The invention generally relates to chemical-looping reforming, and more particularly to the catalytic effects with CeO2 and/or La2O3 for catalyzing Fe2O3—Al2O3 based chemical-looping reforming of CH4 with CO2 (CL-DRM).
The present disclosure can provide a number of advantages depending on the particular aspect, embodiment, and/or configuration. These and other advantages will be apparent from the disclosure. Additional features and advantages may be learned by the practice of the invention.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
The present disclosure can provide a number of advantages depending on the particular aspect, embodiment, and/or configuration. These and other advantages will be apparent from the disclosure.
The phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A. B and C together.
The term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising,” “including,” and “having” can be used interchangeably.
It shall be understood that the term “means.” as used herein, shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section 112(f). Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary of the invention, brief description of the drawings, detailed description, abstract, and claims themselves.
All publications and other references mentioned herein are hereby incorporated by reference as if fully set forth herein.
Carbon dioxide (CO2) emitted via anthropogenic activities is widely recognized as the leading contributor to global warming. Kenarsari S D, et al., Review of recent advances in carbon dioxide separation and capture, RSC Adv 2013; 3:22739, doi:10.1039/c3ra43965h; He Y, et al., High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst, Appl Catal B Environ 2015; 168-169:1-8, doi:10.1016/j.apcatb.2014.12.017; Irani M, et al., Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption, Nano Energy 2014; the above-mentioned references are herein incorporated by reference in their entirety. The most common human activity that releases CO2 is the combustion of fossil fuels (coal, petroleum and natural gas) for energy and transportation use, which constitutes about 80% of greenhouse gas (GHG) emissions in the U.S. on a CO2 equivalent basis (U.S.E.P.A., 2010). However, approximately 83% of total energy consumption is anticipated to depend on fossil fuels at least for the next two decades (U.S.E.I.A., 2010). Najera M, et al., Carbon capture and utilization via chemical looping dry reforming, Chem Eng Res Des 2011; 89:1533-43, doi:10.1016/j.cherd.2010.12.017, which is herein incorproated by reference in its entirety. In this regard, great global efforts are under way to develop efficient and affordable technologies for CO2 capture and sequestration. Among current and emerging technologies for CO2 capture, chemical-looping combustion (CLC) is a particular promising approach. Hossain M M. et al., Chemical-looping combustion (CLC) for inherent separations—a review, Chem Eng Sci 2008; 63:4433-51, doi:10.1016/j.ces.2008.05.028, which is herein incorporated by reference in its entirety. The first step of CLC involves, the reduction of metal oxide (also named as oxygen carrier, OC), in contact with a fuel in one reactor (fuel reactor, FR). The reduced OC is then transferred to the other reactor (e.g., air reactor (AR)) for replenishment of oxygen with an oxidizing agent which is typically air. Subsequently, the regenerated OC is conveyed back to FR, terminating the chemical loop. After the condensation of steam from the effluent of the FR, a high-pressure and high-purity stream of CO2 can be obtained without further need of expensive gas separation unit. CLC thus offers a uniquely economical and efficient route for clean, NOx-lean, flameless combustion of fossil or renewable fuels with the efficient production of sequestration-ready CO2 streams. Adanez J, et al., Progress in chemical-looping combustion and reforming technologies, Prog Energy Combust Sci 2012; 38:215-82, doi:10.1016/j.pecs.2011.09.001, which is herein incorproated by reference in its entirety.
Reference will now be made in detail to an embodiment of the present invention, an example of which is illustrated in the accompanying drawings.
Since there is no proven technology for CO2 sequestration with sufficient understanding of potential long-term impacts and effects, chemical-looping reforming of methane (CH4) with CO2 (CL-DRM) as shown in
Fuel reactor: MO+CH4→M+2H2+CO (R1)
Air reactor: M+CO2→MO+CO (R2)
Net reaction: CH4+CO2→2H2+2CO (R3)
Traditional DRM reaction: CH4+CO2→2H2+2CO (R4)
Utilizing CH4 as the fuel, CL-DRM produces a net reaction similar to the traditional CO2 reforming of CH4 (DRM), where the stoichiometric half-reactions are based on a metallic “M” OC. The traditional DRM is a promising route for producing synthesis gas (syngas, H2+CO) with a H2/CO ratio close to unity, which is more favorable for subsequent methanol and Fischer-Tropsch synthesis. Although CH4 conversion is not thermodynamically limited for DRM, high syngas yield and conversion of reactants are more favored at elevated temperature conditions. However, the strong endothermic nature of DRM would inevitably cause severe carbon deposition and high potential to particle sintering, both of which would lead to rapid catalyst deactivation. Xu L. et al., Catalytic CO2 reforming of CH4 over Cr-promoted Ni/char for H2 production, Int J Hydrogen Energy 2014; 39:10141-53, which is herein incorporated by reference in its entirety. In these regards, substantial research works have been devoted to develop more efficient catalysts with high resistance toward both coking and sintering problems.
Fe-based OCs are considered as a promising candidate for CLC applications, mainly for the low tendency to carbon formation and strong resistance to agglomeration, both of which are the two important factors help to maintain the activity of OC over continuous redox cycles. In addition, at any sulfur-containing environment with respect to gas concentration or operating temperature, Fe-based OCs can take absolutely no risks of the formation of both S2− and SO32− species. The large natural reserves and cost effectiveness of Fe-based OCs also make them suitable for CLC implementations. Nevertheless, Fe-based OCs have several drawbacks, which are the weak redox characteristics and relatively lower oxygen storage capacity (OSC), as well as their low reactivity toward gaseous fuel, especially for CH4. Cabello A, et al., Kinetic determination of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for use in gas-fueled Chemical Looping Combustion, Chem Eng J 2014; 258: 265-80, doi:10.1016/j.cej.2014.07.083, which is herein incorporated by reference in its entirety.
Supporting materials such as Al2O3 for Fe2O3 possesses better CH4 conversion. However, the formation of FeAl2O4 during the preparation of OC would inevitably slow down the reduction rate of OC when Fe oxides are reduced beyond Fe3O4. Kierzkowska A M, et al., Development of Iron Oxide Carriers for Chemical Looping Combustion Using Sol-Gel, Ind Eng Chem Res 2010; 49:5383-91, doi:10.1021/ie100046f, which is herein incorporated by reference in its entirety. Among various approaches, introduction of promoter additives can, to some extent, relieve this problem.
Benefiting from high oxygen mobility in the bulk and capacity of hosting large concentrations of vacancies in the structure at elevated reaction temperatures, La2O3, as a representative rare earth metal oxide, has been widely researched. Another excellent rare earth metal oxide, CeO2, has also been extensively researched. CeO2 can strongly enhance the stability of the supported metal phase and increase its reactivity in redox processes. Although ceria itself does not show significant activity for CH4 conversion nor does it significantly contribute to the overall oxygen storage capacity (OSC) of the carrier materials, this enhancement occurs.
In one embodiment, the simultaneous introduction of CeO2 and La2O3 as catalyst materials could not only enhance its reactivity toward CH4 oxidation, but also improve the reactivity of the reduced metal oxides toward CO2 splitting. For the present contribution, we aim to synthesize the proposed oxygen carriers and screen them in a fixed-bed reactor for the evaluation of reaction behavior. The down-selected OC is then subjected to successive cyclic reduction and oxidation operation. The reaction mechanism and kinetic study will be established in the future work using more systematic experimental results. In one embodiment, the simultaneous introduction of CeO2 and La2O3 as catalyst materials provide a dual component perovskite structure.
In one embodiment, it is proposed to utilize CO2 instead of commonly used air as the oxygen supply for replenishment of oxygen-depleted metal oxides (also named as oxygen carrier, OC). The supply of CO2 required by the air reactor (AR) can be divided into two portions. The major portion can be met by exhausted CO2 stream from a coal gasification process. The secondary supply can be satisfied by water-gas shift process that converts CO into CO2, in the process of which pure H2 can be obtained as a refinement product. The water-gas shift process is generally established after the CH4 oxidation in the fuel reactor (FR).
CO+H2O→CO2+H2 (R5)
The heat compensation required for both FR and AR can also be accomplished by introducing the high temperature exhausting CO2 stream at high temperature from the up-stream coal gasification process.
Simultaneously employ two rare earth oxides, CeO2 and La2O3, as catalysts to enhance the reactivity of Fe2O3—Al2O3 toward CH4 oxidation and its reduced form toward CO2 splitting, and meanwhile increase the reaction kinetics.
Use ultra-sonication and freeze-drying assisted co-precipitation method to synthesize OCs, which would assist in achieving better dispersion of metal precursors over the supporting materials.
In one embodiment, the complete oxidation of methane simultaneously employing two rare earth oxides, CeO2 and La2O3, as catalysts to enhance the reactivity of Fe2O3—Al2O3 toward CH4 oxidation is according to equation (R6).
The partial oxidation simultaneously employing two rare earth oxides. CeO2 and La2O3, as catalysts to enhance the reactivity of Fe2O3—Al2O3 toward CH4 oxidation is according to equation (R7).
LaxCe1-xFeO3+δ2CH4→δ2CO+2δ2H2+LaxCe1-xFeO3-δ
Oxygen Carrier (OC) regeneration or carbon capture using carbon while simultaneously employing two rare earth oxides, CeO2 and La2O3, as catalysts is according to equation (R8).
LaxCe1-xFeO3-δ+CO2→LaxCe1-xFeO3+CO (R8)
The overall reaction with Fe2O3—Al2O3 as the oxygen include a complete oxidation reaction according to equation (R9).
12Fe2O3+CH4→8Fe3O4+CO2+2H2O (R9)
The overall reaction with Fe2O3—Al2O3 as the oxygen include a partial oxidation reaction according to equation (R10).
Fe3O4+CH4→3FeO+CO+2H2 (R10)
Oxygen Carrier (OC) regeneration or carbon capture is according to equation (R11).
3FeO+CO2→Fe3O4+CO (R11)
Oxygen Carrier (OC) regeneration or carbon capture with 30Fe30Ce40Al as the oxygen carrier is according to equation (R12), (R13) and (R14).
Ce2O3+CO2→2CeO2+CO (R12)
3CeO2+Fe2O3+Fe→CeFeO3 (R13)
CeO2+FeO→CeFeO3 (R14)
Oxygen Carrier (OC) regeneration or carbon capture with 30Fe20Ce10La40Al as the oxygen carrier there is simultaneous presence of CeO2 and La2O3 is according to several reactions include equations R11 (in terms of Fe), R12 (in terms of Ce) and R17 (in terms of La).
In one embodiment, additional reactions during methane oxidation step is shown in (R16).
In equation (R16), t=the amount of removed oxygen from perovskite. The reaction represents only selective partial oxidation by the lattice, and not complete oxidation to CO2 and H2O by the surface adsorbed oxygen. However, owing to the stable perovskite structure of LaFeO3, the reduction kinetics present to be too slow.
In one embodiment, additional reactions during OC regeneration step are shown in equations (R17) and (R18).
CO2+La2O3→La2O2CO3 (R17)
La2O2CO3+C→La2O3+CO (R18)
Referring to
The following chemicals were used as the ingredients: Fe(NO3)3.9H2O (Sigma-Aldrich, ≧98%), Ce(NO3)3.6H2O (Sigma-Aldrich, 99.99%, trace metal basis), La(NO3)3.6H2O (Fluka, ≧99.0%) and γ-Al2O3 (Alfa Aesar, 99.5%, metal basis). At the beginning of the synthesis process, a predetermined amount of metal nitrates (on the basis of 0˜100 wt. % Fe2O3, 0˜50 wt. % CeO2 and 0+50 wt. % La2O3) and γ-Al2O3 support (0˜100 wt. %) were dissolved in de-ionized H2O and well-dispersed in diluted ammonium hydroxide (NH4OH) (EMD, 14.8 M), respectively. Subsequently, under ultrasonication (Qsonica, Q700), the nitrate solution was drop-wise injected into the excess NH4OH-containing γ-Al2O3 solution mixture to form uniform precipitates. The resulting mixture was then subjected to a quick-frozen process in liquid nitrogen for 5 min and placed into a freeze-dryer (Labconco, FreeZone) for H2O removal, which approximately takes 72 h. The as-made material was simply crushed, followed by calcination in air at 900° C. for 6 h. The final metal oxides obtained were then finely crushed and sieved to a diameter size less than 180 μm. In comparison, Fe2O3—Al2O3 with the absence of promoters was also prepared following the same procedure as described above.
The specific surface area of the composite OCs was measured through N2 adsorption/desorption at −196° C. using a Brunauer-Emmett-Teller (BET) analyzer (Quantachrome, Autosorb-iQ). The samples were outgassed at 200° C. under vacuum for 2 h prior to the analysis. The X-ray diffraction (XRD) patterns of OCs before and after extended cyclic operation were obtained with an X-ray diffractometer system (Rigaku, Smartlab) using Cu Kβ radiation at 40 kV and 40 mA. The 2θ scanning range was chosen from 10° to 90° and the scanning rate was 1°/min.
Temperature-programmed reduction of CH4 (CH4-TPR) experiments were performed on a fixed-bed reactor under a gas mixture of CH4/He (2 ml/min CH4 diluted in 20 ml/min He). The temperature window between 50 and 1000° C. with a constant heating rate of 5° C./min was used for each run. Prior to each test, the sample was pre-treated by flowing 20 ml/min He at 500° C. for 1 h. The feed and product streams were monitored on-line using a mass spectrometer (Hiden, HPR-20 QIC) and He as the internal standard.
The successive cyclic CL-DRM experiments were carried out in the same fixed-bed quartz reactor as used for CH4-TPR (4 mm in ID and 54 cm in length), which was vertically mounted inside a tube furnace (Carbolite, TVS).
On-stream conversions of CH4 (XCH
Selectivity towards CO2, CO and H2 was calculated via the following equations:
Where nCH
while nCH
General Characteristics of Oxygen Carriers—Specific Surface Area:
The specific surface area (SSA) of the composite OCs is summarized in Table 1. It is noted that the SSA of Fe2O3—Al2O3 has negligible change when 30 wt. % CeO2 is introduced. As La2O3 is added as the secondary catalyst, the SSA of Fe2O3—Al2O3 has a remarkable increase by 319.97%. Further increasing weight loading of La2O3, along with correspondingly decreasing CeO2 content, could result in slight loss in the SSA of Fe2O3—Al2O3.
X-ray diffraction: The bulk phases of fresh Fe2O3—Al2O3 (302), 30Fe30Ce40Al (304) and 30Fe30La40Al (306) OCs were determined by X-ray diffraction (XRD) as illustrated in
The CH4-TPR patterns of Fe2O3—Al2O3 (402) and 30Fe30La40Al (404) are presented in
Isothermal oxidation of CH4 was performed to explore the reactivity of the fresh samples toward CH4 conversion in 60 min. The profiles of composite OCs with respect to CH4 conversion, selectivity toward H2, CO and CO2 are presented in
In
Referring to
Referring to
Isothermal CO2 splitting: Isothermal CO2 splitting was performed after pre-reducing the fresh OCs with H2 at 500° C. for 1 h, therefore the reactivity of OCs in their reduced form toward CO2 can be evaluated in the absence of the influence of carbon deposition from CH4 pyrolysis. The profiles of 30Fe30Ce40Al (542) and 30Fe30La40Al (544) are presented in
The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and/or configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and/or configurations of the disclosure are possible, utilizing, alone or in combination, one or more of the features set forth above or described in detail below.
Embodiments herein presented are not exhaustive, and further embodiments may be now known or later derived by one skilled in the art.
To avoid unnecessarily obscuring the present disclosure, the preceding description may omit a number of known procedures and/or compositions. This omission is not to be construed as a limitation of the scopes of the claims. Specific details are set forth to provide an understanding of the present disclosure. It should however be appreciated that the present disclosure may be practiced in a variety of ways beyond the specific detail set forth herein.
Also, a number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.
The foregoing discussion has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing description for example, various features of the disclosure are grouped together in one or more aspects, embodiments, and/or configurations for the purpose of streamlining the disclosure. The features of the aspects, embodiments, and/or configurations of the disclosure may be combined in alternate aspects, embodiments, and/or configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claims require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed aspect, embodiment, and/or configuration. Thus, the following claims are hereby incorporated into this description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover, though the description has included a description of one or more aspects, embodiments, and/or configurations and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative aspects, embodiments, and/or configurations to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
The present application claims the benefits of and priority, under 35 U.S.C. §119(e), to U.S. Provisional Application Ser. No. 62/159,923, filed May 11, 2015; the above-identified application being fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62159923 | May 2015 | US |