The present application is a 371 of International application PCT/EP2017/080403, filed Nov. 24, 2017, which claims priority of DE 10 2016 223 717.9, filed Nov. 29, 2016, the priority of these applications is hereby claimed and these applications are incorporated herein by reference.
The invention relates to a caterpillar casting machine for producing a cast material from liquid metal and to a corresponding method.
In the prior art, horizontal block casting machines which function in the manner of a revolving caterpillar casting machine are known in particular for the production of aluminum alloys. Such a casting machine is known, for example, from EP 1 704 005 B1 or WO 95/27145. The cooling elements of the casting machine herein on the straight portions, or on spans of casting caterpillars that are disposed so as to be mutually opposite, respectively, form the wall of a moving casting mold. The casting caterpillars are in each case composed of a multiplicity of cooling blocks which are connected to one another in an endless manner and which are transported along the circulation tracks of the caterpillars. For this purpose, the cooling blocks are assembled on support elements which are placed onto chains and are thus connected to one another in an articulated manner like links of a chain.
Cooling systems for a continuous strip casting line in which a plurality of nozzles are provided for supplying cooling means are in each case known from EP 0 873 211 B2 and WO 97/26100. In the case of said cooling systems according to the prior art it is disadvantageous that no dedicated cooling zones are provided and a cooling rate per permanent mold is not established. Rather, in order for the cooling rate to be varied it is necessary for a line operator to manually perform such variations, this being problematic also with a view to operational safety.
WO 2005/068108 A1 discloses a generic caterpillar casting machine and a corresponding method.
The invention is accordingly based on the object of optimizing a caterpillar casting machine and a corresponding method for producing a cast material from liquid metal in terms of a variability of the production process.
A caterpillar casting machine according to the present invention serves the purpose of producing a cast material from a liquid metal. To this end, the caterpillar casting machine comprises two guide rails by way of which two endless horizontal circulation tracks that are disposed so as to be opposite one another are formed; a plurality of support elements which are in each case guided on the guide rails having cooling blocks attached thereto in such a manner that a continuous chain of support elements which in a transporting direction are moved along the circulation tracks is formed, wherein a moving casting mold for the cast material is configured between the cooling blocks which in straight portions of the circulation tracks of the guide rails are positioned so as to be mutually opposite; and a cooling installation for cooling the cooling blocks. The cooling installation has separate cooling zones having in each case at least one cooling nozzle, wherein the cooling zones are individually actuatable along the transporting direction and/or transversely to the transporting direction in order for opening or closing, respectively, of the cooling nozzles to be set. Cooling for the cooling blocks is adaptable to a predetermined casting width in that the cooling zones with the cooling nozzles thereof in a peripheral region transversely to the transporting direction are actuated. In additional and/or alternatively, a cooling for the cooling blocks is adaptable to at least one predetermined process parameter made up of a type of metal, a predetermined metal alloy, casting width, casting speed, or casting profile, in that the cooling zones with cooling nozzles in the transporting direction are actuated.
In the same way, the present invention also provides a method for producing a cast material from liquid metal. The liquid metal herein is cast in a moving casting mold which is formed between cooling blocks which are attached to support elements that in a transporting direction move along in each case two endless circulation tracks that are disposed so as to be opposite one another. Separate cooling zones having in each case at least one cooling nozzle are in each case individually actuated along the transporting direction and/or transversely to the transporting direction in order for the cooling nozzles to be opened or to be closed on account thereof. Individually actuating the cooling zones in a peripheral region transversely to the transporting direction so as to adapt cooling for the cooling blocks to a predetermined casting width and/or actuating the cooling zones with their cooling nozzles along the transporting direction so as to adapt cooling to a predetermined process parameter based on a type of metal, a predetermined metal alloy, casting width, casting speed, or casting profile.
In the context of the present invention, the transporting direction in which the support elements having the cooling blocks attached thereto are moved along the respective guide rails and the circulation tracks configured on account of the latter is synonymous with the casting direction in which the liquid metal is cast in the moving casting mold which is formed between the cooling blocks in the straight portions of the opposite horizontal circulation tracks.
On account of the plurality of cooling blocks which are fastened to the support elements and which are guided along the endless horizontal circulation tracks, one upper caterpillar and one lower caterpillar are formed in each case. The moving casting mold within which a cast material is generated is configured in the straight portions of the spans of said two caterpillars which run in a mutually opposite manner.
The invention is based on the essential concept that the cooling installation has separate cooling zones having in each case at least one cooling nozzle, said cooling zones being able to be individually actuated. On account thereof, it is possible for resulting cooling of the cooling blocks, and thus of the cast material generated in the moving casting mold, to be set in a targeted manner, for example as a function of the chosen casting width and/or of the type of the cast material. For example, proceeding from an initial operating position in which all cooling nozzles are opened, cooling nozzles in a peripheral region are closed in a targeted manner transversely to the transporting or casting direction, respectively, in order for the resulting cooling to be adapted to a narrower casting width. Additionally and/or alternatively, it can be provided that, proceeding from the initial operating position, selected cooling zones and the cooling nozzles thereof can be closed along the transporting or casting direction, respectively, in order for the resulting cooling effect to be reduced in the casting direction and, on account thereof, achieve an adaptation to a specific process parameter, in particular the type of metal, a predetermined grade of metal, or a metal alloy that is cast in the moving casting mold, the casting width, the casting speed, or the casting profile.
In an advantageous refinement of the invention it can be provided that the cooling installation by way of the cooling nozzles thereof is disposed in such a manner that a cooling medium that is dispersed by the cooling nozzles acts directly on the cooling blocks. This is possible for the cooling blocks of the upper caterpillar and/or of the lower caterpillar. For example, a cooling installation can be disposed above an upper span of the upper caterpillar and/or below a lower span of the lower caterpillar, such that a cooling medium, preferably pressurized water, can be dispersed or sprayed, respectively, directly onto a surface of the cooling blocks by way of the cooling nozzles. Additionally and/or alternatively, at least one cooling installation can be disposed or received, respectively, in an intermediate space between the spans of the upper and lower caterpillar, respectively, wherein in this instance a cooling medium, preferably pressurized water, is sprayed onto a rear side of the cooling blocks by way of the cooling nozzles.
In an advantageous refinement of the invention it can be provided that the cooling installation, conjointly with the associated cooling zones thereof, is configured in multiple parts. On account of said multiple parts of the cooling zones, an adaptation to the cooling blocks which are to be cooled in the intended manner is advantageously possible.
In an advantageous refinement of the invention a control installation by means of which the individual cooling nozzles in the respective cooling zones can be actuated can be provided. A predetermined cooling model is stored or memorized, respectively, in a memory of said control installation, wherein an actuation of the nozzles is performed based on said cooling model. In this way, a temperature management of the cast material within the casting mold is automatically influenced, on account of which the product quality as well as the economy are optimized. The necessity of a manual setting, for example by a hand wheel, as this is still required in the case of conventional caterpillar casting machines, is in particular rendered superfluous by such an automatic temperature management.
A precise adaptation to at least one predetermined process parameter, in particular the type of metal, a predetermined metal alloy, the casting width, the casting speed, or the casting profile can also be achieved according to one advantageous refinement of the invention in that in part-regions of the cooling installation each cooling nozzle is individually actuated. This can be implemented by means of the afore-mentioned control installation.
Preferred embodiments of the invention are described in detail hereunder by means of a schematically simplified drawing.
In the drawing:
Preferred embodiments of a caterpillar casting machine 10 according to the invention and the components thereof are explained hereunder with reference to
The caterpillar casting machine 10 has at least one cooling installation 20 which comprises separate cooling zones 22 having in each case a plurality of cooling nozzles 23. A schematically simplified plan view of such a cooling installation 20 is illustrated in
The caterpillar casting machine 10 comprises at least one cooling installation 20 by means of which, for example, the cooling blocks 16 can be cooled, said cooling blocks 16 being fastened to the support elements 14 and, in a manner adjacent to the casting mold 18, circulating in the transporting direction T along the circulation tracks U that are configured by the guide rails 14. Cooling installations 20, by means of suitable mountings (not shown), are disposed above the upper span of the upper caterpillar 10.1 as well as below the lower span of the lower caterpillar 10.2 (cf.
The cooling installations 20 in the illustration of
The caterpillar casting machine 10 comprises a control installation 26 (cf.
In terms of the embodiment of
The cooling installation 20 shown in
The cooling zones 22 of the cooling installation 20 are disposed in the form of a matrix. In detail, a total of four cooling zones 22 (having in each case three cooling nozzles 23 that are disposed beside one another) are provided when viewed in the transporting direction T. A total of eight cooling zones 22 are provided across the width of the casting mold 18, that is to say in a direction transverse to the transporting direction T, in the case of the embodiment of
As has already been explained elsewhere above, it can be provided for the invention that, for example, pressurized water is sprayed onto the cooling blocks 16 from the cooling nozzles 23.
A cooling installation 20 is shown in an initial operating position in
The Illustration of
On account of associated cooling nozzles 23 in peripheral regions R of the casting mold 18 being able to be opened or closed in a targeted manner as explained, the cooling for the cast material 11 can be adapted to different casting widths, wherein a saving in terms of energy is achieved by way of regulating a pump in a corresponding manner. For example, less water is required across the width of the casting mold 18 for narrower casting widths, when cooling nozzles 23z in the peripheral regions R of the casting mold 18 are closed, as explained. It is also possible herein for an influencing of the casting profile to be achieved by a targeted switching of individual cooling zones (that is to say opening or closing associated cooling nozzles 23). However, in order for the casting profile to be influenced, it may also be necessary for peripheral zones of the casting mold 18 to be cooled to a lesser extent or not at all, so as to avoid in a targeted manner so-called “cold shoulders”.
The operating position illustrated in
On account of the actuation of the cooling zones 22 which has been explained above and by way of which selected cooling nozzles can be opened (23a) or closed (23z), a targeted cooling output can be set in the assigned regions of the casting mold 18 along the transporting direction T and/or transversely to the latter.
An advantageous automation of the production process can be achieved in that a cooling model is stored in a memory of the control installation 26. The temperature management and the profile of the cast material 11 generated can be influenced based on said model.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 223 717 | Nov 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/080403 | 11/24/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/099829 | 6/7/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3570583 | Lauener | Mar 1971 | A |
4682646 | Hulek | Jul 1987 | A |
5363902 | Kush | Nov 1994 | A |
5697423 | Roder | Dec 1997 | A |
5826640 | Lauener | Oct 1998 | A |
7614441 | Lauener | Nov 2009 | B2 |
20080000612 | Bausch | Jan 2008 | A1 |
20160199905 | Bausch et al. | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
381878 | Dec 1986 | AT |
1758933 | Mar 1971 | DE |
102008031476 | Feb 2009 | DE |
0873211 | Sep 2002 | EP |
1704005 | Aug 2007 | EP |
9526841 | Oct 1995 | WO |
9527145 | Oct 1995 | WO |
9726100 | Jul 1997 | WO |
2005068108 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20190381560 A1 | Dec 2019 | US |