In the further subclaims, further advantageous embodiments of the invention are described. In clarification of the invention, embodiments of the invention will be further described with reference to the drawing. In the drawing:
In this description, identical or corresponding parts have identical or corresponding reference numerals. The embodiments shown are only given by way of example and should not be construed as being limitative in any manner. In particular, combinations of parts of the embodiments shown are also understood to be described herein. Herein, a body cavity is understood to include at least each part of a human or animal body which can be reached by a forward end of a catheter.
In
In
The first end 4 is further provided with a tip 9 manufactured from an electrically conductive material such as metal, which tip, via an electrically conductive wire 10 (
It is known to use a cooling fluid in a catheter 1 for use in for instance ablation techniques. This liquid is brought through a channel in the catheter to the forward end of the catheter and from there it is either introduced into the blood stream or returned through the catheter. At the inside of the catheter, the cooling fluid is then brought into intimate contact with the electrode to be cooled such as the tip of the catheter, in order to cool this electrode and thus prevent deposition of proteins on the outside. Such a catheter is for instance described in EP 0 856 292. However, such catheters have the drawback that the temperature of the respective electrode, such as the tip, no longer yields a good picture of the heat development in the wall 11 and/or in the blood B around this electrode.
With a catheter 1 according to the invention, these drawbacks have been solved in that, during use, the electrode such as the tip 9, is not cooled, at least not directly, but that the blood B is, so that, in the blood, no coagulation occurs and clots are prevented. As a result, the temperature of the respective electrode such as the tip 9 can be accurately measured and controlled, while, from it, an estimate can be made of the temperature of the wall 11.
Hereinafter, a number of examples of catheters 1 according to the invention is described.
In
This catheter 1 comprises an elongated body 7 with a first end 4, formed by a tip 9 made of an electrically and thermally conductive material, in particular metal such as platinum. The body has a longitudinal axis A-A and comprises a substantially cylindrical wall 12 through which a channel 13 extends. Between the wall 12 and the channel 13, there is an annular space 14 through which extends, for instance, the electrically conductive wire 10, the different connecting points for the electrodes 8 and control means known per se (not shown) for control of the end 4. Moreover, through the annular space 14 a second electrically conductive wire 15 extends which is connected to a thermocouple 16.
In the embodiment shown in
In the first end 4, in particular in the tip 9, a channel part 22 is provided extending in line with the axis A-A and connected to the channel 13, for instance in that a sleeve 23 extends from the end surface 21 in the channel 13 and is fitted therein. From an outside 41 of the tip 9, first bores 24 are provided reaching as far as in the channel part 22 and extending substantially radially. These first bores 24 all have a longitudinal axis 25 including an angle α with the longitudinal axis A-A of the body 7, for instance approximately 90°. A second bore 26 is provided in line with the channel 13, at least with the axis A-A, which bore 26 terminates in the apex 36 of the tip 9. In each bore 24, 26, as well as around the channel part 22, a thermally insulating casing 27 is provided such, that during use a cooling fluid, in particular physiological salt solution, can be passed through the channel 13, the channel part 22 and the bores 24, 26 without direct contact occurring between the cooling fluid and the (inside of) the tip 9. Thus, direct cooling of the tip 9 by the cooling fluid is prevented for the larger part. In the elaboration of
In
In
In the embodiments according to the
Optionally, near the electrode, in particular near the interface 17 between body 7 and tip 9, one or more outlet openings can be provided, so that a part of the cooling fluid is directed along the tip 9, at least along the outer surface of the electrode, for direct cooling of the blood and/or generating turbulence.
When using a catheter 1 according to the invention in a treatment of, for instance, heart rhythm disturbances or the like, wherein ablation technique is used in a body cavity flown-through with blood such as a ventricle or atrium of a heart or an artery or a vein, preferably, the current intensity and the supply of cooling fluid is regulated such, that the temperature of the blood around the tip 9 is kept below the coagulation temperature. In practice, this means below approximately 56° C., so that no coagulation occurs. Preferably, the temperature of the tip 9 is regulated such that it does not exceed 65° C. In practice, this has appeared to be a reasonably safe limit. With larger electrodes (of a length of, for instance, 8 mm instead of 4 mm) relatively more cooling will occur to blood flowing around so that there is a larger difference between the tissue and electrode temperature. With an 8 mm tip, 50 to 55° is a good target value, at least with existing electrodes. The electrode will clearly remain cooler than the heated tissue of the wall, which is kept below 100° C. in order to prevent the earlier-mentioned explosions. In
The invention is not limited in any manner to the exemplary embodiments given in the description and the drawing. Many variations thereon are possible within the framework of the invention as outlined by the claims.
For instance, different materials can be used for the different parts, and outflow openings can be provided in different manners, as long as, at least substantially, the tip 9 is prevented from being cooled from the inside by cooling fluid flowing therethrough. The leading end of the catheter can have any desired shape and can also be used on different locations than the heart, for instance also for fighting tumors and such aberrations of for providing scar tissue in a controlled manner. A catheter according to the invention can also be provided with several electrodes, at least one of which being provided with a cooling device according to the invention, with insulated outflow opening. Also, only one electrode can be provided at a distance of the end.
These and many comparable variations are understood to fall within the framework of the invention as outlined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
1024658 | Oct 2003 | NL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NL04/00741 | 10/20/2004 | WO | 00 | 4/5/2007 |