Storm water which runs off land cleared of vegetation, such as from roads, parking lots, construction sites, and other developed sites, typically exhibits a high degree of contamination due to the presence of suspended sediment, metals, oil, and other chemicals and particulate matter. Stringent water quality standards, enforced under the Clean Water Act, have created the need to purify contaminated storm water. In addition, many cities and states have environmental regulations that require municipalities and developers to utilize Best Management Practices to meet water quality standards. These regulations mandate that contaminated water must be collected and treated to reduce contamination before discharge into the environment, such as into streams and vegetated areas.
Catch basin insert devices are known in the art and are used in conjunction with standard catch basins. These devices are typically made of filter mesh (metal or fabric) and a frame. Their function is to physically capture trash and debris before it enters the sump or outlet of the catch basin. When the devices are employed, all water that is to be treated must be filtered through the mesh. Over time or during major storm events, leaves and debris accumulate in the filter, thus causing premature clogging. Conventional drain systems lack adequate means to remove contaminants that are too small to be captured by the filters, such as bacteria and nutrients from storm water.
A system, method, and apparatus for removing a contaminant from storm water are described. Embodiments of a catch basin insert include a system, method, and apparatus for dosing a water treatment additive, such as chitosan, into storm water. The insert may be used in conjunction with another downstream collection and/or filtering device. By dosing a water-treatment additive, such as chitosan, into storm water, a high rate of removal efficiency is achieved. A system for removing a contaminant from storm water includes a catch basin for receiving storm water and a catch basin insert positioned in the catch basin in the path of storm water entering the catch basin. The insert includes a water-soluble water treatment additive contained within a porous shell. The insert is positioned at a height above which the level of storm water does not rise to prevent or minimize the treatment additive from dissolving. The system further includes a filter positioned downstream from the insert for filtering a contaminant flocculated by interaction with the water-soluble water treatment additive. Thus, the contaminant is removed from the storm water.
In another aspect, a method for flocculating a contaminant in storm water includes contacting storm water with an insert within a catch basin. The insert includes a water-soluble water treatment additive contained within a porous shell. According to this method, the insert is positioned in the catch basin in the path of storm water entering the catch basin and at a height above which the level of storm water does not rise in the catch basin. When storm water contacts the insert, a dose of the water-soluble water treatment additive is dissolved in the storm water and binds to a contaminant in the storm water to provide flocculated contaminant.
In another aspect, an insert for removing a contaminant from storm water is provided. The insert comprises a porous, elongate shell having a plurality of segmented pouches along the length of the shell. At least one pouch contains a water-soluble water treatment additive. Two or more adjacent pouches are separated by a strip of shell material to permit cutting the shell between pouches into a desired length without releasing the water-soluble water treatment additive from the pouches. In this embodiment, the strip of shell material may be bordered by two lines of stitching to separate the two adjacent pouches and leave a space between the lines of stitching where the insert may be cut. Alternatively, the stitching may be replaced with an adhesive or any other bonding method. In one embodiment, each pouch contains an opening closed by a resealable hook and loop fastener.
A preferred water-soluble water treatment additive contains chitosan. The insert may comprise chitosan, a chitosan salt, and other additives or fillers.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
After contaminated storm water 100 has passed over the catch basin insert 200, storm water with water-soluble water treatment additive and flocculated contaminant 300 passes through a filter 400 positioned downstream from the catch basin insert 200. The filter 400 removes at least some of the flocculated contaminant from the storm water, resulting in storm water without contaminant 500 that may be released into rivers and streams. The filter 400 may be a radial filter, sand bed filter, settling tank, biological filter, water press, centrifuge, structural bulks, such as a detention vault, or proprietary devices, such as the Downstream Defender® by Hydro International (Portland, Me., USA) or StormFilter by Stormwater 360™ (Scarborough, Me., USA), or any other proprietary or non-proprietary downstream filtering means, including but not limited to Storm Water Management Practice (SMP) or Best Management Practice (BMP) filtering means.
With reference to
Catch basin 205 may be an underground structure, typically made from concrete or a similar material, that collects storm water run-off and routes it through an underground pipe 225. The catch basin 205 may also be used between sections of a pipe system. The catch basin 205 has an upper section 275 and a lower section 280. The catch basin 205 includes four walls extending from the lower section 280 to the upper section 275 and a base at the lower section 275 in order to form a box with an opening at the top. The catch basin 205 is typically fitted with a grate 210 or other grilled device for catching large objects at the upper section 275. The grate 210 rests on a grate holder 212 seated on top of two or more catch basin walls 230 or formed by the walls themselves. The outlet pipe 225 passes through the wall 230 into the catch basin 205 and serves to drain the catch basin 205. The pipe 225 is positioned at an elevation that is below the lower portion of the insert 220, so that the insert 220 is prevented from continuously sitting in water. This prevents the water-soluble water treatment additive inside the insert 220 from dissolving. Alternatively, more than one outlet pipe may be connected to one or more basin walls. Typically, there is a storage volume called a sump 235 defined by the walls and base of the catch basin 205 and below the outlet pipe 225. The outlet pipe 225 is at an elevation above the base 250 of the basin so when the volume of storm water 240 in the catch basin 205 exceeds the sump 235 volume, the overflow drains through the pipe 225. Sediment and nonbuoyant materials 245 remain at the bottom of the sump 235 and can be removed periodically. The surface 265 around the catch basin 205 may be dirt, rocks, concrete and/or similar materials, as may be the material surrounding the catch basin walls below the surface 270.
Catch basin 205 may be used to gather storm water run-off from surfaces such as streets or parking lots. Catch basin 205 can be designed for locations where it catches run-off from all directions, e.g., in the middle of a parking lot, or for locations where run-off travels from a more focused direction, e.g., a curb-inlet configuration on the side of a street. Catch basin 205 is illustrated as having a rectangular configuration, but other embodiments can have other shapes, including round. Generally, dimensions of catch basin 205 can be about two to six feet wide, about two to six feet long, and about two to six feet high. The surface surrounding the top of the catch basin 205 can be sloped to carry water to the catch basin 205 so that the water falls through the grating 210 of the sides. An insert 220 is positioned below where the water falls into the catch basin 205, preferably on the sides where the water passes from the surface into the catch basin 205.
One embodiment of an insert 220 is shown in
The sides 340 of each pouch 315 form openings 325 along the top of the pouch 315. The individual pouches 315 may be closed by a resealable hook and loop fastener 330 or other means allowing for repeated opening and closing of the pouches 315. The top side sections 340 also create a rigid strip lengthwise.
As shown in
The insert outer shell 310 is porous to allow water to enter and leave the shell 310 to contact the additive 305. The shell 310 should not have pores so large that they permit escape and rapid dissolution of additive 305. Typically, the diameter of pores is from 1 μm to 2000 μm, such as from 50 μm to 1000 μm, or from 100 μm to 800 μm. Representative examples of materials useful for making the porous shell 310 include natural and/or synthetic, woven or non-woven materials. Natural materials include animal and vegetable fibers. Exemplary animal fibers include silk, sheep wool, mohair, llama wool, alpaca, vicuña, camel hair, and horse hair. Exemplary vegetable fibers include cotton, jute, kapok, flax, hemp, Manila hemp, istle, ramie, sisal hemp, and Spanish moss. Exemplary synthetic materials include nylon, polyolefins, polypropylene, and polyester. Blends of any of the foregoing natural and/or synthetic fibers are also useful for making the porous shell 310.
An example of a commercially available woven fabric useful for making the porous shell 310 is a blend of about 65% polyester and about 35% cotton, which is referred to as a “poplin weave” and is supplied by MYBAG of Lynnwood, Wash., U.S.A. Another example of a useful synthetic knitted fabric is known by the designation Geoknit, which is manufactured by Syfilco Industrial Knitting, 320 Thames Road East, Exeter, Ontario, Canada.
Some embodiments of the porous shell 310 are stretchable. Some embodiments of the porous shell 310 can stretch up to 110%, up to 125%, or up to 150% of their unstretched length. Making the porous shell 310 from a stretchable material allows a portion of the additive 305 to be squeezed out of the shell 310 through its pores under certain conditions. Without intending to be bound by theory, it is hypothesized that at higher water flow rates, hydraulic pressure may cause the insert 220 to stretch. In this situation, less than fully dissolved additive 305 may be squeezed out of the insert 220 as pore size increases due to stretching. Further, hydraulic shear stress may cause the segmented insert 220 to articulate in an agitated manner. This agitation may cause momentary and localized increases in internal pressure in parts of the insert 220, resulting in squeezing of additional additive 305 through the porous shell 310. If the hydraulic pressure within the insert 220 rises to a level that might tear the shell 310, holes can be punched in the shell wall 310 to relieve the pressure.
As shown in
Referring to
The position of the insert 220 at the upper section 275 of the catch basin 205 hanging from or next to one or more catch basin walls 230 facilitates the contact of storm water 100 entering the catch basin 205 with the insert 220. Preferably, some of the storm water 100 makes contact with the insert 220. The volume of storm water 100 that contacts the insert 220 dissolves a dose of additive 305 sufficient to flocculate a portion of contaminants in the incoming water, but the bulk of the incoming storm water 100 and associated debris may not pass through the insert 220. The insert 220 is positioned near the upper section 275 of the catch basin 205 and is not fully or partially submerged or immersed in the sump water 235 (which would result in premature dissolution of additive 305). Preferably, the insert 220 should be positioned in the catch basin 205 at a height above which the level of storm water 240 does not rise. This location prevents additive 305 from dissolving unnecessarily when not in contact with entering storm water 100. Placement of the insert 220 near the upper section 275 of the catch basin 205 is also advantageous for maintenance purposes as the insert 220 can be visually inspected without requiring lifting of the grate 210. When the insert 220 needs replacement, it can be removed and a new one installed without the need for confined-space entry of the catch basin 205.
With reference to
Water-soluble water treatment additive 305 may bind non-covalently to one or more types of contaminants in water to form water-insoluble additive/contaminant complexes. Water-soluble water treatment additive 305 may be used, for example, in a dry form (e.g., powder) or in the form of a gel or paste. The choice of additive 305 involves consideration of such factors as the identity of the principal contaminant(s) in the water to be treated, and the affinity of the additive 305 for the principal contaminant(s). Examples of contaminants typically found in storm water include bacterium, soil particles, metal ions, phosphates, orthophosphates, and oil, such as lubricating or fuel oil. By way of non-limiting example, additives 305 useful in the practice of the present invention include chitosan salts. Again by way of example, additive or additives 305 useful in the practice of the present embodiments include one or a blend of cationic or anionic forms of N-halochitosans, gums, starches, and polyacrylamide (including copolymers of acrylic acid and acrylamide, and copolymers of acrylamide and quaternary ammonium compounds). Mixtures of different individual additives 305 can also be used, such as a mixture of a chitosan salt and an N-halochitosan or a mixture of any two or more of the additives described above. Some inserts 220 may include both anionic and cationic additives 305. Inserts 220 may comprise one or more of the above-mentioned additives. Further additives useful as additive 305 are described in U.S. Pat. No. 6,749,748, issued on Jun. 15, 2004, expressly incorporated herein by reference in its entirety.
With respect to solubility in water, under normal operating conditions additives 305 should dissolve at a rate that permits a reasonable working lifetime. Thus, for example, some embodiments of insert 220 can treat 500,000 gallons of storm water before all of the additive 305 is dissolved. Chitosan salts useful as flocculants in the practice of the invention typically have a molecular weight in the range of from 20,000 Daltons to two million Daltons, such as from 50,000 Daltons to one million Daltons, or such as from 100,000 Daltons to 900,000 Daltons. Chitosan salts useful in the practice of the invention typically have a percentage deacetylation of from 50% to 100%, such as from 60% to 95% or from 70% to 90%. Some chitosan salts useful in the practice of the embodiments are a salt of chitosan with a C1 to C18 mono- or polycarboxylic acid, such as chitosan acetate or chitosan lactate. By way of non-limiting example, chitosan salts useful in the practice of the embodiments include chitosan glutamate, chitosan hydrochloride, chitosan succinate, chitosan fumarate, chitosan adipate, chitosan glycolate, chitosan tartrate, chitosan formate, chitosan malate, and chitosan citrate.
Other useful additives include anionic or cationic forms of any of the following compounds: N-halochitosans, gums, starches, and polyacrylamides. Exemplary N-halochitosans useful in the practice of the embodiments are polymers that include about 1% to about 35% 2-deoxy-2-acetamidoglucose monomeric units, about 1% to 90% 2-deoxy-2-aminoglucose monomeric units, and about 8% to 98% 2-deoxy-2-haloaminoglucose monomeric units, wherein the haloamino group is chloroamino or bromoamino or iodoamino. Exemplary cationic gums include polysaccharide gums, such as cationic guar, which is neutral guar that has been chemically modified to contain quaternary amines. Anionic polysaccharides (both naturally occurring and chemically produced through chemical derivitization of neutral polysaccharides) are useful as additives 305. Examples of anionic polysaccharides include sodium or potassium alginate, carrageenans, carboxymethylcellulose, carboxymethylchitosan, locust bean gum, dextran sulfate, succinylated starch, succinylated chitosan, and pectins. Inorganic anionic additives 305 include polyphosphates, such as hexametaphosphate.
The contaminant flocculated by the water-soluble water treatment additive 305 and filtered from the storm water 100 may be a bacterium, including but not limited to fecal coliform, other coliforms, cryptosporidium or Guardia. Alternately, or in addition to bacterium, the contaminant may be one or more of the following: Total Suspended Solids (TSS), including soil particles, organic materials, and/or other solids; metals (suspended or dissolved); nutrients including phosphates, orthophosphates, nitrogen and nitrates; oil; hydrocarbons; and detergents. The additive 305 may flocculate one type of contaminant or multiple types.
While illustrative embodiments have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
This application claims the benefit of Provisional Application No. 60/758,679, filed Jan. 13, 2006, the disclosure of which is hereby expressly incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60758679 | Jan 2006 | US |