, wherein the measurements are compared to a baseline reference measurement). The plant monitoring computing platform may compare the reactor inlet temperatures to a determined equilibrium range that permits the measured reactor inlet temperatures to be anywhere from 690 to 710 degrees Fahrenheit, suggesting no immediate concern. The plant monitoring computing platform may nonetheless a predicted future reactor inlet temperature of 725 degrees Fahrenheit and compare the predicted future reactor temperature against the equilibrium range. Such a condition may indicate an issue, warranting the transmission of a notification corresponding to, for example, the trend in the heat increase and/or a potential trend in catalyst health.
As another example of steps 504 through 506, the weighted average of received inlet temperatures may be divided by the start-of-run weighted average of inlet temperatures, wherein the inlet is associated with introducing a catalyst to a reactant (e.g., the inlet is used to send a catalyst into a chamber with a reactant, the inlet is used to send the reactant into a chamber with the catalyst, or the like). This value may suggest the health of the catalyst in the plant. As such, the notification need not suggest that the catalyst has a problem, but may rather may indicate the health of the catalyst in the plant.
As yet another example of steps 504 through 506, a machine learning algorithm may be provided plant data. The machine learning algorithm may have learned, from the initial plant data, to detect particular circumstances (e.g., growth of a deactivated portion of a catalyst) of the plant. The machine learning algorithm may determine, based on a comparison of the plant data to one or more tests, that a first reactor of the plant is operating normally, but a second reactor of the plant has a growing deactivated portion of a catalyst.
In step 507, the plant monitoring computing platform may transmit a notification. The notification may be to one or more computing devices (e.g., of the plant 430, the operator office 440, or the like), to a plant operator (e.g., causing a notification to be sent via a text message, application alert, or the like to a cell phone associated with the plant operator), or the like.
The plant monitoring computing platform may be configured to report, via a notification, one or more measurements, characterizations, and/or calculations based on the plant data. The plant monitoring computing platform may be configured to trigger periodic notifications of the health of a catalyst. For example, a notification may simply indicate the health of one or more catalysts and may be sent to a plant operator on an hourly basis. Other examples of information that may be sent in a notification include an estimated hydrogen/hydrocarbon ratio, a characterization of a reactor operating status (e.g., “needs attention”), a calculated ratio of an active portion of a catalyst to a deactivated portion of a catalyst, or other measurements, characterizations, and/or calculations.
For example, in the context of catalyst health, the plant monitoring computing platform may be configured to periodically transmit (e.g., to one or more computing devices at the plant, operator office, and/or one or more external servers) a notification comprising a calculated catalyst health associated with one or more reactors at a plant. The calculated health may comprise a ratio or percentage, such as a division of a current quantity of active catalyst as by an originally active quantity of catalyst. The notification may be daily such that, on a daily basis, a plant operator may receive an indication of the current percentage of active catalyst. The notification may further comprise an indication of a projected consumption rate of the catalyst (e.g., an indication that the catalyst health will drop by 1% every week, and/or an indication that the catalyst will need to be replaced in six months). Once the percentage of active catalyst satisfies a threshold (e.g., 50% or below), the notification may indicate that the plant operator should replenish or otherwise replace the catalyst. The threshold may be based on profit margin. For example, the threshold may be based on an amount of profit associated with the product (e.g., $50 per ton), such that, when the percentage of active catalyst satisfies the threshold, the amount of profit associated with the product has become undesirably low.
The plant monitoring computing platform may be additionally or alternatively configured to send notifications associated with, based on the comparison in step 505, the detection of feed poisons, miss operations, plant upsets, and/or other problems. Such notifications may be prioritized over other notifications. For example, while some notifications may be messages, a notification of a problem may trigger an alarm (e.g., causing an alarm to sound at the plant).
The plant monitoring computing platform may be configured to provide notifications relating to improving plant yield and/or production volume. For example, based on the analysis of plant data, the plant monitoring computing platform may determine that modification of an operating parameter would not harm plant effectiveness and may improve the yield and/or production volume of the plant. Based on such a determination, the plant monitoring computing platform may send a corresponding notification to a plant operator.
In step 508, the plant monitoring computing platform may, in response to the comparison, determine whether to cause the plant to take an action. The reasons why action may be taken may be the same or similar to that of providing a notification. For example, the plant monitoring computing platform may determine that the amount of active catalyst remaining satisfies a threshold and determine to take an action (e.g., initiating replacement of the catalyst) on that basis. Such actions may be any change to controllable devices (e.g., controllable devices 432a-f) of the plant. As another example, the plant monitoring computing platform may determine that a temperature reading for a device satisfies a threshold and, on that basis, determine to open a ventilation duct to cool the measured device. As yet another example, the plant monitoring computing platform may, based on an unsafe condition detected based on the plant data, cause the plant to sound an alarm. The action may relate to a notification, such that, for example, the plant monitoring computing platform may send a notification that it is causing the plant to perform an action. If the plant monitoring computing platform decides to take the action, it may do so in step 509. Otherwise, the flow chart may end.
Conclusion
Aspects of the disclosure have been described in terms of illustrative embodiments thereof. Numerous other embodiments, modifications, and variations within the scope and spirit of the appended claims will occur to persons of ordinary skill in the art from a review of this disclosure. For example, one or more of the steps illustrated in the illustrative figures may be performed in other than the recited order, and one or more depicted steps may be optional in accordance with aspects of the disclosure.
This application is a non-provisional of, and claims priority to, U.S. Provisional Application No. 62/650,618, filed Mar. 30, 2018, which is incorporated by reference herein in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4159239 | Schwartz | Jun 1979 | A |
4267458 | Uram | May 1981 | A |
4284494 | Bartholic | Aug 1981 | A |
4362614 | Asdigian | Dec 1982 | A |
4380146 | Yannone | Apr 1983 | A |
4385985 | Gross | May 1983 | A |
4411773 | Gross | Oct 1983 | A |
4709546 | Weiler | Dec 1987 | A |
4775460 | Reno | Oct 1988 | A |
4795545 | Schmidt | Jan 1989 | A |
4902469 | Watson | Feb 1990 | A |
5077252 | Owen et al. | Dec 1991 | A |
5227121 | Scarola | Jul 1993 | A |
5582684 | Holmqvist et al. | Dec 1996 | A |
5605435 | Haugen | Feb 1997 | A |
5616214 | Leclerc | Apr 1997 | A |
5642296 | Saxena | Jun 1997 | A |
5666297 | Britt et al. | Sep 1997 | A |
5817517 | Perry et al. | Oct 1998 | A |
6038540 | Krist et al. | Mar 2000 | A |
6081230 | Hoshino | Jun 2000 | A |
6230486 | Yasui | May 2001 | B1 |
6266605 | Yasui | Jul 2001 | B1 |
6271845 | Richardson | Aug 2001 | B1 |
6392114 | Shields et al. | May 2002 | B1 |
6760716 | Ganesamoorthi et al. | Jul 2004 | B1 |
6772044 | Mathur et al. | Aug 2004 | B1 |
6795798 | Eryurek et al. | Sep 2004 | B2 |
6982032 | Shaffer et al. | Jan 2006 | B2 |
6983227 | Thalhammer-Reyero | Jan 2006 | B1 |
7006889 | Mathur et al. | Feb 2006 | B2 |
7067333 | Pasadyn et al. | Jun 2006 | B1 |
7133807 | Karasawa | Nov 2006 | B2 |
7151966 | Baier et al. | Dec 2006 | B1 |
7246039 | Moorhouse | Jul 2007 | B2 |
7313447 | Hsuing et al. | Dec 2007 | B2 |
7415357 | Stluka et al. | Aug 2008 | B1 |
7567887 | Emigholz | Jul 2009 | B2 |
7742833 | Herbst et al. | Jun 2010 | B1 |
7836941 | Song et al. | Nov 2010 | B2 |
7877596 | Foo Kune et al. | Jan 2011 | B2 |
7925979 | Forney et al. | Apr 2011 | B2 |
7936878 | Kune et al. | May 2011 | B2 |
7979192 | Morrison et al. | Jul 2011 | B2 |
7995526 | Liu et al. | Aug 2011 | B2 |
8050889 | Fluegge et al. | Nov 2011 | B2 |
8055371 | Sanford et al. | Nov 2011 | B2 |
8111619 | Liu et al. | Feb 2012 | B2 |
8128808 | Hassan et al. | Mar 2012 | B2 |
8204717 | McLaughlin et al. | Jun 2012 | B2 |
8244384 | Pachner et al. | Aug 2012 | B2 |
8280057 | Budampati et al. | Oct 2012 | B2 |
8352049 | Hsiung et al. | Jan 2013 | B2 |
8354081 | Wheat et al. | Jan 2013 | B2 |
8385436 | Holm et al. | Feb 2013 | B2 |
8428067 | Budampati et al. | Apr 2013 | B2 |
8458778 | Budampati et al. | Jun 2013 | B2 |
8571064 | Kore et al. | Oct 2013 | B2 |
8630962 | Maeda | Jan 2014 | B2 |
8644192 | Budampati et al. | Feb 2014 | B2 |
8811231 | Budampati et al. | Aug 2014 | B2 |
8815152 | Burgess et al. | Aug 2014 | B2 |
8923882 | Gandhi et al. | Dec 2014 | B2 |
8926737 | Chatterjee et al. | Jan 2015 | B2 |
9053260 | Romatier et al. | Jun 2015 | B2 |
9134717 | Trnka | Sep 2015 | B2 |
9166667 | Thanikachalam | Oct 2015 | B2 |
9176498 | Baramov | Nov 2015 | B2 |
9354631 | Mohideen et al. | May 2016 | B2 |
9571919 | Zhang et al. | Feb 2017 | B2 |
9580341 | Brown et al. | Feb 2017 | B1 |
9751817 | Jani et al. | Sep 2017 | B2 |
9864823 | Horn et al. | Jan 2018 | B2 |
9968899 | Gellaboina et al. | May 2018 | B1 |
10095200 | Horn et al. | Oct 2018 | B2 |
10107295 | Brecheisen | Oct 2018 | B1 |
10180680 | Horn et al. | Jan 2019 | B2 |
10183266 | Victor et al. | Jan 2019 | B2 |
10222787 | Romatier et al. | Mar 2019 | B2 |
10328408 | Victor et al. | Jun 2019 | B2 |
20020123864 | Eryurek et al. | Sep 2002 | A1 |
20020179495 | Heyse et al. | Dec 2002 | A1 |
20030036052 | Delwiche et al. | Feb 2003 | A1 |
20030105775 | Shimada | Jun 2003 | A1 |
20030147351 | Greenlee | Aug 2003 | A1 |
20030223918 | Cammy | Dec 2003 | A1 |
20040079392 | Kuechler | Apr 2004 | A1 |
20040099572 | Evans | May 2004 | A1 |
20040109788 | Li et al. | Jun 2004 | A1 |
20040122273 | Kabin | Jun 2004 | A1 |
20040122936 | Mizelle et al. | Jun 2004 | A1 |
20040147036 | Krenn et al. | Jul 2004 | A1 |
20040148144 | Martin | Jul 2004 | A1 |
20040204775 | Keyes | Oct 2004 | A1 |
20040204913 | Mueller et al. | Oct 2004 | A1 |
20040220689 | Mathur et al. | Nov 2004 | A1 |
20040220778 | Imai et al. | Nov 2004 | A1 |
20050027721 | Saenz | Feb 2005 | A1 |
20050029163 | Letzsch | Feb 2005 | A1 |
20050098033 | Mallavarapu et al. | May 2005 | A1 |
20050133211 | Osborn et al. | Jun 2005 | A1 |
20050216209 | Evans | Sep 2005 | A1 |
20060020423 | Sharpe, Jr. | Jan 2006 | A1 |
20060133412 | Callaghan | Jun 2006 | A1 |
20060252642 | Kanazirev | Nov 2006 | A1 |
20060259163 | Hsiung et al. | Nov 2006 | A1 |
20070020154 | Evans | Jan 2007 | A1 |
20070059159 | Hjerpe | Mar 2007 | A1 |
20070059838 | Morrison et al. | Mar 2007 | A1 |
20070091824 | Budampati et al. | Apr 2007 | A1 |
20070091825 | Budampati et al. | Apr 2007 | A1 |
20070185664 | Tanaka | Aug 2007 | A1 |
20070192078 | Nasle et al. | Aug 2007 | A1 |
20070212790 | Welch et al. | Sep 2007 | A1 |
20070250292 | Alagappan et al. | Oct 2007 | A1 |
20070260656 | Wiig | Nov 2007 | A1 |
20070271452 | Foo Kune et al. | Nov 2007 | A1 |
20080086322 | Wallace | Apr 2008 | A1 |
20080130902 | Foo Kune et al. | Jun 2008 | A1 |
20080154434 | Galloway et al. | Jun 2008 | A1 |
20080217005 | Stluka et al. | Sep 2008 | A1 |
20080282606 | Plaza et al. | Nov 2008 | A1 |
20090059786 | Budampati et al. | Mar 2009 | A1 |
20090060192 | Budampati et al. | Mar 2009 | A1 |
20090064295 | Budampati et al. | Mar 2009 | A1 |
20090149981 | Evans | Jun 2009 | A1 |
20090201899 | Liu et al. | Aug 2009 | A1 |
20090204245 | Sustaeta | Aug 2009 | A1 |
20090245286 | Kore et al. | Oct 2009 | A1 |
20090268674 | Liu et al. | Oct 2009 | A1 |
20090281677 | Botich | Nov 2009 | A1 |
20100014599 | Holm et al. | Jan 2010 | A1 |
20100108567 | Medoff | May 2010 | A1 |
20100125347 | Martin et al. | May 2010 | A1 |
20100152900 | Gurciullo et al. | Jun 2010 | A1 |
20100158764 | Hedrick | Jun 2010 | A1 |
20100230324 | Al-Alloush et al. | Sep 2010 | A1 |
20100262900 | Romatier et al. | Oct 2010 | A1 |
20110112659 | Pachner et al. | May 2011 | A1 |
20110152590 | Sadler et al. | Jun 2011 | A1 |
20110152591 | Sadler et al. | Jun 2011 | A1 |
20110311014 | Hottovy et al. | Dec 2011 | A1 |
20120029966 | Cheewakriengkrai et al. | Feb 2012 | A1 |
20120083933 | Subbu et al. | Apr 2012 | A1 |
20120095808 | Kattapuram et al. | Apr 2012 | A1 |
20120104295 | Do et al. | May 2012 | A1 |
20120121376 | Huis in Het Veld | May 2012 | A1 |
20120123583 | Hazen et al. | May 2012 | A1 |
20120197616 | Trnka | Aug 2012 | A1 |
20120259583 | Noboa et al. | Oct 2012 | A1 |
20130029587 | Gandhi et al. | Jan 2013 | A1 |
20130031960 | Delrahim et al. | Feb 2013 | A1 |
20130079899 | Baramov | Mar 2013 | A1 |
20130090088 | Chevsky et al. | Apr 2013 | A1 |
20130094422 | Thanikachalam | Apr 2013 | A1 |
20130172643 | Pradeep | Jul 2013 | A1 |
20130253898 | Meagher et al. | Sep 2013 | A1 |
20130270157 | Ferrara | Oct 2013 | A1 |
20130311437 | Stluka et al. | Nov 2013 | A1 |
20130327052 | O'Neill et al. | Dec 2013 | A1 |
20140008035 | Patankar et al. | Jan 2014 | A1 |
20140026598 | Trawicki | Jan 2014 | A1 |
20140074273 | Mohideen et al. | Mar 2014 | A1 |
20140114039 | Benham et al. | Apr 2014 | A1 |
20140131027 | Chir | May 2014 | A1 |
20140163275 | Yanagawa et al. | Jun 2014 | A1 |
20140179968 | Yanagawa et al. | Jun 2014 | A1 |
20140212978 | Sharpe, Jr. et al. | Jul 2014 | A1 |
20140294683 | Siedler | Oct 2014 | A1 |
20140294684 | Siedler | Oct 2014 | A1 |
20140296058 | Sechrist et al. | Oct 2014 | A1 |
20140309756 | Trygstad | Oct 2014 | A1 |
20140337256 | Varadi et al. | Nov 2014 | A1 |
20140337277 | Asenjo et al. | Nov 2014 | A1 |
20150059714 | Bernards | Mar 2015 | A1 |
20150060331 | Sechrist et al. | Mar 2015 | A1 |
20150077263 | Ali et al. | Mar 2015 | A1 |
20150078970 | Iddir et al. | Mar 2015 | A1 |
20150098862 | Lok et al. | Apr 2015 | A1 |
20150158789 | Keusenkothen | Jun 2015 | A1 |
20150185716 | Wichmann et al. | Jul 2015 | A1 |
20150276208 | Maturana et al. | Oct 2015 | A1 |
20150284641 | Shi | Oct 2015 | A1 |
20150330571 | Beuneken | Nov 2015 | A1 |
20150358091 | Sappok | Dec 2015 | A1 |
20160033941 | T et al. | Feb 2016 | A1 |
20160048119 | Wojsznis | Feb 2016 | A1 |
20160098037 | Zornio et al. | Apr 2016 | A1 |
20160098234 | Weaver | Apr 2016 | A1 |
20160122663 | Pintart et al. | May 2016 | A1 |
20160147204 | Wichmann et al. | May 2016 | A1 |
20160237910 | Saito | Aug 2016 | A1 |
20160260041 | Horn et al. | Sep 2016 | A1 |
20160291584 | Horn et al. | Oct 2016 | A1 |
20160292188 | Horn et al. | Oct 2016 | A1 |
20160292325 | Horn et al. | Oct 2016 | A1 |
20160313653 | Mink | Oct 2016 | A1 |
20160363315 | Colannino et al. | Dec 2016 | A1 |
20170009932 | Oh | Jan 2017 | A1 |
20170058213 | Oprins | Mar 2017 | A1 |
20170082320 | Wang | Mar 2017 | A1 |
20170107188 | Kawaguchi | Apr 2017 | A1 |
20170284410 | Sharpe, Jr. | Oct 2017 | A1 |
20170315543 | Horn et al. | Nov 2017 | A1 |
20170323038 | Horn et al. | Nov 2017 | A1 |
20170352899 | Asai | Dec 2017 | A1 |
20180046155 | Horn et al. | Feb 2018 | A1 |
20180081344 | Romatier et al. | Mar 2018 | A1 |
20180082569 | Horn et al. | Mar 2018 | A1 |
20180121581 | Horn et al. | May 2018 | A1 |
20180122021 | Horn et al. | May 2018 | A1 |
20180155638 | Al-Ghamdi | Jun 2018 | A1 |
20180155642 | Al-Ghamdi et al. | Jun 2018 | A1 |
20180197350 | Kim | Jul 2018 | A1 |
20180275690 | Lattanzio et al. | Sep 2018 | A1 |
20180275691 | Lattanzio et al. | Sep 2018 | A1 |
20180275692 | Lattanzio et al. | Sep 2018 | A1 |
20180280914 | Victor et al. | Oct 2018 | A1 |
20180280917 | Victor et al. | Oct 2018 | A1 |
20180282633 | Van de Cotte et al. | Oct 2018 | A1 |
20180282634 | Van de Cotte et al. | Oct 2018 | A1 |
20180282635 | Van de Cotte et al. | Oct 2018 | A1 |
20180283368 | Van de Cotte et al. | Oct 2018 | A1 |
20180283392 | Van de Cotte et al. | Oct 2018 | A1 |
20180283404 | Van de Cotte et al. | Oct 2018 | A1 |
20180283811 | Victor et al. | Oct 2018 | A1 |
20180283812 | Victor et al. | Oct 2018 | A1 |
20180283813 | Victor et al. | Oct 2018 | A1 |
20180283815 | Victor et al. | Oct 2018 | A1 |
20180283816 | Victor et al. | Oct 2018 | A1 |
20180283818 | Victor et al. | Oct 2018 | A1 |
20180284705 | Van de Cotte et al. | Oct 2018 | A1 |
20180286141 | Van de Cotte et al. | Oct 2018 | A1 |
20180311609 | McCool et al. | Nov 2018 | A1 |
20180362862 | Gellaboina et al. | Dec 2018 | A1 |
20180363914 | Faiella et al. | Dec 2018 | A1 |
20180364747 | Charr et al. | Dec 2018 | A1 |
20190002318 | Thakkar et al. | Jan 2019 | A1 |
20190003978 | Shi et al. | Jan 2019 | A1 |
20190015806 | Gellaboina et al. | Jan 2019 | A1 |
20190041813 | Horn et al. | Feb 2019 | A1 |
20190083920 | Bjorklund et al. | Mar 2019 | A1 |
20190101336 | Victor et al. | Apr 2019 | A1 |
20190101342 | Victor et al. | Apr 2019 | A1 |
20190101907 | Charr et al. | Apr 2019 | A1 |
20190102966 | Lorenz | Apr 2019 | A1 |
20190108454 | Banerjee et al. | Apr 2019 | A1 |
20190120810 | Kumar KN et al. | Apr 2019 | A1 |
20190151814 | Victor et al. | May 2019 | A1 |
20190155259 | Romatier et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
0181744 | May 1986 | EP |
2746884 | Jun 2014 | EP |
2801937 | Nov 2014 | EP |
1134439 | Nov 1968 | GB |
WO 1990010083 | Sep 1990 | WO |
WO 2001060951 | Aug 2001 | WO |
WO 2006044408 | Apr 2006 | WO |
WO 2007095585 | Aug 2007 | WO |
WO 2009046095 | Apr 2009 | WO |
WO 2014042508 | Mar 2014 | WO |
WO 2014123993 | Aug 2014 | WO |
WO 2016141128 | Sep 2016 | WO |
WO 2017079058 | May 2017 | WO |
Entry |
---|
Bespalov A. V. et al., Control systems of chemical and technological processes, pp. 508-509 (2001) (Russian). |
Daniel Goebel, Dry Gas Seal Contamination During Operation and Pressurization Hold, [online], Feb. 2016, [retrieved on Jun. 19, 2019]. Retrieved from <https ://core.ac.uk/download/pdf/84815277. pdf> (Year: 2016). |
EnergyMEDOR®, Product brochure (Nov. 2014). |
Chistof Huber, Density and Concentration Measurement Application for Novel MEMS-based Micro Densitometer for Gas, [online], 2016, [retrieved on Jun. 19, 2016]. Retrieved from <https://www.ama-science.org/proceedings/getFile/ZwZ1 BD==> (Year: 2016). |
Lotters, Real-time Composition Determination of Gas Mixtures, [online], 2015, [retrieved on Jun. 19, 2019]. Retrieved from <https:// www .ama-science.org/proceedings/getFile/ZwNOZj==> (Year: 2015). |
Maybeck, Peter S., “Stochastic models, estimation, and control,” vol. 1, Academic Press (1979), 19 pages. |
Number | Date | Country | |
---|---|---|---|
20190304572 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62650618 | Mar 2018 | US |