This invention relates, generally, to containers for storing and dispensing liquids. More particularly, the invention relates to containers having an integral pouring spout portion which is operable to interact with and activate closure members in fuel tank filler necks.
Automotive products such as fuel additives are usually provided in the form of a fluid and typically are poured into the fuel tank of a motor vehicle by consumers. Frequently, fuel additives are provided in bottles which include a relatively long neck or spout which can be inserted into the filler neck of a fuel tank. Recently manufacturers of motor vehicles have begun equipping their fuel tanks with filler necks which include spring loaded interior flaps or other closure members. The purpose of these structures is to seal the fuel tank so as to prevent escape of fumes and limit unauthorized tampering with, or theft of, fuel. These features are configured so that insertion of a fuel pump nozzle into the filler neck will activate and open the spring loaded closure members. However, consumers have come to find that presence of the closure members makes it very difficult to pour fuel additives in to the tank or remove the fuel additive bottles from the fuel tank filler necks. In some instances the spout portions of prior art bottles may be insufficiently long, or of a sufficient diameter, to activate the closure members. In other instances, features such as threading, pouring lips or the like found on the spout can actually interfere with the operation of the closure members, possibly causing expensive-to-repair damage to them. In an attempt to overcome the shortcomings of prior art additive packages, consumers have been utilizing screwdrivers, dowels, knife blades, and like items to open the spring loaded closure members and allow for introduction of a fuel additive. As would be expected, in addition to being complicated and possibly damaging the closure members, such operations often result in spillage of the additive material.
As will be explained herein, these shortcomings may be overcome by containers for fuel additives and the like which are configured and operable to properly activate closure members associated with a fuel tank so as to allow an additive product to be introduced thereto. Furthermore, the discussion herein addresses other short comings such as providing for the fluid-tight closure of the packaging without comprising its operation and improving withdrawal of the additive bottle from the filler neck system. These and other advantages of will be apparent from the drawings, discussion, and description which follow.
In accordance with various embodiments disclosed herein a sealable, capless fuel-tank filler system bottle is provided. The bottle includes a storage portion defining an interior volume to retain a liquid therein. The bottle also includes a pouring spout extending from the storage portion and defining a throat in fluid communication with the interior volume of the storage portion. The pouring spout defines an opening connected to the throat for discharging the liquid. The pouring spout may including an external coupling mechanism to secure a cap thereon. The pouring spout may also define a clearance feature on the exterior of the pouring spout that interrupts the coupling mechanism. The clearance feature may be sufficiently smoother or lower than the external coupling mechanism to avoid catching on an interior protrusion within a fuel-tank filler neck.
In accordance with various embodiments, the bottle may further include a cap that engages the coupling mechanism to close the opening. The cap may engage the coupling mechanism, fluidly sealing the spout opening. A locking cap may be used that is placed on the end of a pouring spout. The coupling mechanism may substantially surround the exterior of the spout. The coupling mechanism may have a radial high portion and a radial low portion that is disposed proximally from the radial high portion. The radial high portion may tend to catch on an internal portion of the fuel-tank filler neck when aligned therewith. The bottle may be rotated to align the clearance feature with the internal protrusion thereby releasing the radial high portion from the protrusion allowing the bottle to be withdrawn axially.
In accordance with various embodiments, the clearance feature may extend beyond the coupling mechanism away from the opening. The spout may include a first portion that is proximal to and adjacent the coupling mechanism. The clearance feature may extend into the first portion to provide tactile feedback when the bottle is rotated within a filler neck and an internal protrusion of the filler neck enters the clearance feature. The first portion may have an external diameter similar to that of the coupling mechanism. The clearance feature may be oriented axially to permit withdrawal of the spout in a substantially straight axial direction from the filler neck. The clearance feature may have an external surface that has a radial height lower than the coupling mechanism. The spout has an axis, and the clearance feature has an external surface with a diameter less than the spout measured about the spout axis. The clearance feature may include a flat external surface. The clearance feature may include a plurality of clearance features. The clearance features may be disposed on diametrically opposite sides of the spout. The clearance features may include four clearance features.
In accordance with various embodiments, the coupling mechanism may include threads, and the clearance feature may interrupt the threads along an axial strip. The threads may have peaks and valleys, and the clearance feature may have an external surface that is radially lower than the peaks. The external surface of the clearance feature may extend radially lower than the valleys. The threaded portion may occupy between about 5% and 20% of the length of the pouring spout portion. The clearance feature may extend proximally beyond the threads. The coupling mechanism is disposed adjacent the opening. The clearance feature surface may be substantially smooth and protrusion free. The container portion may contain a fuel additive.
In accordance with various embodiments, a method for the delivery of a fluid product through a fuel-tank filler neck may be provided. The method may include inserting a pouring spout of a bottle with the pouring spout extending from a storage portion, with the pouring spout having a throat in fluid communication with the interior volume of the storage portion. The pouring spout may define an opening connected to the throat for discharging the liquid. The pouring spout may include an external coupling mechanism to secure a cap thereon and define a clearance feature on the exterior of the pouring spout that interrupts the coupling mechanism. The clearance feature may be sufficiently smooth or lower than the external coupling mechanism to avoid catching on an interior protrusion within the fuel-tank filler neck. At least a first door within the filler neck may be engaged with the pouring spout. The fluid product may be emptied into the fuel-tank. The bottle may be withdrawn from the filler neck of the fuel-tank. The bottle may be rotated in response to encountering an interference between the coupling mechanism and the filler neck. Rotation may be stopped in response to placing the clearance feature proximal to a portion of the filler neck causing the interference. The bottle may be continually withdrawn from the filler neck of the fuel-tank after the interference has been avoided.
The subject matter of the disclosure herein may be described and implemented in various configurations and embodiments, and some particular embodiments may be described for purposes of explanation and illustration. However, it is to be understood that other embodiments are within the scope of the invention.
The present disclosure relates to a novel and advantageous fuel additive bottle that can be used in a capped and capless fuel system. The bottle (e.g., a fuel additive bottle) can include a container or body that is configured to hold a liquid, and a neck portion providing a spout extending from and in fluid communication with container. The bottle is preferably closed, except via the spout, to retain and seal the liquid therein until the spout is opened. The pouring spout may project from the bottle and has an interior surface defining a fluid flow passage (i.e. a throat) in communication with the interior volume of the bottle. The pouring spout may generally include an exterior surface which may define a generally cylindrical member (e.g. cylinder, oblong cylinder, frustum, conical or other design) having a smooth surface. The spout may have a length and diameter sufficient to activate filler neck closure members (e.g. flaps, valves, gates, or other closure members). At least a portion of the spout may be devoid of features which could otherwise increase the difficulty of removing the spout from the closure mechanism in a fuel tank filler neck. An example of a feature that may increase the difficulty of removing the spout from the closure mechanism may be threads at the end of the spout. As such, the threads may be formed such that they generally do not interfere with the closure member. For example, a portion of the spout may have a gap in the feature that protrudes from the lowest common surface, e.g., threads on the spout may be di-continuous along a longitudinal line. A portion of the surface may be consistent with or gradually taper from the rest of the surface of the spout. The threads themselves may also have a flat outer profile such that they limit interference with the closure member.
As a result of the combination of features discussed herein, the spout can readily be introduced and removed from the filler neck of a fuel tank. While the spout may be cylindrical and non-curved, it is to be understood that the spout may be slightly tapered with regard to its central axis, e.g. the spout may have a frustum shape. The filler spout is configured to activate and not damage, flaps, valves, or other closures members which may be included in the filler neck of a fuel tank. In that regard, its configuration may generally mimic the size and shape of a nozzle spout on a gasoline or diesel fuel pump similarly configured to insert into and activate internal flaps, valves, gates or other closures members on filler necks of vehicle fuel tanks. More specifically, the filler spout is configured to insert into and withdraw from a capless fuel system.
The sealable bottle may include a cap which is configured and operable to removably engage the spout and establish a fluid-tight seal which closes the fluid flow passage. A locking cap may be used that is placed on the end of a pouring spout. The sealing features may be such that the sealing function of the spout does not impede the activation of any closure members and the like, which are incorporated into the filler neck of the fuel tank. While the bottle is described herein as being a sealable bottle, other bottles without seals may likewise utilize the various structures and methods described herein.
Referring to
In accordance with various embodiments, a neck may extend from the storage portion 10. A transition portion 11 may connect the storage portion 10 to the neck. The neck may have a smaller cross section than the storage portion 10 in order to allow access into a filler system or mere concentrate the flow of fluid. The neck may include a pouring spout portion 12. The pouring spout portion 12 may comprise only a portion of the neck or as illustrated in
In accordance with various embodiments, the pouring spout portion 12 may be an elongated engagement nozzle operable to enter into a fuel filler system. The pouring spout portion 12 may be sufficiently long to extend into the fuel filler system and activate buttons for opening access doors. The pouring spout portion 12 may define a fluid flow passageway 14 or a through, which defines an opening 13 through one end of the bottle 5. The fluid flow passageway 14 may be in fluid communication with the container 15 of the bottle 5. The pouring spout portion 12 may be generally cylindrical in shape and is not significantly curved along its longitudinal axis. In various embodiments, the pouring spout portion 12 mimics the size and shape of a fuel filler passage such that the pouring spout portion 12 may be inserted into the fuel filler passage. The length dimension of the pouring spout may be greater than its largest diameter. In general, the pouring spout portion 12 may have an exterior surface which extends from the transition 11 of at least 1 inch and in certain instances the pouring spout portion 12 may have a length of at least 1.5 inch, a length of at least 2 inches, a length of at least 3 inches, a length of at least 4 inches, or any length between 1 and 4 inches or greater than 4 inches. For example, the length may be about 2.5 inches. The exterior diameter of the surface of the spout is generally in the range of about 0.75-1.25 inch, although it is to be understood that in particular application these dimensions may vary. For example, the diameter may be about 0.8 inches. In specific instances, the length of the pouring spout portion 12 is greater than its largest diameter, and in specific instances at least twice its largest diameter or 3 times its largest diameter.
In accordance with various embodiments, the bottle 5 may include a cap 16 which is configured to engage the pouring spout portion 12 and establish and seal which closes the fluid flow passageway 14. The pouring spout portion 12 may include an external mechanical coupling mechanism operable to secure the cap 16 thereon. The mechanical coupling mechanism may have a feature on the exterior surface of the pouring spout portion 12 that could interfere with the withdrawal or insertion of the bottle 5 into the fuel filler neck. The feature may be defined as high and low points on the exterior surface of the pouring spout portion 12 with the low point proximal to the high point. In various other embodiments, as discussed below, the mechanical coupling mechanism may be any coupling device operable to engage with a cap or other closure. Examples of such coupling mechanisms may include threads, snap top ridges, child-seal closures, or the like. As illustrated in
In accordance with various embodiments, a seal, such as a tear-off foil or membrane seal may further be disposed atop the pouring spout portion 12 so as to close the passageway 14. Such a membrane or foil type seal, in addition to enhancing the integrity of the closure, provides indication of tampering. Any other technology known for improving the seal may additionally be applicable.
As the mechanical coupling mechanism 20 (e.g. threads 20) may be positioned at the end of the pouring spout portion 12 immediately adjacent to opening 17. The mechanical coupling mechanism 20 may be configured such that it does not significantly interfere with the closure mechanism in a fuel tank filler neck. Specifically, the mechanical coupling mechanism 20 may be operable to engage the cap 16 on the end of the pouring spout portion 12 and may be formed such that the mechanical coupling mechanism 20 generally does not interfere with the closure member.
In accordance with various embodiments, the mechanical coupling mechanism 20 (e.g. threads 20) may extend over only a portion of the length of the pouring spout portion 12. For example, the threads 20 may extend about 10% of the length of the pouring spout portion 12; the threads 20 may extend about 20% of the length of pouring spout portion 12; the threads 20 may extend about 30% of the length of the pouring spout portion 12; the threads 20 may extend about 40% of the length of the pouring spout portion 12; or the threads 20 may extend about 50% of the length of the pouring spout 12. In other examples, the threads 20 may extend in any ratio of 10-50% of the length of the pouring spout portion 12. As shown in
As shown in
In accordance with various embodiments, the clearance element 30 may recess inwardly from the exterior surface of the bottle 5 or the outer most portion of the coupling mechanism. The clearance element 30 may be a recess that is formed toward the centerline (shown in the drawings as cl) of the sealable bottle 5. The clearance element 30 may form at least a portion of the outer surface of the bottle 5. In the portion of the outer surface of the bottle 5 formed by the clearance element 30, this surface may be radially positioned at or closer to the centerline of the bottle 5 than the coupling mechanism. Any outward extension from the interior of the bottle 5 (e.g. the centerline) may be minimized beginning at the portion of the clearance element 30 closest to the base 9 and proceeding to the opening 17. The end of the bottle proximal to the opening may have the coupling mechanism, e.g. threads 20, which extend outwardly from the interior of the bottle and then recess inwardly between each adjacent thread and again extend outwardly at the next thread. In various embodiments discussed herein, the clearance element 30 may have no threads. Or, the clearance element 30 may have reduced threads relative to other thread portions of the bottle. The clearance element 30 may have no or limited protrusions, steps, flares, or features that extend outwardly from the interior of bottle 30. The absence of or minimization of the outwardly extending features is relative to the longitudinal direction of the body (i.e. the direction running along the centerline of the body). This longitudinal direction may also be described as the surface of the bottle along a single line that progresses linearly along the exterior surface from the base 9 to the opening 17. The spout portion 12 may have at least one longitudinal line that does not have outwardly extending features, but instead any change in the surface may be toward the interior of the bottle 1 (e.g. the bottle may step, taper, or otherwise contract toward the interior and not enlarge).
In accordance with various embodiments, the clearance portion may extend beyond the mechanical coupling mechanism and away from the opening toward the base. As shown in
As illustrated in
In accordance with various embodiments, as shown in
The clearance element 30 may be defined by any of a variety of surfaces that reduce or eliminate interference with a capless filler system. In various examples, the surface may be flat, concave, or convex. In various examples the surface may have any profile operable to have a longitudinal profile without or with minimal outward protrusions.
In accordance with various embodiments, the clearance element 30 may extend to the root of the thread or less. For example, the clearance element may be tangential with the surface of the neck of the bottle defined by the root of the thread. In other embodiments, the clearance element 30 may extend below the threads into the wall of the bottle 5. For example, the clearance element may thin the wall of the bottle proximal to the clearance element 30.
As shown in
The mechanical coupling mechanism 20 on the open end of the bottle 5 may have a tendency to interfere with interior features of the capless system 1 upon withdrawal of the bottle 5 from the capless system 1. These interior features may include the door 2 or the locking mechanisms 4a or tabs 4b. The clearance element 30 may be operable to avoid these interferences. For example, in embodiments in which the mechanical coupling mechanism 20 includes a threaded portion and these threads engage with and interfere with the door 2 at, for example, interference point X proximal to the free end of the door 2, the bottle may be rotated such that the clearance element 30 is proximal to that same interference point X. As the clearance element 30 may have less of an outwardly protruding feature or fewer outwardly protruding features than the mechanical coupling mechanism 20 does, the clearance element 30 may slide past the door 2 with either less or no interference as compared to the mechanical coupling mechanism 20. Providing a broad flat (also concave or convex) surface may better allow the interference point X to avoid the mechanical coupling mechanism 20. If the locking mechanism 4a or the tabs 4b are interfering with the removal of the bottle 5, the bottle 5 may be likewise turned until the clearance mechanism is proximal to these interference points and thus allowing the bottle to be more easily removed.
Various methods of using the fuel additive bottle described herein may be employed. For example, a method for the delivery of a fluid product through a capless filler neck of a fuel-tank may include inserting a pouring spout portion of a bottle into the capless filler system. The pouring spout portion may extend from a storage portion (i.e. a fluid reservoir). The pouring spout portion having an interior fluid flow passage in communication with the interior volume of the bottle. The fluid flow passageway may define an opening in the spout. The spout may include a cap attachment mechanism such as threads. The spout may also include a clearance feature proximal to the opening on the spout. The spout may engage at least a first door within the capless filler neck with the pouring spout portion. The fluid product contained within the bottle may be emptied into the fuel-tank. The bottle may be withdrawn from the capless filler neck of the fuel-tank. Upon withdrawal the bottle may catch on an interference. In response to interference between the engagement mechanism and the capless system, the bottle may be rotated. Ideally the bottle is operable to be pulled out with minimal rotation. The number and dimensions of the clearance feature may influence the amount of rotation that it takes to avoid the interference. The rotation may be stopped in response to placing the clearance feature proximal to a portion of the filler neck causing the interference. Once the clearance feature is proximal to the interference location the bottle may be completely withdrawn from the capless filler neck of the fuel-tank.
Other bottle configurations may also be applicable in addition to the embodiments discussed herein or alternatively to the embodiments discussed herein. Examples of applicable embodiments may be disclosed in U.S. application Ser. No. 13/841,317 entitled “Fuel additive bottle for a capless fuel system,” which is hereby incorporated by reference. As disclosed therein, the cap member engages an outer surface of the spout by means of threads, but other embodiments may also be implemented in which the cap engages the spout by means of threads internal to the spout. In such instances, the spout retains a smooth exterior surface devoid of any features which could interfere with its activation of closure members associated with a fuel tank filler neck.
While the foregoing shows use of threaded couplers (e.g. the threaded portion 20,22) between the cap, and the bottle, it will be readily apparent to those of skill in the art that other coupling arrangements such as locking tabs, flanges, compression fittings, and the like may be adapted for use in the present invention. Other coupling device may likewise be incorporated such that the coupling device maintains an exterior surface of the pouring spout such that it does not interfere with the closure mechanism. The clearance feature 30 may be situated within any coupling device. In such an embodiment, less material protrudes outside of the surface of the pouring spout, due to the clearance mechanism making it suitable to engage the closure mechanism. In other embodiments, the pouring spout may include a child-proof caps which may include a device that receives a push down and twist action to release the cap from the bottle. The clearance mechanism may apply to these features as well.
Also, while the foregoing description and discussion describes the pouring spouts as being non-curved along its length axis, it is to be under stood that in various embodiments of the invention the non-curved pouring spout may join the bottle through a curved, corrugated, or flexible connection so as to accommodate space limitations, bottle configurations, aesthetics, or the like. The straight, feature-free portion of the assembly may be considered the pouring spout or in other embodiments the entire portion may be considered the pouring spout.
The bottle assemblies of the present invention may be fabricated from materials typically employed for packages of this type. In most instances, the packaging will be fabricated from polymeric materials, and in particular, thermoplastic polymeric materials such as polyethylene, polypropylene, and the like. The packaging of the present invention may be readily manufactured by conventional forming techniques such as blow molding, rotational molding, injection, extrusion, and the like. In some instances, the bottle assemblies, or at least portions thereof, may be fabricated from other conventional materials such as metals, glass, and the like used either singly or in combination. All of such embodiments are within the scope of the present invention.
In view of the teaching presented herein, other modifications and variation of the invention will be apparent to those of skill in the art. The foregoing drawings, discussion, and description are illustrative of some specific embodiments of the present invention but are not meant to be limitations upon the practice thereof. It is the following claims, including all equivalents, which define the scope of the invention.
This application is a continuation application that claims the benefit of priority to U.S. application Ser. No. 14/818,238, filed Aug. 4, 2015 (U.S. Pat. No. 9,878,898, issued on Jan. 30, 2018), entitled “Catch Releasing Capless Fuel-filler Bottle,” which is a non-provisional application that claims priority pursuant to 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 62/033,103, filed Aug. 4, 2014, entitled “Bottle with Integral Filler Spout,” and U.S. Provisional Patent Application No. 62/059,827, filed Oct. 3, 2014, entitled “Capless Fuel Filler Bottle,” all of which are each hereby incorporated herein by reference their entirety.
Number | Name | Date | Kind |
---|---|---|---|
135430 | Howson et al. | Feb 1873 | A |
1279695 | Frank et al. | Sep 1918 | A |
1351496 | Spooner | Aug 1920 | A |
1577020 | Hammer et al. | Mar 1926 | A |
2135330 | Desser et al. | Nov 1938 | A |
2169686 | Fabrice et al. | Aug 1939 | A |
2596034 | Lambert, Jr. et al. | May 1952 | A |
3130848 | Chancellor | Apr 1964 | A |
3511403 | Braun | May 1970 | A |
3620400 | Braun | Nov 1971 | A |
3973941 | Augeri | Aug 1976 | A |
3981412 | Asmus et al. | Sep 1976 | A |
4034784 | Ball et al. | Jul 1977 | A |
4044917 | Vella et al. | Aug 1977 | A |
4248279 | Warmbold | Feb 1981 | A |
4387817 | Wiles et al. | Jun 1983 | A |
4643330 | Kennedy et al. | Feb 1987 | A |
4948001 | Magly | Aug 1990 | A |
5509564 | Knoop et al. | Apr 1996 | A |
5967352 | Repp et al. | Oct 1999 | A |
6123212 | Russell et al. | Sep 2000 | A |
6635325 | Hebert | Oct 2003 | B1 |
6732878 | Gillen et al. | May 2004 | B2 |
6968874 | Gabbey et al. | Nov 2005 | B1 |
D528162 | Lucas et al. | Sep 2006 | S |
7198162 | Francois et al. | Apr 2007 | B2 |
7331479 | Oh et al. | Feb 2008 | B2 |
7834595 | Yasuhito et al. | Nov 2010 | B2 |
7891518 | Snyder et al. | Feb 2011 | B2 |
D633803 | Murphy et al. | Mar 2011 | S |
D640560 | Snyder et al. | Jun 2011 | S |
D653111 | Snyder et al. | Jan 2012 | S |
D653551 | Murphy et al. | Feb 2012 | S |
D653952 | Snyder et al. | Feb 2012 | S |
8118198 | Watson et al. | Feb 2012 | B1 |
8157133 | Sawicki et al. | Apr 2012 | B2 |
D662825 | Murphy et al. | Jul 2012 | S |
D666498 | Snyder et al. | Sep 2012 | S |
D672241 | Sawicki et al. | Dec 2012 | S |
D673856 | Snyder et al. | Jan 2013 | S |
8430140 | Ognjanovski et al. | Apr 2013 | B2 |
D684860 | Mulr et al. | Jun 2013 | S |
D684863 | Snyder et al. | Jun 2013 | S |
D687305 | Juna | Aug 2013 | S |
D687712 | Juna et al. | Aug 2013 | S |
D695115 | Juna | Dec 2013 | S |
D696124 | Prero | Dec 2013 | S |
D696127 | Juna | Dec 2013 | S |
8616406 | Sawicki et al. | Dec 2013 | B1 |
8616407 | Sawicki et al. | Dec 2013 | B2 |
D696952 | Christian et al. | Jan 2014 | S |
D697810 | Juna | Jan 2014 | S |
D698655 | Juna | Feb 2014 | S |
D699117 | Snyder et al. | Feb 2014 | S |
8668120 | Hall | Mar 2014 | B2 |
8720721 | Dutzi et al. | May 2014 | B2 |
D707566 | Augustyn et al. | Jun 2014 | S |
D708940 | Juna et al. | Jul 2014 | S |
8998170 | McCollom | Apr 2015 | B2 |
9365404 | Zitkovic et al. | Jun 2016 | B2 |
20060113331 | Snyder et al. | Jun 2006 | A1 |
20060278662 | Sawicki et al. | Dec 2006 | A1 |
20100132838 | Cisternino et al. | Jun 2010 | A1 |
20100204669 | Knight et al. | Aug 2010 | A1 |
20100252586 | Jimenez et al. | Oct 2010 | A1 |
20100264249 | Sawicki et al. | Oct 2010 | A1 |
20110226721 | Horstman et al. | Sep 2011 | A1 |
20110284589 | Serrano et al. | Nov 2011 | A1 |
20110290756 | Horstman et al. | Dec 2011 | A1 |
20120285579 | Dudley et al. | Nov 2012 | A1 |
20130292425 | Mulry et al. | Nov 2013 | A1 |
20130319572 | Zweifel | Dec 2013 | A1 |
20140001179 | Prero et al. | Jan 2014 | A1 |
20140110369 | Laib et al. | Apr 2014 | A1 |
20140137985 | Zitkovic et al. | May 2014 | A1 |
20140174602 | Baker et al. | Jun 2014 | A1 |
20140209203 | Dudley et al. | Jul 2014 | A1 |
20150013822 | Baker | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
2721234 | Dec 2009 | CA |
103260979 | Aug 2013 | CN |
2393718 | Aug 2013 | EP |
2275047 | Aug 1994 | GB |
2264688 | Jun 1996 | GB |
2399559 | Jul 2006 | GB |
11348953 | Dec 1999 | JP |
52357 | Apr 1942 | NL |
2482039 | May 2013 | RU |
2006084908 | Nov 2006 | WO |
2009073137 | Jun 2009 | WO |
Entry |
---|
Translation of NL 52357; Stolzle Osterreichisohie Glass Industry A.G.; Issued Apr. 15, 1942. |
PCT International Search Report & Written Opinion for International Patent Application No. PCT/US2015/043683, dated Oct. 7, 2015 (12 pages). |
http://www.core77.com/posts/20189/simple-innovation-fords-easy-fuel-system, Jul. 2013. |
http://www.focusfanatics.com/forum/mk3-focus/292193-how-do-you-put-additives-gas-tank.html, Jul. 2013. |
https://www.thetruthaboutcars.com/2013/05/ford-easy-fill-isnt-always-easy, Jul. 2013. |
https://www.ford-trucks.com/forums/1078573-funnel.html, Jul. 2013. |
Uline Poly Drum Funnels (https://www.uline.com/product/detail/h-5648/drums/poly-drum-funnel, Jul. 2013. |
http://www.youtube.com/watch?v=FdyIAqGxAQc, Jul. 2013. |
http://www.youtube.com/watch?v=8QtN_x5JFOs, Jul. 2013. |
Number | Date | Country | |
---|---|---|---|
20180148311 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62059827 | Oct 2014 | US | |
62033103 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14818238 | Aug 2015 | US |
Child | 15882923 | US |