Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods

Information

  • Patent Grant
  • 10709490
  • Patent Number
    10,709,490
  • Date Filed
    Wednesday, May 7, 2014
    10 years ago
  • Date Issued
    Tuesday, July 14, 2020
    4 years ago
Abstract
Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a direct heating element configured to be delivered to a renal blood vessel. The treatment device is selectively transformable between a delivery or low-profile state and a deployed state. The direct heating element is housed within an occlusion element which is sized and shaped so that the direct heating element contacts an interior wall of the occlusion element, an outer wall of which is simultaneously in contact with the inner wall of a renal blood vessel when the treatment assembly is in the deployed state. The direct heating element is configured to apply thermal energy to heat neural fibers that contribute to renal function.
Description
APPLICATIONS INCORPORATED BY REFERENCE

The following applications are incorporated herein by reference in their entireties:


U.S. patent application Ser. No. 13/793,647, filed Mar. 11, 2013;


U.S. patent application Ser. No. 13/281,360, filed Oct. 25, 2011;


U.S. patent application Ser. No. 13/281,361, filed Oct. 25, 2011; and


U.S. patent application Ser. No. 13/281,395, filed Oct. 25, 2011.


As such, components and features of embodiments disclosed in these applications may be combined with various components and features disclosed in the present application.


TECHNICAL FIELD

The present technology relates generally to renal neuromodulation and associated systems and methods. In particular, several embodiments are directed to ablation catheter assemblies including a direct heating element for intravascular renal neuromodulation and associated systems and methods.


BACKGROUND

The sympathetic nervous system (SNS) is a primarily involuntary bodily control system typically associated with stress responses. Fibers of the SNS innervate tissue in almost every organ system of the human body and can affect characteristics such as pupil diameter, gut motility, and urinary output. Such regulation can have adaptive utility in maintaining homeostasis or preparing the body for rapid response to environmental factors. Chronic activation of the SNS, however, is a common maladaptive response that can drive the progression of many disease states. Excessive activation of the renal SNS in particular has been identified experimentally and in humans as a likely contributor to the complex pathophysiology of hypertension, states of volume overload (such as heart failure), and progressive renal disease. For example, radiotracer dilution has demonstrated increased renal norepinephrine (“NE”) spillover rates in patients with essential hypertension.


Cardio-renal sympathetic nerve hyperactivity can be particularly pronounced in patients with heart failure. For example, an exaggerated NE overflow from the heart and kidneys of plasma is often found in these patients. Heightened SNS activation commonly characterizes both chronic and end stage renal disease. In patients with end stage renal disease, NE plasma levels above the median have been demonstrated to be predictive of cardiovascular diseases and several causes of death. This is also true for patients suffering from diabetic or contrast nephropathy. Evidence suggests that sensory afferent signals originating from diseased kidneys are major contributors to initiating and sustaining elevated central sympathetic outflow.


Sympathetic nerves innervating the kidneys terminate in the blood vessels, the juxtaglomerular apparatus, and the renal tubules. Stimulation of the renal sympathetic nerves can cause increased renin release, increased sodium (Na+) reabsorption, and a reduction of renal blood flow. These neural regulation components of renal function are considerably stimulated in disease states characterized by heightened sympathetic tone and likely contribute to increased blood pressure in hypertensive patients. The reduction of renal blood flow and glomerular filtration rate as a result of renal sympathetic efferent stimulation is likely a cornerstone of the loss of renal function in cardio-renal syndrome (i.e., renal dysfunction as a progressive complication of chronic heart failure). Pharmacologic strategies to thwart the consequences of renal efferent sympathetic stimulation include centrally acting sympatholytic drugs, beta blockers (intended to reduce renin release), angiotensin converting enzyme inhibitors and receptor blockers (intended to block the action of angiotensin II and aldosterone activation consequent to renin release), and diuretics (intended to counter the renal sympathetic mediated sodium and water retention). These pharmacologic strategies, however, have significant limitations including limited efficacy, compliance issues, side effects, and others. Recently, intravascular devices that reduce sympathetic nerve activity by applying an energy field to a target site in the renal blood vessel (e.g., via RF ablation) have been shown to reduce blood pressure in patients with treatment-resistant hypertension.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating dearly the principles of the present disclosure. Furthermore, components can be shown as transparent in certain views for clarity of illustration only and not to indicate that the illustrated component is necessarily transparent.



FIG. 1 is a partially schematic diagram of a neuromodulation system configured in accordance with an embodiment of the present technology.



FIG. 2 illustrates modulating renal nerves with a catheter configured in accordance with an embodiment of the present technology.



FIG. 3A is a side view of a distal portion of a catheter having a therapeutic assembly in a delivery state outside a patient in accordance with an embodiment of the present technology.



FIG. 3B is a side view of a distal portion of a catheter having a therapeutic assembly in a deployed state outside a patient in accordance with an embodiment of the present technology.



FIG. 3C is a cross-sectional view the catheter of FIG. 3A in a delivery state in accordance with an embodiment of the present technology.



FIG. 3D is a cross-sectional view of a catheter in a delivery state in accordance with another embodiment of the present technology.



FIG. 4 is a perspective view of a portion of a therapeutic assembly having a direct heating element having a spiral or coil shape in accordance with an embodiment of the present technology.



FIG. 5 is a partially schematic side view of a loading tool configured in accordance with an embodiment of the present technology.





DETAILED DESCRIPTION

The present technology is directed to apparatuses, systems, and methods for achieving thermally-induced renal neuromodulation (i.e., rendering neural fibers that innervate the kidney inert, inactive or otherwise completely or partially reduced in function) by percutaneous transluminal intravascular access. In particular, embodiments of the present technology relate to catheters and catheter assemblies having a direct heating element and an occlusion element, such as a balloon, around the direct heating element. The catheter assembly is configurable between a delivery or low-profile state configured to pass through the vasculature and a deployed state in which the direct heating element has a radially expanded shape (e.g., generally helical/spiral or coil). The direct heating element is configured to deliver energy (e.g., thermal energy) to a wall of a renal artery after the direct heating element has been positioned at a target site in the renal artery via a catheter along a percutaneous transluminal path (e.g., a femoral artery puncture, an iliac artery and the aorta, a radial artery, or another suitable intravascular path). The occlusion element is sized and shaped so that in an expanded configuration the direct heating element contacts the interior surface of the occlusion element and the exterior surface of the occlusion element contacts the wall of the renal artery. In the expanded configuration, the occlusion element at least partially or at least substantially occludes blood flow in the renal artery to mitigate heat loss to the blood and thereby enhance the heat transfer from the direct heating element to the wall of the renal artery during operation. This configuration offers a relatively low profile. In addition, in embodiments wherein the occlusion element is an expandable balloon, this configuration presents a suitable platform for pleating and folding.


Specific details of several embodiments of the technology are described below with reference to FIGS. 1-5. Although many of the embodiments are described below with respect to devices, systems, and methods tier intravascular modulation of renal nerves using a direct heating element, other applications and other embodiments in addition to those described herein are within the scope of the technology. Additionally, several other embodiments of the technology can have different configurations, components, or procedures than those described herein. A person of ordinary skill in the art, therefore, will accordingly understand that the technology can have other embodiments with additional elements, or the technology can have other embodiments without several of the features shown and described below with reference to FIGS. 1-5.


As used herein, the terms “distal” and “proximal” define a position or direction with respect to the treating clinician or clinician's control device (e.g., a handle assembly). “Distal” or “distally” are a position distant from or in a direction away from the clinician or clinician's control device. “Proximal” and “proximally” are a position near or in a direction toward the clinician or clinicians control device.


I. RENAL NEUROMODULATION

Renal neuromodulation is the partial or complete incapacitation or other effective disruption of nerves innervating the kidneys. In particular, renal neuromodulation comprises inhibiting, reducing, and/or blocking neural communication along neural fibers (i.e., efferent and/or afferent nerve fibers) innervating the kidneys. Such incapacitation can be long-term (e.g., permanent or for periods of months, years, or decades) or short-term (e.g., for periods of minutes, hours, days, or weeks). Renal neuromodulation is expected to efficaciously treat several clinical conditions characterized by increased overall sympathetic activity, and in particular conditions associated with central sympathetic over stimulation such as hypertension, heart failure, acute myocardial infarction, metabolic syndrome, insulin resistance, diabetes, left ventricular hypertrophy, chronic and end stage renal disease, inappropriate fluid retention in heart failure, cardio-renal syndrome, osteoporosis, and sudden death. The reduction of efferent and/or afferent neural signals contributes to the systemic reduction of sympathetic tone/drive, and renal neuromodulation is expected to be useful in treating several conditions associated with systemic sympathetic over activity or hyperactivity. Renal neuromodulation can potentially benefit a variety of organs and bodily structures innervated by sympathetic nerves.


Various techniques can be used to partially or completely incapacitate neural pathways, such as those innervating the kidney. The purposeful application of energy (e.g., electrical energy, thermal energy) to tissue by energy delivery element(s) can induce one or more desired thermal heating effects on localized regions of the renal artery and adjacent regions of the renal plexus, which lay intimately within or adjacent to the adventitia of the renal artery. The purposeful application of the thermal heating effects can achieve neuromodulation along all or a portion of the renal plexus.


The thermal heating effects can include both thermal ablation and non-ablative thermal alteration or damage (e.g., via sustained heating and/or resistive heating). Desired thermal heating effects may include raising the temperature of target neural fibers above a predetermined threshold to achieve non-ablative thermal alteration, or above a higher temperature to achieve ablative thermal alteration. For example, the target temperature can be above body temperature (e.g., approximately 37° C.) but less than about 45° C. for non-ablative thermal alteration, or the target temperature can be about 45° C. or higher for ablative thermal alteration.


More specifically, exposure to thermal energy (heat) in excess of a body temperature of about 37° C. but below a temperature of about 45° C., may induce thermal alteration via moderate heating of the target neural fibers or of vascular structures that perfuse the target fibers. In cases where vascular structures are affected, the target neural fibers are denied perfusion resulting in necrosis of the neural tissue. For example, this may induce non-ablative thermal alteration in the fibers or structures. Exposure to heat above a temperature of about 45° C., or above about 60° C., may induce thermal alteration via substantial heating of the fibers or structures. For example, such higher temperatures may thermally ablate the target neural fibers or the vascular structures. In some patients, it may be desirable to achieve temperatures that thermally ablate the target neural fibers or the vascular structures, but that are less than about 90° C., or less than about 85° C., or less than about 80° C., and/or less than about 75° C. Regardless of the type of heat exposure utilized to induce the thermal neuromodulation, a reduction in renal sympathetic nerve activity (RSNA) is expected.


II. SELECTED EMBODIMENTS OF NEUROMODULATION SYSTEMS


FIG. 1 illustrates a renal neuromodulation system 10 (“system 10”) configured in accordance with an embodiment of the present technology. The system 10 includes an intravascular catheter 12 and a thermal energy generator 26 operably coupled to the catheter 12. The catheter 12 can include an elongated shaft 16 having a proximal portion 18 and a distal portion 20, and the catheter 12 can also have a handle 34 at the proximal region of the proximal portion 18. The catheter 12 can further include a therapeutic assembly 21 at the distal portion 20 of the elongated shaft 16. The therapeutic assembly 21, for example, can be a treatment section that is attached to the distal portion 20 or otherwise defines a section of the distal portion 20. As explained in further detail below, the therapeutic assembly 21 can include an occlusion element 19, a control member 50 in the occlusion element 19, and a direct heating element 24 carried by the control member 50.


The direct heating element 24 can be a material configured to increase in temperature in response to energy input from the energy generator 26, thus providing thermal energy to a target tissue by conduction, convection or thermal radiation. The direct heating element 24 can include one or more heating wires secured over the control member 50. The one or more heating wires may be formed of any suitable conductive and/or resistive material, including for example constantan, stainless steel, nichrome, or similar heatable materials, and may have any suitable cross-sectional shape including, for example, round, oval, oblong, flat, or polygon. In some embodiments, the heating wire is insulated; in other embodiments the heating wire is uninsulated. In some embodiments, direct heating element 24 has a helical/spiral or coil shape which may be formed, for example, by winding the heating wire around the control member 50 two or more times (e.g., twice, thrice, about four times, about 5 times, about 10 times, about 15 times, about 20 times, about 25 times, about 30 times, about 35 times, about 40 times, about 45 times, about 50 times, or more than about 50 times). In some embodiments, for example where the heating wire is uninsulated, the direct heating element 24 has a helical/spiral or coil shape in which successive loops of the direct heating element 24 are separated such that they do not contact each other in the deployed state (e.g., a sufficiently large pitch between each loop). Such embodiments are particularly advantageous when the occlusion element 19 is to be inflated by introducing air or another non-conductive gas into the occlusion element 19 because individual windings of the direct heating element 24 may be equally spaced apart along the length of the control member 50. In other embodiments, however, the number, arrangement, and/or composition of the direct heating element 24 may vary.


The occlusion element 19 is adapted for expansion or inflation between a low-profile configuration (e.g., a collapsed or deflated shape) suitable for passage through the vasculature and an expanded configuration (e.g., a therapeutic or inflated shape) configured to press against the inner surface of the wall of a renal artery. In some embodiments, the occlusion element 19 is sized to occlude or substantially occlude the renal artery when in the expanded configuration. The direct heating element 24 is contained within the occlusion element 19, but the direct heating element 24 is not necessarily secured to or otherwise attached to the occlusion element 19. The occlusion element 19, for example, can be a balloon or other structure, such as a basket made from a fine mesh or braided material, sized and shaped such that when expanded at least a portion of the outer surface of the occlusion element 19 directly contacts the inner wall of the renal artery. The occlusion element 19 may be a compliant balloon, a non-compliant balloon, or a semi-compliant balloon. Accordingly, the expandable balloon may comprise any suitable material or components including, for example, silicone, latex, polyurethane, thermoplastic elastomers, nylon, polyethylene terephthalate (PET), and the like.


Similarly, the control member 50 and the direct heating element 24 are configured to be delivered through the vasculature to a renal blood vessel (e.g., a renal artery) in a low-profile state (e.g., a generally straight shape) and expand radially outward to an expanded state in which the direct heating element 24 has a generally spiral/helical configuration. In some embodiments, the occlusion element 19 is a balloon configured to be inflated with a fluid, such as saline, contrast fluid, or a mixture thereof. In such embodiments, the control member 50 additionally includes one or more fluid ports configured to allow influx of the fluid into the balloon. In other embodiments, the expandable balloon is configured to be inflated with a gas, such as air or carbon dioxide or the like, or a combination thereof. In such embodiments, the control member 50 additionally includes one or more gas ports configured to allow influx of the gas into the balloon.


Alternatively, the control member 50 and the direct heating element 24 may have a non-helical shape. In some embodiments, the direct heating element 24 may be a ring, such as a slanted ring. The therapeutic assembly 21 may be self-expanding, manually expandable (e.g., via a remote actuator), or transformed between the low-profile and expanded states using other mechanisms or techniques. Once in the deployed state, system 10 may provide therapeutically-effective thermally-induced renal neuromodulation by delivering thermal energy at the target therapeutic site through the direct heating element 24.


In some alternate embodiments, the therapeutic assembly 21 does not include an occlusion element 19. In such embodiments, the control member 50 and the direct heating element 24 may not be housed inside another component and the direct heating element 24 may directly contact the inner surface of the wall of the renal blood vessel (e.g., a renal artery) in the expanded configuration.


The catheter 12 can also include an atraumatic tip 40 extending from a distal end of the therapeutic assembly 21. The atraumatic tip 40 can include a distal opening for a guide wire and optionally one or more radiopaque markers. The atraumatic tip 40 may be made from any suitable material, for example a polyether block amide copolymer (e.g., sold under the trademark PEBAX), a thermoplastic polyether urethane material (sold under the trademark ELASTHANE or PELLETHANE), or other suitable materials having the desired properties, including a selected durometer. In one particular embodiment, for example, about 5 to 30 weight percent of siloxane can be blended with the tip material (e.g., the thermoplastic polyether urethane material), and electron beam or gamma irradiation may be used to induce cross-linking of the materials. In other embodiments, the atraumatic tip 40 may be formed from different material(s) and/or have a different arrangement. The atraumatic tip 40 can be affixed to the distal end of the therapeutic assembly 21 via adhesive, crimping, over-molding, or other suitable techniques.


In some embodiments, the distal end of the therapeutic assembly 21 may also be configured to engage another element of the system 10 or catheter 12. For example, the distal end of the therapeutic assembly 21 may define a passageway for receiving a guide wire (not shown) for delivery of the treatment device using over-the-wire (“OTW”) or rapid exchange (“RX”) techniques. Further details regarding such arrangements are described below.


The catheter 12 can also include a cable 28 that electrically couples the thermal energy generator 26 to the direct heating element 24, and the system 10 can include a control mechanism 32, such as a foot pedal or handheld remote control device, connected to the thermal energy generator 26 to allow the clinician to initiate, terminate and, optionally, adjust various operational characteristics of the energy generator 26, including, but not limited to, power delivery. The remote control device (not shown) can be positioned in a sterile field and operably coupled to the thermal energy generator 26, and can be configured to allow the clinician to selectively activate and deactivate the direct heating element 24.


The thermal energy generator 26 can be configured to deliver the treatment energy via an automated control algorithm 30 and/or under the control of a clinician. For example, the thermal energy generator 26 can include computing devices (e.g., personal computers, server computers, tablets, etc.) having processing circuitry (e.g., a microprocessor) that is configured to execute stored instructions relating to the control algorithm 30. In addition, the processing circuitry may be configured to execute one or more evaluation/feedback algorithms 31, which can be communicated to the clinician. For example, the thermal energy generator 26 can include a monitor or display 33 and/or associated features that are configured to provide visual, audio, or other indications of power levels, sensor data, and/or other feedback. The thermal energy generator 26 can also be configured to communicate the feedback and other information to another device, such as a monitor in a catheterization laboratory. The thermal energy generator 26 can have a variety of suitable power-supply configurations. For example, the thermal energy generator 26 can include a power adapter (e.g., a plug configured to fit into a standard power receptacle or a receptacle of an external power-supply unit) and a power cord electrically connected to the thermal energy generator 26. In other embodiments, the thermal energy generator 26 can be configured to receive power from a battery, such as a rechargeable battery within a pack removably connectable to the thermal energy generator 26.


In several embodiments, the thermal energy generator 26 may include a radio-frequency identification (RFID) evaluation module (not shown) mounted at or near one or more ports on the thermal energy generator 26 and configured to wirelessly read and write to one or more RFID tags (not shown) on the catheter 12. In one particular embodiment, for example, the catheter 12 may include an RFID tag housed within or otherwise attached to the connector portion of the cable 28 that is coupled to the energy generator 26. The RFID tag can include, for example, an antenna and an RFID chip for processing signals, sending/receiving RF signals, and storing data in memory. Suitable RFID tags include, for example, MB89R118 RFID tags available from Fujitsu Limited of Tokyo, Japan. The memory portion of the RFID tag can include a plurality of blocks allocated for different types of data. For example, a first memory block can include a validation identifier (e.g., a unique identifier associated with the specific type of catheter and generated from the unique ID of the RFID tag using an encrypting algorithm), and a second memory block can be allocated as a catheter usage counter that can be read and then written to by the RFID module carried by the energy generator 26 after catheter use. In other embodiments, the RFID tag can include additional memory blocks allocated for additional catheter usage counters (e.g., to allow the catheter 12 to be used a specific limited number of times) and/or other information associated with the catheter 12 (e.g., lot number, customer number, catheter model, summary data, etc.).


The RFID evaluation module at the thermal energy generator 26 can include an antenna and a processing circuit that are together used to communicate with one or more portions of the thermal energy generator 26 and wirelessly read/write to one or more RFID tags within its proximity (e.g., when the cable 28 with an RFID tag is attached to the thermal energy generator 26). Suitable RFID evaluation modules include, for example, a TRF7960A Evaluation Module available from Texas Instruments Incorporated of Dallas, Tex.


In operation, the RFID evaluation module is configured to read information from the RFID tag (carried by the cable 28 or another suitable portion of the catheter 12), and communicate the information to software of the thermal energy generator 26 to validate the attached catheter 12 (e.g., validate that the catheter 12 is compatible with the thermal energy generator 26), read the number of previous uses associated with the particular catheter 12, and/or write to the RFID tag to indicate catheter use. In various embodiments, the thermal energy generator 26 may be configured to disable energy delivery to the catheter 12 when predefined conditions of the RFID tag are not met. For example, when the catheter 12 is connected to the thermal energy generator 26, the RFID evaluation module can read a unique anti-counterfeit number in an encrypted format from the RFID tag, decrypt the number, and then authenticate the number and the catheter data format for recognized catheters (e.g., catheters that are compatible with the particular thermal energy generator 26, non-counterfeit catheters, etc.). In various embodiments, the RFID tag can include identifier(s) that correspond to a specific type of catheter, and the RFID evaluation module can transmit this information to a main controller of the thermal energy generator 26, which can adjust the settings (e.g., the control algorithm 30) of the thermal energy generator 26 to the desired operating parameters/characteristics (e.g., power levels, display modes, etc.) associated with the specific catheter. Further, if the RFID evaluation module identifies the catheter 12 as counterfeit or is otherwise unable to identify the catheter 12, the thermal energy generator 26 can automatically disable the use of the catheter 12 (e.g., preclude energy delivery).


Once the catheter 12 has been identified, the RFID evaluation module can read the RFID tag memory address spaces to determine if the catheter 12 was previously connected to a generator (i.e., previously used). In certain embodiments, the RFID tag may limit the catheter 12 to a single use, but in other embodiments the RFID tag can be configured to provide for more than one use (e.g., 2 uses, 5 uses, 10 uses, etc.). If the RFID evaluation module recognizes that the catheter 12 has been written used) more than a predetermined use limit, the RFID module can communicate with the thermal energy generator 26 to disable energy delivery to the catheter 12. In certain embodiments, the RFID evaluation module can be configured to interpret all the catheter connections to an energy source within a predefined time period (e.g., 5 hours, 10 hours, 24 hours, 30 hours, etc.) as a single connection (i.e., a single use), and allow the catheter 12 to be used multiple times within the predefined time period. After the catheter 12 has been detected, recognized, and judged as a “new connection” (e.g., not used more than the predefined limit), the RFID evaluation module can write to the RFID tag (e.g., the time and date of the system use and/or other information) to indicate that the catheter 12 has been used. In other embodiments, the RFID evaluation module and/or RFID tag may have different features and/or different configurations.


The system 10 can also include one or more sensors 29 located proximate to, distal to, or within the direct heating element 24. For example, the system 10 can include temperature sensors (e.g., thermocouple, thermistor, etc.), impedance sensors, pressure sensors, optical sensors, flow sensors, and/or other suitable sensors connected to one or more supply wires (not shown) that transmit signals from the sensors and/or convey energy to the direct heating element 24.



FIG. 2 (with additional reference to FIG. 1) illustrates modulating renal nerves with an embodiment of the system 10. The catheter 12 is configured to access the renal plexus RP through an intravascular path P, such as a percutaneous access site in the femoral (illustrated), brachial, radial, or axillary artery to a targeted treatment site within a respective renal artery RA. As illustrated, a section of the proximal portion 18 of the shaft 16 is exposed externally of the patient. By manipulating the proximal portion 18 of the shaft 16 from outside the intravascular path P, the clinician may advance the shaft 16 through the sometimes tortuous intravascular path P and remotely manipulate the distal portion 20 of the shaft 16. In the embodiment illustrated in FIG. 2, the therapeutic assembly 21 is delivered intravascularly to the treatment site using a guide wire 66 in an OTW technique. As noted previously, the distal end of the therapeutic assembly 21 may define a lumen or passageway for receiving the guide wire 66 for delivery of the catheter 12 using either OTW or RX techniques. At the treatment site, the guide wire 66 can be at least partially axially withdrawn or removed, and the therapeutic assembly 21 can transform or otherwise be moved to a deployed state for delivering energy at the treatment site. Further details regarding such arrangements are described below with reference to FIGS. 3A and 3B. The guide wire 66 may comprise any suitable medical guide wire sized to slidably fit within the lumen. In one particular embodiment, for example, the guide wire 66 may have a diameter of 0.356 mm (0.014 inch). In other embodiments, the therapeutic assembly 21 may be delivered to the treatment site within a guide sheath (not shown) with or without using the guide wire 66. When the therapeutic assembly 21 is at the target site, the guide sheath may be at least partially withdrawn or retracted and the therapeutic assembly 21 can be transformed into the deployed state. Additional details regarding this type of configuration are described below. In still other embodiments, the shaft 16 may be steerable itself such that the therapeutic assembly 21 may be delivered to the treatment site without the aid of the guide wire 66 and/or guide sheath.


Image guidance, e.g., computed tomography (CT), fluoroscopy, intravascular ultrasound (IVUS), optical coherence tomography (OCT), intracardiac echocardiography (ICE), or another suitable guidance modality, or combinations thereof, may be used to aid the clinician's positioning and manipulation of the therapeutic assembly 21. For example, a fluoroscopy system (e.g., including a flat-panel detector, x-ray, or c-arm) can be rotated to accurately visualize and identify the target treatment site. In other embodiments, the treatment site can be determined using IVUS, OCT, and/or other suitable image mapping modalities that can correlate the target treatment site with an identifiable anatomical structure (e.g., a spinal feature) and/or a radiopaque ruler (e.g., positioned under or on the patient) before delivering the catheter 12. Further, in some embodiments, image guidance components (e.g., IVUS, OCT) may be integrated with the catheter 12 and/or run in parallel with the catheter 12 to provide image guidance during positioning of the therapeutic assembly 21. For example, image guidance components (e.g., IVUS or OCT) can be coupled to the therapeutic assembly 21 (e.g., proximal to the therapeutic arms) to provide three-dimensional images of the vasculature proximate the target site.


The purposeful application of thermal energy from the direct heating element 24 may then be applied to target tissue to induce one or more desired neuromodulating effects on localized regions of the renal artery and adjacent regions of the renal plexus RP, which lay intimately within, adjacent to, or in close proximity to the adventitia of the renal artery RA. The purposeful application of the thermal energy may achieve neuromodulation along all or at least a portion of the renal plexus RP. The neuromodulating effects are generally a function of, at least in part, power, time, contact between the direct heating element 24 (FIG. 1) and the vessel wall, optionally separated by an occlusion element 19, and blood flow (if any) through the vessel. The neuromodulating effects may include denervation, thermal ablation, and/or non-ablative thermal alteration or damage (e.g., via sustained heating and/or resistive heating). In some embodiments, thermal energy from the direct heating element 24 is sufficient to cause at least partial renal denervation in the patient. In some embodiments, thermal energy from the direct heating element 24 is sufficient to cause at least partial ablation of at least one renal nerve of the patient. Desired thermal heating effects may include raising the temperature of target neural fibers above a predetermined threshold to achieve non-ablative thermal alteration, or above a higher temperature to achieve ablative thermal alteration. For example, the target temperature may be above body temperature (e.g., approximately 37° C.) but less than about 45° C. for non-ablative thermal alteration, or the target temperature may be about 45° C. or higher for ablative thermal alteration.



FIG. 3A is a side view of the distal portion 20 of the shaft 16 and the therapeutic assembly 21 in the delivery state outside a patient; FIG. 3B is a side view of the distal portion 20 of the shaft 16 and the therapeutic assembly 21 in the deployed state outside a patient; and FIG. 3C is a perspective view of the therapeutic assembly 21 in the deployed state outside the patient.


As best seen in FIGS. 3A and 3B, the therapeutic assembly 21 includes the control member 50 and at least one direct heating element 24. In this embodiment, the therapeutic assembly 21 also includes a flexible tube 42 having a lumen disposed between the pre-shaped control member 50 and the direct heating element 24. The flexible tube 42 may be composed of a polymer material such as polyamide, polyimide, polyether block amide copolymer sold under the trademark PEBAX, polyethylene terephthalate (PET), polypropylene, aliphatic, polycarbonate-based thermoplastic polyurethane sold under the trademark CARBOTHANE, or a polyether ether ketone (PEEK) polymer that provides the desired flexibility. In other embodiments, however, the tube 42 may be composed of other suitable materials, for example to offer electrical insulation between the direct heating element 24 and the control member 50. In other embodiments, the tube 42 is absent and the direct heating element 24 is in contact with the control member 50.


The therapeutic assembly 21 may also include one or more sensors 29. The sensors 29 may be any suitable type of sensor including, for example, a thermocouple. The sensor 29 may be configured to monitor the temperature or change in temperature of the direct heating element 24. The sensor 29 may be configured to detect the temperature or change in temperature of tissue, for example, wall of the renal vessel (e.g., renal artery). In such an embodiment, the sensor 29 is positioned to contact the tissue, for example, wherein at least a portion of the sensor 29 is directly exposed to the tissue. In some embodiments, the sensors 29 include more than one type of sensor for monitoring more than one type of parameter. The sensors 29 may be located at any suitable location in the therapeutic assembly 21 depending on the type of sensor employed and the parameter to be monitored. Sensor 29 is shown in FIG. 3A in a representative fashion located within the occlusion element 19, but sensor 29 can be located at any suitable location of the therapeutic assembly 21 including, for example, outside of the occlusion element 19.


Referring to FIG. 3B, one embodiment of the control member 50 has a pre-set spiral/helical shape that defines the expanded state of the control member 50 when the therapeutic assembly 21 is in the deployed state. The control member 50 can be straightened by inserting a guidewire or other element through the lumen of the control member 50 to shape the control member 50 in the low-profile state. The control member 50 may be arranged in a single or dual-layer configuration, and may be manufactured with a selected tension, compression, torque and pitch direction. The control member 50 can be formed of any suitable material, including materials comprising polymers, metals, alloys, or a combination thereof. For example, in one embodiment the control member 50 comprises a nitinol multifilar stranded wire wound to create a tube with a lumen therethrough, such as that sold under the trademark HELICAL HOLLOW STRAND (HHS), and commercially available from Fort Wayne Metals of Fort Wayne, Ind.


In operation, a guidewire or other element is inserted in the lumen of the control member 50 to straighten the control member 50 and the direct heating element 24 so that the therapeutic assembly 21 is in the delivery state shown in FIG. 3A. After the therapeutic assembly 21 is positioned at a target site in the renal artery, the occlusion element 19 is expanded to contact the inner surface of the wall of the renal artery and the guidewire is withdrawn. Without the guidewire, the pre-shaped control member 50 moves toward its pre-formed shape, such as a spiral/helical shape, which in turn causes the direct heating element 24 to have a shape set by the pre-formed shape of the control member 50. As best seen in FIG. 3B, for example, in one embodiment the direct heating element 24 has a helical/spiral shape in the expanded state such that the direct heating element 24 contacts an inner surface of the occlusion element 19. With the outer surface of the occlusion element 19 positioned in stable apposition with the wall of the renal artery (FIG. 2), the direct heating element 24 is heated to transfer heat through the occlusion element to the renal nerves for treatment.


Forming the control member 50 of nitinol multifilar stranded wire(s) or other similar materials is expected to eliminate the need for any additional reinforcement wire(s) or structures within the therapeutic assembly 21 to provide a desired level of support and rigidity to the therapeutic assembly 21. This feature is expected to reduce the number of manufacturing processes required to form the catheter 12 and reduce the number of materials required for the device. Another feature of the therapeutic assembly 21 is that the control member 50 and inner wall of the tube 42, when present, may be in intimate contact such that there is little or no space between the control member 50 and the tube 42. In one embodiment, for example, the tube 42 can be expanded prior to assembly such that applying hot air to the tube 42 during the manufacturing process can shrink the tube onto the control member 50, as will be understood by those familiar with the ordinary use of shrink tubing materials. This feature is expected to inhibit or eliminate wrinkles or kinks that might occur in the tube 42 as the therapeutic assembly 21 transforms from the relatively straight delivery state to the generally helical deployed state.


In other embodiments, the control member 50 and/or other components of the therapeutic assembly 21 may be composed of different materials and/or have a different arrangement. For example, the control member 50 may be formed from other suitable shape memory materials (e.g., wire or tubing besides HHS, shape memory polymers, electro-active polymers) that are pre-formed or pre-shaped into the desired expanded state. Alternatively, the control member 50 may be formed from multiple materials such as a composite of one or more polymers and metals.


As shown in FIGS. 3A-3B, occlusion element 19 can include a distal portion 19a that is secured distally near the distal end of the control member 50, and a proximal portion 19b that is secured to the proximal end of the control member 50. Alternatively, the occlusion element 19 can include a distal portion 19a that is secured to the distal end of the control member 50, and a proximal portion 19b that is secured to the shaft 16. Thus, the occlusion element 19 defines an intra-occlusion element space 27 that can be filled with a fluid such as a gas (e.g., air and/or carbon dioxide) or a liquid (e.g., saline, contrast fluid, or a mixture thereof).


The direct heating element 24 is electrically connected to the energy generator 26 by wires 36 and 38. As shown in FIGS. 3C-3D, wire 36 extends through the control member 50 and connects to the distal end of the direct heating element 24. Wire 38 is outside tube 42 and connects to the proximal end of direct heating element 24. Wires 36 and 38 may alternatively be housed in any other suitable location in order to provide reliable electrical contact with the direct heating element 24. For example, wire 36 may be outside tube 42, and/or wire 38 may be inside tube 42.



FIG. 3C shows a cross-sectional view of the therapeutic assembly 21 of FIG. 3A. The control member 50 is a hollow tube as described above, and includes wire 36. The tube 42 surrounds the control member 50 and insulates the control member 50 from the direct heating element 24. Occlusion element 19 surrounds the direct heating element 24. In an alternative embodiment, shown in similar cross-section in FIG. 3D, wire 36 runs inside control member 50. The direct heating element comprises a heating wire 24b surrounded by insulation layers 24a and 24c. Insulation layer 24a is in direct contact with the control member 50 and electrically isolates the control member 50 from the heating wire 24b. Accordingly, tube 42 is not needed to isolate the direct heating element 24 from the control element 50. One of skill in the art will readily understand that insulation layers 24a and 24c may be continuous depending on the shape and configuration of the direct heating element 24. The occlusion element 19 surrounds the direct heating element 24.



FIG. 4 is an enlarged view of a portion of the catheter 12 of FIGS. 3A-3B. Referring to FIGS. 1, 3A-3B and 4 together, as noted above, the tube 42 is configured to fit tightly against the control member 50 to minimize the space between an inner portion of the tube 42 and the components positioned therein. This may, for example, help prevent the formation of wrinkles in the therapeutic assembly 21 during deployment. In the embodiment shown in FIG. 4, the direct heating element 24 includes a single insulated heating wire wrapped around tube 42 to form a coil such that successive loops of the coil are in contact with each other or substantially in contact with each other. In other embodiments, for example as shown in FIG. 5, the direct heating element includes a heating wire wrapped around the control member 50 to form a coil such that successive loops of the coil are not in contact with each other. In such embodiments, the heating wire may be insulated or, if the control member 50 is non-conductive and intra-occlusion element space 27 will not include a conductive fluid, the heating wire may be uninsulated.


In operation (and with reference to FIGS. 2, 3A, 3B and 3C), after the therapeutic assembly 21 has been positioned at a desired location within the renal artery RA of the patient, the therapeutic assembly 21 may be transformed from the delivery state to the deployed state. The transformation may be initiated using an arrangement of device components as described herein with respect to the particular embodiments and their various modes of deployment. In one embodiment, for example, the therapeutic assembly 21 may be deployed by retracting the guide wire 66 (FIG. 2) until a distal tip of the guide wire 66 is generally aligned with the tip 40 of the catheter 12. In some embodiments, the guide wire 66 may have a varying stiffness or flexibility along its length (e.g., to provide increased flexibility distally). In certain embodiments, the guide wire 66 may be completely withdrawn from the shaft 16. Alternatively, the guide wire 66 may be partially withdrawn from the shaft 16, for example, completely withdrawn from the therapeutic assembly 21 but at least partially remaining within the shaft 16. In some embodiments, complete or partial withdrawal of the guide wire 66 from the therapeutic assembly 21 induces the therapeutic assembly 21 to transform (e.g., automatically transform) into the deployed state. Deployment of the therapeutic assembly 21 may additionally or alternatively be accomplished by introducing a fluid, such as a gas (e.g., air) or a liquid (e.g., saline, contrast fluid, or a mixture thereof) into the intra-occlusion element space 27 of occlusion element 19.


In some embodiments, the guide wire 66 may have a stiffness profile that permits the distal portion of the guide wire 66 to remain extended from the opening 41 while still permitting the therapeutic assembly 21 to transform to the deployed state, for example upon introduction of a fluid such as a gas (e.g., air) or a liquid (e.g., saline, contrast fluid, or a mixture thereof) into intra-occlusion element space 27 of occlusion element 19. In still other embodiments, the guide wire 66 may be withdrawn completely from the therapeutic assembly 21 (e.g., a distal-most end portion of the guide wire 66 is proximal of the therapeutic assembly 21) to permit the transformation, while a distal-most portion of the guide wire 66 remains within the shaft 16. In yet another embodiment, the guide wire 66 may be withdrawn completely from the shaft 16. In any of the foregoing examples, the clinician can withdraw the guide wire 66 sufficiently to observe transformation of the therapeutic assembly 21 to the deployed state and/or until an X-ray image shows that the distal tip of the guide wire 66 is at a desired location relative to the therapeutic assembly 21 (e.g., generally aligned with the tip 40, completely withdrawn from the therapeutic assembly 21, etc.). In some embodiments, the extent of withdrawal for the guide wire 66 can be based, at least in part, on the clinician's judgment with respect to the selected guide wire and the extent of withdrawal necessary to achieve deployment.


After treatment, the therapeutic assembly 21 may be transformed into a low-profile state for removal or repositioning by withdrawing the gas or liquid from the intra-occlusion element space 27 and/or axially advancing the guide wire 66 relative to the therapeutic assembly 21. In one embodiment, for example, the guide wire 66 may be advanced until the distal tip of the guide wire 66 is generally aligned with the tip 40, and the catheter 12 can then be pulled back over the stationary guide wire 66. In other embodiments, however, the distal-most portion of the guide wire 66 may be advanced to a different location relative to the therapeutic assembly 21 to achieve transformation of the therapeutic assembly 21 back to the delivery state.


The embodiments of the catheter systems described above include a procedural guide wire to guide the catheter to the treatment site and also to restrain the therapeutic assembly in the delivery state. In further embodiments, catheter systems configured in accordance with the present technology may further include a loading tool. For example, catheter systems configured according to the present disclosure may include an external loading tool that can be disposed and retracted over the therapeutic assembly to further assist with transforming the therapeutic assembly between the delivery and deployed states. Alternatively, catheter systems configured according to the present disclosure may include an internal loading tool disposed within the therapeutic assembly to further assist with transforming the therapeutic assembly between the delivery and deployed states.



FIG. 5, for example, is a partially schematic side view of an external loading tool 190 in accordance with an embodiment of the present technology. The loading tool 190 is a tubular structure configured to slidably move along an outer surface of the shaft 16 and the therapeutic assembly 21 (for purposes of illustration, the therapeutic assembly 21 and associated features are shown in broken lines). The loading tool 190 has a size and stiffness suitable for maintaining the therapeutic assembly 21 in the delivery state for backloading of the guide wire 66 (FIG. 2), i.e., insertion of the proximal end of guide wire 66 into the distal opening 41. In the illustrated embodiment, the loading tool 190 can include a tapered portion 192 to guide the sheath over the therapeutic assembly 21 and the associated direct heating element 24. In some embodiments, a distal portion 194 of the loading tool 190 may also include smooth, rounded inner and outer edges 195 to guide the inner wall of the loading tool over the occlusion element 19 during advancement of the loading tool relative to the therapeutic assembly 21. The loading tool 190 may be composed of high-density polyethylene (HDPE) or other suitable materials having a desired strength and lubricity. In still other embodiments, the loading tool 190 may be composed of two or more different materials. In one embodiment, for example, the larger diameter section of the loading tool 190 distal of the tapered portion 192 may be composed of HDPE, while the smaller diameter section of the loading tool 190 proximal of the tapered portion 192 may be composed of linear low-density polyethylene (LLDPE). In still further embodiments, the loading tool 190 may be composed of different materials and/or have a different arrangement.


In some embodiments, the loading tool 190 may be used in conjunction with the catheter 12 while the catheter 12 is external to the patient before treatment, and then the loading tool 190 may be removed from the catheter 12 before the catheter 12 is inserted into the patient. More specifically, as discussed above, the loading tool 190 can be used to maintain the therapeutic assembly 21 in the delivery state while the guide wire is backloaded (moving from a distal end toward a proximal end of the catheter 12). The loading tool 190 can then be removed from the catheter 12, and the therapeutic assembly 21 can be restrained in the delivery state with the support of the guide wire. In another embodiment, the loading tool 190 may remain installed on the catheter 12 after backloading of the guide wire, but may slide down the length of the catheter 12 to a proximal portion 18 of the catheter 12 near the handle 34 (FIG. 1). In this way, the loading tool 190 remains with the catheter 12, but is out of the way during treatment.


In still other embodiments, however, the loading tool 190 may remain at or near the distal portion 20 (FIG. 1) of the catheter 12 during treatment. For example, in one embodiment, a clinician may keep the loading tool 190 at or near the distal portion 20 of the catheter 12 and then insert the loading tool 190 into a hemostasis valve (not shown) connected to a guide catheter (not shown). Depending upon a profile of the loading tool 190 and an inner diameter of the hemostasis valve, the clinician may be able to insert approximately 2 to 4 cm of the loading tool 190 into the hemostasis valve. One advantage of this approach is that the therapeutic assembly 21 (FIGS. 3A and 3B) is further protected as the catheter 12 is advanced through the hemostasis valve, and the clinician is expected to feel little or no friction between the catheter 12 and the hemostasis valve. In other embodiments, however, the loading tool 190 may have a different arrangement relative to the hemostasis valve and/or the other components of the system 10 (FIG. 1) during operation.


In still other embodiments, an internal loading tool comprising a relatively stiff wire may be included at or near the distal portion of the catheter 12. The internal loading tool is configured to maintain the therapeutic assembly 21 in the low-profile delivery state, e.g., during packaging or shipping. In operation, the internal loading tool may be removed from the catheter 12 and replaced with a guidewire immediately before use.


III. ADDITIONAL CLINICAL USES OF THE DISCLOSED APPARATUSES, METHODS AND SYSTEMS

Although much of the disclosure in this Specification relates to at least partially denervating a kidney of a patient to block afferent and/or efferent neural communication between a renal blood vessel (e.g., renal artery) and the brain, the apparatuses, methods and systems described herein may also be used for other intravascular treatments. For example, the aforementioned catheter system, or select aspects of such system, can be placed in other peripheral blood vessels to deliver energy to achieve a neuromodulatory effect by altering nerves proximate to these other peripheral blood vessels. There are a number of arterial vessels arising from the aorta which travel alongside a rich collection of nerves to target organs. Utilizing the arteries to access and modulate these nerves may have clear therapeutic potential in a number of disease states. Some examples include the nerves encircling the celiac trunk, superior mesenteric artery, and inferior mesenteric artery.


Sympathetic nerves proximate to or encircling the arterial blood vessel known as the celiac trunk may pass through the celiac ganglion and follow branches of the celiac trunk to innervate the stomach, small intestine, abdominal blood vessels, liver, bile ducts, gallbladder, pancreas, adrenal glands, and kidneys. Modulating these nerves either in whole (or in part via selective modulation) may enable treatment of conditions including (but not limited to) diabetes, pancreatitis, obesity, hypertension, obesity related hypertension, hepatitis, hepatorenal syndrome, gastric ulcers, gastric motility disorders, irritable bowel syndrome, and autoimmune disorders such as Crohn's disease.


Sympathetic nerves proximate to or encircling the arterial blood vessel known as the inferior mesenteric artery may pass through the inferior mesenteric ganglion and follow branches of the inferior mesenteric artery to innervate the colon, rectum, bladder, sex organs, and external genitalia. Modulating these nerves either in whole (or in part via selective modulation) may enable treatment of conditions including (but not limited to) GI motility disorders, colitis, urinary retention, hyperactive bladder, incontinence, infertility, polycystic ovarian syndrome, premature ejaculation, erectile dysfunction, dyspareunia, and vaginismus.


While arterial access and treatments have received attention in this Specification, the disclosed apparatuses, methods and systems can also be used to deliver treatment from within a peripheral vein or lymphatic vessel.


IV. FURTHER EXAMPLES

The following examples are illustrative of several embodiments of the present technology:

    • 1. A catheter apparatus, comprising:
    • an elongated tubular shaft having a proximal portion and a distal portion;
    • a therapeutic assembly at the distal portion of the elongated shaft and configured to be located at a target location within a renal artery of a human patient, the therapeutic assembly comprising—
      • a control member (e.g., composed of a nitinol multifilar stranded wire) having a pre-formed helical shape, a tubular structure, and a lumen therethrough;
      • a direct heating element carried by the control member; and
      • an occlusion element at the distal portion of the elongated member in which the control member and the direct heating element are positioned.
    • 2. The catheter apparatus of example 1 wherein the elongated tubular shaft and the therapeutic assembly together define therethrough a guide wire lumen configured to slidably receive a medical guide wire, and
    • wherein axial movement of the guide wire relative to the therapeutic assembly transforms the control member between (a) a low-profile state and (b) an expanded state having a helical shape set by the control member.
    • 3. The catheter apparatus of example 1 or example 2 wherein the occlusion element is selectively transformable between a low-profile configuration in a delivery state and an expanded configuration sized to fit within the renal artery in a deployed state.
    • 4. A catheter apparatus, comprising:
    • an elongated tubular shaft having a proximal portion and a distal portion;
    • a therapeutic assembly disposed at the distal portion of the elongated shaft and adapted to be located at a target location within a renal artery of a human patient, the therapeutic assembly comprising—
      • an occlusion element;
      • a control member comprising a pre-formed helical shape, wherein the control member is a tubular structure having a lumen therethrough; and
      • a direct heating element carried by the control member, wherein the control member and the direct heating element are within the occlusion element;
    • wherein the therapeutic assembly is configured to provide a first, delivery state and a second, deployed state having a helical shape set by the control member; and
    • wherein the control member is selectively transformable between a low-profile state in the first, delivery state and an expanded state sized to fit within the renal artery in the second, deployed state.
    • 5. The catheter apparatus of any one of examples 1 to 4 wherein the therapeutic assembly is configured to transform between the delivery state and the deployed state white at least a distal portion of the guide wire remains in the guide wire lumen of the therapeutic assembly.
    • 6. The catheter apparatus of any of examples 1 to 5 wherein the control member comprises a shape-recovery force sufficient to overcome a straightening force provided by a distal region of the guide wire to transform the therapeutic assembly to the deployed state.
    • 7. The catheter apparatus of any of examples 1 to 6 wherein, in the expanded configuration, the occlusion element is sized to occlude the renal artery.
    • 8. The catheter apparatus of any of examples 1 to 7 wherein the direct heating element is disposed about the control member.
    • 9. The catheter apparatus of any of examples 1 to 8 wherein the direct heating element comprises wire wrapped around all or substantially all of the control member.
    • 10. The catheter apparatus of any of examples 1 to 9 further comprising an energy generator external to the patient and electrically coupled to the direct heating element, wherein the energy generator comprises a battery.
    • 11. The catheter apparatus of any of examples 1 to 10 wherein energy from the direct heating element is sufficient to cause at least partial renal denervation in the patient.
    • 12. The catheter apparatus of any of examples 1 to 11 wherein energy from the direct heating element is sufficient to cause at least partial ablation of at least one renal nerve of the patient.
    • 13. The catheter apparatus of any of examples 1 to 12 wherein the direct heating element is configured to physically contact an inner wall of the occlusion element when the occlusion element is in the expanded configuration and the therapeutic assembly is in the deployed state.
    • 14. The catheter apparatus of any of examples 1 to 13 wherein, when the therapeutic assembly is in the deployed state, the direct heating element is configured to deliver energy through a wall of the occlusion element and an inner wall of the renal artery in a helical pattern.
    • 15. The catheter apparatus of any of examples 1 to 14 wherein the occlusion element is an expandable balloon.
    • 16. The catheter apparatus of example 15 wherein the expandable balloon is a semi-compliant or a non-compliant balloon.
    • 17. The catheter apparatus of example 15 wherein the expandable balloon is a compliant balloon.
    • 18. The catheter apparatus of any of examples 15 to 17 wherein the expandable balloon is configured to be inflated with a fluid selected from: saline, contrast fluid, and mixtures thereof.
    • 19. The catheter apparatus of any of examples 15 to 18 wherein the expandable balloon is configured to be inflated with air.
    • 20. The catheter apparatus of any of examples 1 to 19 wherein the occlusion element comprises a first distal end and a second proximal end, and wherein the first end and second end of the occlusion element are affixed to the control member.
    • 21. The catheter apparatus of any of examples 1 to 19 wherein the occlusion element comprises a first distal end affixed to the control member, and a second proximal end affixed to the elongated tubular shaft.
    • 22. The catheter apparatus of any of examples 1 to 21, further comprising one or more sensors at the distal portion of the elongated tubular shaft for monitoring and/or controlling effects of energy delivery from the direct heating element.
    • 23. The catheter apparatus of example 22 wherein at least one of the sensors comprises a thermocouple for monitoring temperature.
    • 24. A method for performing renal neuromodulation, the method comprising:
    • intravascularly delivering a catheter in a delivery state over a guide wire to a target treatment site within a renal blood vessel of a human patient and at least proximate to a renal nerve of the patient, wherein the catheter comprises—
      • an elongated shaft;
      • an occlusion element; and
      • a tubular structure and a direct heating element arranged about the tubular structure, wherein the tubular structure and the direct heating element are within the occlusion element;
    • expanding the occlusion element such that the occlusion element at least substantially occludes the renal blood vessel;
    • withdrawing the guide wire in a proximal direction until the catheter transforms from the delivery state to a deployed state wherein the tubular structure has a radially expanded, spiral shape configured to contact an inner wall of the occlusion element adjacent to an inner wall of the renal blood vessel; and
    • delivering heat via the direct heating element to inhibit neural communication along the renal nerve.
    • 25. The method of example 24 wherein delivering heat via the direct heating element comprises producing a lesion in a spiral-shaped pattern along the renal blood vessel.
    • 26. The method of example 24 or 25 wherein the direct heating element is a resistive heating element, and wherein delivering heat via the direct heating element comprises applying an electrical current to the resistive heating element.
    • 27. The method of example 26 wherein applying an electrical current comprises applying sufficient electrical current to cause the resistive heating element to reach a predetermined temperature.
    • 28. The method of any of examples 24 to 27 wherein the occlusion element comprises an expandable balloon.
    • 29. The method of example 28 wherein expanding the occlusion element comprises inflating the expandable balloon with a fluid (e.g., air, saline, contrast and the like, or a mixture thereof).
    • 30. The method of example 26, further comprising measuring a temperature of the resistive heating element during treatment and adjusting the power applied to the resistive heating element to achieve a desired temperature.
    • 31. The method of example 24 wherein delivering heat via the direct heating element comprises delivering energy to the direct heating element to increase its temperature to a determined temperature or to a temperature within a determined range of temperatures for a period of time.
    • 32. The method of example 31 wherein the period of time is determined based on the temperature range.
    • 33. The method of any of examples 24 to 32 wherein delivering heat via the direct heating element to inhibit neural communication along the renal nerve comprises ablating the renal nerve.
    • 34. The method of any of examples 24 to 33 wherein delivering heat via the direct heating element to inhibit neural communication along the renal nerve comprises partially ablating the renal nerve.
    • 35. The method of any of examples 24 to 34 wherein delivering heat via the direct heating element to inhibit neural communication along the renal nerve comprises at least partially denervating a kidney of the patient.
    • 36. The method of any of examples 24 to 35 further comprising monitoring a parameter of the catheter and/or tissue within the patient before and during delivery of heat via the direct heating element.
    • 37. The method of example 36 wherein monitoring a parameter comprises monitoring temperature of the tissue and/or the temperature of the direct heating element, and wherein the method further comprises maintaining the tissue and/or the direct heating element at a desired temperature luring delivery of heat via the direct heating element.
    • 38. The method of example 35, further comprising altering delivery of the heat in response to the monitored parameter.


V. CONCLUSION

The above detailed descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology, as those skilled in the relevant art will recognize. For example, while steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.


From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. Where the context permits, singular or plural terms may also include the plural or singular term, respectively.


Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Claims
  • 1. A catheter apparatus, comprising: an elongated tubular shaft having a proximal portion and a distal portion;a therapeutic assembly at the distal portion of the elongated tubular shaft and configured to be located at a target location within a renal artery of a patient, the therapeutic assembly comprising: a control member having a tubular structure and a lumen therethrough and having a pre-formed helical shape;a direct heating element having one or more heating wires carried by and wrapped around the control member;a flexible tube having a lumen disposed between the control member and the direct heating element; andan occlusion element at the distal portion of the elongated tubular shaft in which the control member and the direct heating element are positioned.
  • 2. The catheter apparatus of claim 1 wherein the tubular structure comprises a nitinol multifilar stranded wire.
  • 3. The catheter apparatus of claim 1 wherein the elongated tubular shaft and the therapeutic assembly together define therethrough a guide wire lumen configured to slidably receive a medical guide wire, and wherein axial movement of the guide wire relative to the therapeutic assembly transforms the control member between (a) a low-profile state and (b) an expanded state having a helical shape set by the control member.
  • 4. The catheter apparatus of claim 1 wherein the occlusion element is selectively transformable between a low-profile configuration in a delivery state and an expanded configuration sized to fit within the renal artery in a deployed state.
  • 5. The catheter apparatus of claim 4 wherein, in the expanded configuration, the occlusion element is sized to occlude the renal artery.
  • 6. The catheter apparatus of claim 1 wherein energy from the direct heating element is sufficient to cause at least partial ablation of at least one renal nerve of the patient.
  • 7. The catheter apparatus of claim 4 wherein the direct heating element is configured to physically contact an inner wall of the occlusion element when the occlusion element is in the expanded configuration and the therapeutic assembly is in the deployed state.
  • 8. The catheter apparatus of claim 1 wherein the occlusion element is an expandable balloon.
  • 9. The catheter apparatus of claim 8 wherein the expandable balloon is configured to be inflated with a fluid selected from: saline, contrast fluid, or a mixture thereof.
  • 10. The catheter apparatus of claim 1 wherein the occlusion element comprises a distal end and a proximal end, and wherein the distal end and the proximal end of the occlusion element are affixed to the control member.
  • 11. The catheter apparatus of claim 1 wherein the occlusion element comprises a distal end affixed to the control member, and a proximal end affixed to the elongated tubular shaft.
  • 12. The catheter apparatus of claim 1, further comprising one or more sensors at the distal portion of the elongated tubular shaft for monitoring or controlling effects of energy delivery from the direct heating element.
  • 13. The catheter apparatus of claim 12 wherein at least one of the one or more sensors comprises a thermocouple for monitoring temperature.
  • 14. The catheter apparatus of claim 1, wherein the flexible tube is configured to provide electrical insulation between the direct heating element and the control member.
  • 15. The catheter apparatus of claim 1, wherein the direct heating element is a slanted ring.
  • 16. A catheter apparatus, comprising: an elongated tubular shaft having a proximal portion and a distal portion; anda therapeutic assembly disposed at the distal portion of the elongated shaft and adapted to be located at a target location within a renal artery of a human patient, the therapeutic assembly comprising:an occlusion element;a control member comprising a pre-formed helical shape, wherein the control member is a tubular structure having a lumen therethrough; anda direct heating element that includes a first insulation layer that is in direct contact with the control member, a second insulation layer and a heating wire that is in between the first insulation layer and the second insulation layer, the heating wire being wrapped around the control member, wherein the control member and the direct heating element are within the occlusion element.
US Referenced Citations (921)
Number Name Date Kind
2701559 Cooper Aug 1951 A
4345602 Yoshimura et al. Aug 1982 A
4531943 Van Tassel et al. Jul 1985 A
4602624 Naples et al. Jul 1986 A
4649936 Ungar et al. Mar 1987 A
4709698 Johnston et al. Dec 1987 A
4764504 Johnson et al. Aug 1988 A
4765331 Petruzzi et al. Aug 1988 A
4770653 Shturman Sep 1988 A
4784132 Fox et al. Nov 1988 A
4790310 Ginsburg et al. Dec 1988 A
4823791 D'Amelio et al. Apr 1989 A
4862886 Clarke et al. Sep 1989 A
4890623 Cook et al. Jan 1990 A
4938766 Jarvik Jul 1990 A
4955377 Lennox et al. Sep 1990 A
4976711 Parins et al. Dec 1990 A
5034010 Kittrell et al. Jul 1991 A
5053033 Clarke Oct 1991 A
5071424 Reger Dec 1991 A
5074871 Groshong Dec 1991 A
5078717 Parins et al. Jan 1992 A
5098429 Sterzer Mar 1992 A
5102402 Dror et al. Apr 1992 A
5109859 Jenkins May 1992 A
5125928 Parins et al. Jun 1992 A
5129396 Rosen et al. Jul 1992 A
5156151 Imran Oct 1992 A
5156610 Reger Oct 1992 A
5178620 Eggers et al. Jan 1993 A
5178625 Groshong Jan 1993 A
5190540 Lee Mar 1993 A
5211651 Reger et al. May 1993 A
5234407 Teirstein et al. Aug 1993 A
5277201 Stern Jan 1994 A
5282484 Reger Feb 1994 A
5300068 Rosar et al. Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
5304120 Crandell et al. Apr 1994 A
5304171 Gregory et al. Apr 1994 A
5306250 March et al. Apr 1994 A
5326342 Pflueger et al. Jul 1994 A
5333614 Feiring Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5345936 Pomeranz et al. Sep 1994 A
5358514 Schulman et al. Oct 1994 A
5368591 Lennox et al. Nov 1994 A
5372138 Crowley et al. Dec 1994 A
5380319 Saito et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5397301 Pflueger et al. Mar 1995 A
5419767 Eggers et al. May 1995 A
5423744 Gencheff et al. Jun 1995 A
5425364 Imran Jun 1995 A
5427118 Nita et al. Jun 1995 A
5433708 Nichols et al. Jul 1995 A
5451207 Yock Sep 1995 A
5453091 Taylor et al. Sep 1995 A
5454788 Walker et al. Oct 1995 A
5456682 Edwards et al. Oct 1995 A
5471988 Fujio et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5484400 Edwards et al. Jan 1996 A
5496311 Abele et al. Mar 1996 A
5498261 Strul Mar 1996 A
5505730 Edwards Apr 1996 A
5507744 Tay et al. Apr 1996 A
5540679 Fram et al. Jul 1996 A
5562720 Stern et al. Oct 1996 A
5571147 Sluijter et al. Nov 1996 A
5584872 LaFontaine et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5588964 Imran et al. Dec 1996 A
5599345 Edwards et al. Feb 1997 A
5609606 O'Boyle Mar 1997 A
5626576 Janssen May 1997 A
5647847 Lafontaine et al. Jul 1997 A
5649923 Gregory et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5665062 Houser Sep 1997 A
5667490 Keith et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5687737 Branham et al. Nov 1997 A
5688266 Edwards et al. Nov 1997 A
5693015 Walker et al. Dec 1997 A
5693043 Kittrell et al. Dec 1997 A
5693082 Warner et al. Dec 1997 A
5695504 Gifford, III et al. Dec 1997 A
5700282 Zabara Dec 1997 A
5704908 Hofmann et al. Jan 1998 A
5707400 Terry, Jr. et al. Jan 1998 A
5713942 Stern et al. Feb 1998 A
5741214 Ouchi et al. Apr 1998 A
5749914 Janssen May 1998 A
5755682 Knudson et al. May 1998 A
5769880 Truckai et al. Jun 1998 A
5772590 Webster, Jr. Jun 1998 A
5775338 Hastings Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5792105 Lin et al. Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5800484 Gough et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5810810 Tay et al. Sep 1998 A
5817113 Gifford, III et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5830213 Panescu et al. Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5840076 Swanson et al. Nov 1998 A
5843016 Lugnani et al. Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5846239 Swanson et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5853411 Whayne et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860974 Abele Jan 1999 A
5865787 Shapland et al. Feb 1999 A
5865801 Houser Feb 1999 A
5868736 Swanson et al. Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5875782 Ferrari et al. Mar 1999 A
5876369 Houser Mar 1999 A
5876374 Alba et al. Mar 1999 A
5879348 Owens et al. Mar 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5893885 Webster et al. Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5902328 LaFontaine et al. May 1999 A
5904697 Gifford, III et al. May 1999 A
5904709 Arndt et al. May 1999 A
5916227 Keith et al. Jun 1999 A
5924424 Stevens et al. Jul 1999 A
5925038 Panescu et al. Jul 1999 A
5934284 Plaia et al. Aug 1999 A
5938670 Keith et al. Aug 1999 A
5944710 Dev et al. Aug 1999 A
5947977 Slepian et al. Sep 1999 A
5951539 Nita et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954719 Chen et al. Sep 1999 A
5961513 Swanson et al. Oct 1999 A
5967984 Chu et al. Oct 1999 A
5983141 Sluijter et al. Nov 1999 A
5989208 Nita Nov 1999 A
5989284 Laufer Nov 1999 A
5997497 Nita et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004316 Laufer Dec 1999 A
6009877 Edwards Jan 2000 A
6024740 Lesh et al. Feb 2000 A
6033397 Laufer et al. Mar 2000 A
6033398 Farley et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6050994 Sherman Apr 2000 A
6056744 Edwards May 2000 A
6063085 Tay et al. May 2000 A
6066134 Eggers et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068638 Makower May 2000 A
6068653 LaFontaine May 2000 A
6071277 Farley et al. Jun 2000 A
6071278 Panescu et al. Jun 2000 A
6079414 Roth Jun 2000 A
6080171 Keith et al. Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6086581 Reynolds et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6099524 Lipson et al. Aug 2000 A
6099526 Whayne et al. Aug 2000 A
6102908 Tu et al. Aug 2000 A
6110187 Donlon Aug 2000 A
6110192 Ravenscroft et al. Aug 2000 A
6117101 Diederich et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6135997 Laufer et al. Oct 2000 A
6135999 Fanton et al. Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6152899 Farley et al. Nov 2000 A
6159225 Makower Dec 2000 A
6161048 Sluijter et al. Dec 2000 A
6165172 Farley et al. Dec 2000 A
6165187 Reger Dec 2000 A
6168594 LaFontaine et al. Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179835 Panescu et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6183486 Snow et al. Feb 2001 B1
6190379 Heuser et al. Feb 2001 B1
6216704 Ingle et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6231587 Makower May 2001 B1
6237605 Vaska et al. May 2001 B1
6238389 Paddock et al. May 2001 B1
6238392 Long May 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6248126 Lesser et al. Jun 2001 B1
6254598 Edwards et al. Jul 2001 B1
6273886 Edwards et al. Aug 2001 B1
6280466 Kugler et al. Aug 2001 B1
6283935 Laufer et al. Sep 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6309379 Willard et al. Oct 2001 B1
6314325 Fitz Nov 2001 B1
6315776 Edwards et al. Nov 2001 B1
6317615 KenKnight et al. Nov 2001 B1
6319242 Patterson et al. Nov 2001 B1
6319251 Tu et al. Nov 2001 B1
6322558 Taylor et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6346074 Roth Feb 2002 B1
6350248 Knudson et al. Feb 2002 B1
6357447 Swanson et al. Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6364840 Crowley Apr 2002 B1
6371965 Gifford, III et al. Apr 2002 B2
6375668 Gifford et al. Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6387105 Gifford, III et al. May 2002 B1
6389314 Feiring May 2002 B2
6394096 Constantz May 2002 B1
6398780 Farley et al. Jun 2002 B1
6398792 O'Connor Jun 2002 B1
6401720 Stevens et al. Jun 2002 B1
6405732 Edwards et al. Jun 2002 B1
6409723 Edwards Jun 2002 B1
6413255 Stern Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6427089 Knowlton Jul 2002 B1
6428534 Joye et al. Aug 2002 B1
6428536 Panescu et al. Aug 2002 B2
6436056 Wang et al. Aug 2002 B1
6442413 Silver Aug 2002 B1
6443965 Gifford, III et al. Sep 2002 B1
6447505 McGovern et al. Sep 2002 B2
6451034 Gifford, III et al. Sep 2002 B1
6451044 Naghavi et al. Sep 2002 B1
6458098 Kanesaka Oct 2002 B1
6470219 Edwards et al. Oct 2002 B1
6475213 Whayne et al. Nov 2002 B1
6477426 Fenn et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6488679 Swanson et al. Dec 2002 B1
6491705 Gifford, III et al. Dec 2002 B2
6497711 Plaia et al. Dec 2002 B1
6500174 Maguire et al. Dec 2002 B1
6506189 Rittman, III et al. Jan 2003 B1
6511478 Burnside et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6514226 Levin et al. Feb 2003 B1
6517534 McGovern et al. Feb 2003 B1
6517572 Kugler et al. Feb 2003 B2
6522913 Swanson et al. Feb 2003 B2
6522926 Kieval et al. Feb 2003 B1
6524274 Rosenthal et al. Feb 2003 B1
6527769 Langberg et al. Mar 2003 B2
6540761 Houser Apr 2003 B2
6542781 Koblish et al. Apr 2003 B1
6546934 Ingle et al. Apr 2003 B1
6547767 Moein Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6558381 Ingle et al. May 2003 B2
6562034 Edwards et al. May 2003 B2
6565582 Gifford, III et al. May 2003 B2
6575933 Wittenberger et al. Jun 2003 B1
6579311 Makower Jun 2003 B1
6582423 Thapliyal et al. Jun 2003 B1
6589238 Edwards et al. Jul 2003 B2
6592526 Lenker Jul 2003 B1
6602246 Joye et al. Aug 2003 B1
6607502 Maguire et al. Aug 2003 B1
6616624 Kieval Sep 2003 B1
6622731 Daniel et al. Sep 2003 B2
6623452 Chien et al. Sep 2003 B2
6623453 Guibert et al. Sep 2003 B1
6632196 Houser Oct 2003 B1
6635054 Fjield et al. Oct 2003 B2
6640120 Swanson et al. Oct 2003 B1
6648854 Patterson et al. Nov 2003 B1
6648878 Lafontaine Nov 2003 B2
6651672 Roth Nov 2003 B2
6652513 Panescu et al. Nov 2003 B2
6652515 Maguire et al. Nov 2003 B1
6658279 Swanson et al. Dec 2003 B2
6673040 Samson et al. Jan 2004 B1
6673066 Werneth Jan 2004 B2
6673290 Whayne et al. Jan 2004 B1
6676678 Gifford, III et al. Jan 2004 B2
6679268 Stevens et al. Jan 2004 B2
6681773 Murphy et al. Jan 2004 B2
6682541 Gifford, III et al. Jan 2004 B1
6685648 Flaherty et al. Feb 2004 B2
6685732 Kramer Feb 2004 B2
6685733 Dae et al. Feb 2004 B1
6689086 Nita et al. Feb 2004 B1
6689148 Sawhney et al. Feb 2004 B2
6692490 Edwards Feb 2004 B1
6695830 Vigil et al. Feb 2004 B2
6695857 Gifford, III et al. Feb 2004 B2
6699241 Rappaport et al. Mar 2004 B2
6699257 Gifford, III et al. Mar 2004 B2
6706010 Miki et al. Mar 2004 B1
6711444 Koblish Mar 2004 B2
6712815 Sampson et al. Mar 2004 B2
6736811 Panescu et al. May 2004 B2
6736835 Pellegrino et al. May 2004 B2
6746464 Makower Jun 2004 B1
6746465 Diederich et al. Jun 2004 B2
6748255 Fuimaono et al. Jun 2004 B2
6748953 Sherry et al. Jun 2004 B2
6752805 Maguire et al. Jun 2004 B2
6763261 Casscells, III et al. Jul 2004 B2
6764501 Ganz Jul 2004 B2
6771996 Bowe et al. Aug 2004 B2
6780183 Jimenez, Jr. et al. Aug 2004 B2
6786900 Joye et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790222 Kugler et al. Sep 2004 B2
6800075 Mische et al. Oct 2004 B2
6811550 Holland et al. Nov 2004 B2
6813520 Truckai et al. Nov 2004 B2
6814730 Li Nov 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6824516 Batten et al. Nov 2004 B2
6827726 Parodi Dec 2004 B2
6845267 Harrison et al. Jan 2005 B2
6847848 Sterzer et al. Jan 2005 B2
6850801 Kieval et al. Feb 2005 B2
6855143 Davison et al. Feb 2005 B2
6866662 Fuimaono et al. Mar 2005 B2
6869431 Maguire et al. Mar 2005 B2
6884260 Kugler et al. Apr 2005 B2
6885888 Rezai Apr 2005 B2
6893436 Woodard et al. May 2005 B2
6895265 Silver May 2005 B2
6898454 Atalar et al. May 2005 B2
6899718 Gifford, III et al. May 2005 B2
6905494 Yon et al. Jun 2005 B2
6909009 Koridze Jun 2005 B2
6917834 Koblish et al. Jul 2005 B2
6923805 LaFontaine et al. Aug 2005 B1
6923808 Taimisto Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6929639 Lafontaine Aug 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6942657 Sinofsky et al. Sep 2005 B2
6942692 Landau et al. Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949121 Laguna Sep 2005 B1
6952615 Satake Oct 2005 B2
6953460 Maguire et al. Oct 2005 B2
6955174 Joye et al. Oct 2005 B2
6955175 Stevens et al. Oct 2005 B2
6958075 Mon et al. Oct 2005 B2
6959711 Murphy et al. Nov 2005 B2
6964660 Maguire et al. Nov 2005 B2
6966908 Maguire et al. Nov 2005 B2
6972015 Joye et al. Dec 2005 B2
6972016 Hill, III et al. Dec 2005 B2
6972024 Kilpatrick et al. Dec 2005 B1
6974456 Edwards et al. Dec 2005 B2
6979420 Weber Dec 2005 B2
6984238 Gifford, III et al. Jan 2006 B2
6989009 Lafontaine Jan 2006 B2
6991617 Hektner et al. Jan 2006 B2
7001378 Yon et al. Feb 2006 B2
7006858 Silver et al. Feb 2006 B2
7022105 Edwards Apr 2006 B1
7022120 Lafontaine Apr 2006 B2
7033322 Silver Apr 2006 B2
7041098 Farley et al. May 2006 B2
7066895 Podany Jun 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7087026 Callister et al. Aug 2006 B2
7087052 Sampson et al. Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101368 Lafontaine Sep 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7112198 Satake Sep 2006 B2
7112211 Gifford, III et al. Sep 2006 B2
7122033 Wood Oct 2006 B2
7149574 Yun et al. Dec 2006 B2
7150745 Stern et al. Dec 2006 B2
7153315 Miller Dec 2006 B2
7158832 Kieval et al. Jan 2007 B2
7162303 Levin et al. Jan 2007 B2
7165551 Edwards et al. Jan 2007 B2
7172589 Lafontaine Feb 2007 B2
7172610 Heitzmann et al. Feb 2007 B2
7181261 Silver et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7189227 Lafontaine Mar 2007 B2
7197354 Sobe Mar 2007 B2
7198632 Lim et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7214234 Rapacki et al. May 2007 B2
7220233 Nita et al. May 2007 B2
7220270 Sawhney et al. May 2007 B2
7221979 Zhou et al. May 2007 B2
7241273 Maguire et al. Jul 2007 B2
7241736 Hunter et al. Jul 2007 B2
7250041 Chiu et al. Jul 2007 B2
7252679 Fischell et al. Aug 2007 B2
7264619 Venturelli Sep 2007 B2
7285120 Im et al. Oct 2007 B2
7288089 Yon et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7293562 Malecki et al. Nov 2007 B2
7294126 Sampson et al. Nov 2007 B2
7297475 Koiwai et al. Nov 2007 B2
7300433 Lane et al. Nov 2007 B2
7314483 Landau et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7326235 Edwards Feb 2008 B2
7326237 DePalma et al. Feb 2008 B2
7329236 Kesten et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7338467 Lutter Mar 2008 B2
7341570 Keren et al. Mar 2008 B2
7364566 Elkins et al. Apr 2008 B2
7367970 Govari et al. May 2008 B2
7367975 Malecki et al. May 2008 B2
7371231 Rioux et al. May 2008 B2
7381200 Katoh et al. Jun 2008 B2
7387126 Cox et al. Jun 2008 B2
7390894 Weinshilboum et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7407506 Makower Aug 2008 B2
7407671 McBride et al. Aug 2008 B2
7410486 Fuimaono et al. Aug 2008 B2
7413556 Zhang et al. Aug 2008 B2
7425212 Danek et al. Sep 2008 B1
7426409 Casscells, III et al. Sep 2008 B2
7449018 Kramer Nov 2008 B2
7481803 Kesten et al. Jan 2009 B2
7481808 Koyfman et al. Jan 2009 B2
7485104 Kieval Feb 2009 B2
7487780 Hooven Feb 2009 B2
7494485 Beck et al. Feb 2009 B2
7494486 Mische et al. Feb 2009 B2
7505812 Eggers et al. Mar 2009 B1
7512445 Truckai et al. Mar 2009 B2
7529589 Williams et al. May 2009 B2
RE40863 Tay et al. Jul 2009 E
7556624 Laufer et al. Jul 2009 B2
7563247 Maguire et al. Jul 2009 B2
7566319 McAuley et al. Jul 2009 B2
7582111 Krolik et al. Sep 2009 B2
7591996 Hwang et al. Sep 2009 B2
7597704 Frazier et al. Oct 2009 B2
7603166 Casscells, III et al. Oct 2009 B2
7604633 Truckai et al. Oct 2009 B2
7615072 Rust et al. Nov 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7632268 Edwards et al. Dec 2009 B2
7635383 Gumm Dec 2009 B2
7641633 Laufer et al. Jan 2010 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7670279 Gertner Mar 2010 B2
7678108 Chrisitian et al. Mar 2010 B2
7706882 Francischelli et al. Apr 2010 B2
7717948 Demarais et al. May 2010 B2
7722539 Carter et al. May 2010 B2
7736360 Mody et al. Jun 2010 B2
7736362 Eberl et al. Jun 2010 B2
7744594 Yamazaki et al. Jun 2010 B2
7753907 DiMatteo et al. Jul 2010 B2
7766892 Keren et al. Aug 2010 B2
7778703 Gross et al. Aug 2010 B2
7792568 Zhong et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7811313 Mon et al. Oct 2010 B2
7818053 Kassab Oct 2010 B2
7822460 Halperin et al. Oct 2010 B2
7832407 Gertner Nov 2010 B2
7833220 Mon et al. Nov 2010 B2
7837720 Mon Nov 2010 B2
7841978 Gertner Nov 2010 B2
7846172 Makower Dec 2010 B2
7849860 Makower et al. Dec 2010 B2
7901402 Jones et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7942928 Webler et al. May 2011 B2
7946976 Gertner May 2011 B2
7959627 Utley et al. Jun 2011 B2
7967782 Laufer et al. Jun 2011 B2
7972330 Alejandro et al. Jul 2011 B2
8001976 Gertner Aug 2011 B2
8012147 Lafontaine Sep 2011 B2
8019435 Hastings et al. Sep 2011 B2
8021362 Deem et al. Sep 2011 B2
8021413 Dierking et al. Sep 2011 B2
8025661 Arnold et al. Sep 2011 B2
8075580 Makower Dec 2011 B2
8080006 Lafontaine et al. Dec 2011 B2
8088127 Mayse et al. Jan 2012 B2
8123741 Marrouche et al. Feb 2012 B2
8128617 Bencini et al. Mar 2012 B2
8131371 Demarais et al. Mar 2012 B2
8131372 Levin et al. Mar 2012 B2
8140170 Rezai et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150518 Levin et al. Apr 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8152830 Gumm Apr 2012 B2
8175711 Demarais et al. May 2012 B2
8187261 Watson May 2012 B2
8221407 Phan et al. Jul 2012 B2
8226637 Satake Jul 2012 B2
8231617 Satake Jul 2012 B2
8251992 Utley et al. Aug 2012 B2
8257413 Danek et al. Sep 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8277379 Lau et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8317776 Ferren et al. Nov 2012 B2
8343031 Gertner Jan 2013 B2
8347891 Demarais et al. Jan 2013 B2
8353945 Andreas et al. Jan 2013 B2
8382697 Brenneman et al. Feb 2013 B2
8388680 Starksen et al. Mar 2013 B2
8396548 Perry et al. Mar 2013 B2
8401650 Simon et al. Mar 2013 B2
8401667 Gustus et al. Mar 2013 B2
8403881 Ferren et al. Mar 2013 B2
8409172 Moll et al. Apr 2013 B2
8460358 Andreas et al. Jun 2013 B2
8465452 Kassab Jun 2013 B2
8469919 Ingle et al. Jun 2013 B2
8480663 Ingle et al. Jul 2013 B2
8666496 Simon et al. Mar 2014 B2
8740895 Mayse et al. Jun 2014 B2
8758334 Coe et al. Jun 2014 B2
8777943 Mayse et al. Jul 2014 B2
8909316 Ng Dec 2014 B2
8920414 Stone et al. Dec 2014 B2
8951251 Willard Feb 2015 B2
9005191 Azamian et al. Apr 2015 B2
9011462 Adams et al. Apr 2015 B2
9011463 Adams et al. Apr 2015 B2
9072902 Mathur et al. Jul 2015 B2
9084609 Smith Jul 2015 B2
9174050 Mathur et al. Nov 2015 B2
9179973 Nabutovsky et al. Nov 2015 B2
9186211 Mathur Nov 2015 B2
9237984 Hawkins et al. Jan 2016 B2
9265575 Coe et al. Feb 2016 B2
9314300 Nabutovsky et al. Apr 2016 B2
9402684 Mathur et al. Aug 2016 B2
9414885 Willard Aug 2016 B2
9427283 Nabutovsky et al. Aug 2016 B2
9463062 Smith et al. Oct 2016 B2
9463065 Sugimoto et al. Oct 2016 B2
9566114 Mathur Feb 2017 B2
20010007070 Stewart et al. Jul 2001 A1
20010044596 Jaafar Nov 2001 A1
20020045811 Kittrell et al. Apr 2002 A1
20020077592 Barry Jun 2002 A1
20020082552 Ding et al. Jun 2002 A1
20020087208 Koblish et al. Jul 2002 A1
20020095197 Lardo et al. Jul 2002 A1
20020103445 Randert et al. Aug 2002 A1
20020107515 Edwards et al. Aug 2002 A1
20020107536 Hussein Aug 2002 A1
20020139379 Edwards et al. Oct 2002 A1
20020143324 Edwards Oct 2002 A1
20020147480 Mamayek Oct 2002 A1
20020165532 Hill et al. Nov 2002 A1
20020165535 Lesh et al. Nov 2002 A1
20020183682 Darvish et al. Dec 2002 A1
20030018327 Truckai et al. Jan 2003 A1
20030028114 Casscells et al. Feb 2003 A1
20030050635 Truckai et al. Mar 2003 A1
20030050637 Maguire et al. Mar 2003 A1
20030050681 Pianca et al. Mar 2003 A1
20030060857 Perrson et al. Mar 2003 A1
20030060858 Kieval et al. Mar 2003 A1
20030069619 Fenn et al. Apr 2003 A1
20030074039 Puskas Apr 2003 A1
20030083653 Maguire et al. May 2003 A1
20030114791 Rosenthal et al. Jun 2003 A1
20030120271 Burnside et al. Jun 2003 A1
20030125790 Fastovsky et al. Jul 2003 A1
20030144658 Schwartz et al. Jul 2003 A1
20030158584 Cates et al. Aug 2003 A1
20030176816 Maguire et al. Sep 2003 A1
20030178032 Ingle et al. Sep 2003 A1
20030181897 Thomas et al. Sep 2003 A1
20030195496 Maguire et al. Oct 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20030199863 Swanson et al. Oct 2003 A1
20030216721 Diederich et al. Nov 2003 A1
20030216792 Levin et al. Nov 2003 A1
20030229340 Sherry et al. Dec 2003 A1
20030229384 Mon Dec 2003 A1
20030233099 Danaek et al. Dec 2003 A1
20040006359 Laguna Jan 2004 A1
20040010289 Biggs et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040019349 Fuimaono et al. Jan 2004 A1
20040024371 Plicchi et al. Feb 2004 A1
20040054367 Jimenez et al. Mar 2004 A1
20040064090 Keren et al. Apr 2004 A1
20040064093 Hektner et al. Apr 2004 A1
20040073206 Foley et al. Apr 2004 A1
20040082978 Harrison et al. Apr 2004 A1
20040088002 Boyle et al. May 2004 A1
20040111016 Casscells et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040122421 Wood Jun 2004 A1
20040147915 Hasebe Jul 2004 A1
20040162555 Farley et al. Aug 2004 A1
20040167506 Chen Aug 2004 A1
20040181178 Aldrich et al. Sep 2004 A1
20040186468 Edwards Sep 2004 A1
20040215186 Cornelius et al. Oct 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20040243022 Carney et al. Dec 2004 A1
20040243199 Mon et al. Dec 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040260277 Maguire Dec 2004 A1
20040267250 Yon et al. Dec 2004 A1
20050080374 Esch et al. Apr 2005 A1
20050080409 Young et al. Apr 2005 A1
20050096647 Steinke et al. May 2005 A1
20050113822 Fuimaono et al. May 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050149080 Hunter et al. Jul 2005 A1
20050149158 Hunter et al. Jul 2005 A1
20050149173 Hunter et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050154445 Hunter et al. Jul 2005 A1
20050154453 Hunter et al. Jul 2005 A1
20050154454 Hunter et al. Jul 2005 A1
20050165389 Swain et al. Jul 2005 A1
20050165391 Maguire et al. Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050165488 Hunter et al. Jul 2005 A1
20050175661 Hunter et al. Aug 2005 A1
20050175662 Hunter et al. Aug 2005 A1
20050175663 Hunter et al. Aug 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050177225 Hunter et al. Aug 2005 A1
20050181004 Hunter et al. Aug 2005 A1
20050181008 Hunter et al. Aug 2005 A1
20050181011 Hunter et al. Aug 2005 A1
20050181977 Hunter et al. Aug 2005 A1
20050182479 Bonsignore et al. Aug 2005 A1
20050183728 Hunter et al. Aug 2005 A1
20050186242 Hunter et al. Aug 2005 A1
20050186243 Hunter et al. Aug 2005 A1
20050187579 Danek et al. Aug 2005 A1
20050191331 Hunter et al. Sep 2005 A1
20050203434 Kassab Sep 2005 A1
20050203498 Mon et al. Sep 2005 A1
20050209587 Joye et al. Sep 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050234437 Baxter et al. Oct 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20060004323 Chang Jan 2006 A1
20060058678 Vitek et al. Mar 2006 A1
20060084966 Maguire et al. Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060095029 Young et al. May 2006 A1
20060100618 Chan et al. May 2006 A1
20060142790 Gertner Jun 2006 A1
20060147492 Hunter et al. Jul 2006 A1
20060149166 Zvuloni Jul 2006 A1
20060171895 Bucay-Couto Aug 2006 A1
20060182873 Klisch et al. Aug 2006 A1
20060184221 Stewart et al. Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060212076 Demarais et al. Sep 2006 A1
20060224153 Fischell et al. Oct 2006 A1
20060240070 Cromack et al. Oct 2006 A1
20060247618 Kaplan et al. Nov 2006 A1
20060247619 Kaplan et al. Nov 2006 A1
20060247760 Ganesan et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060280858 Kokish Dec 2006 A1
20070043409 Brian et al. Feb 2007 A1
20070093710 Maschke Apr 2007 A1
20070100405 Thompson et al. May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070149963 Matsukuma et al. Jun 2007 A1
20070162109 Davila et al. Jul 2007 A1
20070179496 Swoyer et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208256 Marilla Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070219576 Cangialosi Sep 2007 A1
20070225781 Saadat et al. Sep 2007 A1
20070233170 Gertner Oct 2007 A1
20070239062 Chopra et al. Oct 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070278103 Hoerr et al. Dec 2007 A1
20070282302 Wachsman et al. Dec 2007 A1
20070287994 Patel Dec 2007 A1
20080009927 Vilims Jan 2008 A1
20080015501 Gertner Jan 2008 A1
20080071306 Gertner Mar 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080086072 Bonutti et al. Apr 2008 A1
20080097251 Babaev Apr 2008 A1
20080119879 Brenneman et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080140002 Ramzipoor et al. Jun 2008 A1
20080147002 Gertner Jun 2008 A1
20080161717 Gertner Jul 2008 A1
20080171974 Lafontaine et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080172104 Kieval et al. Jul 2008 A1
20080208169 Boyle et al. Aug 2008 A1
20080245371 Gruber Oct 2008 A1
20080255550 Bell Oct 2008 A1
20080275484 Gertner Nov 2008 A1
20080281347 Gertner Nov 2008 A1
20080300618 Gertner Dec 2008 A1
20080319513 Pu et al. Dec 2008 A1
20090018486 Goren et al. Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090074828 Alexis et al. Mar 2009 A1
20090118726 Auth et al. May 2009 A1
20090143640 Saadat et al. Jun 2009 A1
20090156988 Ferren et al. Jun 2009 A1
20090157057 Ferren et al. Jun 2009 A1
20090157161 Desai et al. Jun 2009 A1
20090203962 Miller et al. Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090247933 Maor et al. Oct 2009 A1
20090248012 Maor et al. Oct 2009 A1
20090270850 Zhou et al. Oct 2009 A1
20090287137 Crowley Nov 2009 A1
20090318749 Stolen et al. Dec 2009 A1
20100049186 Ingle et al. Feb 2010 A1
20100049188 Nelson et al. Feb 2010 A1
20100069837 Rassat et al. Mar 2010 A1
20100076425 Carroux Mar 2010 A1
20100087782 Ghaffari et al. Apr 2010 A1
20100125268 Gustus et al. May 2010 A1
20100130836 Malchano et al. May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais et al. Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20100168624 Sliwa Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100191232 Boveda Jul 2010 A1
20100204560 Salahieh et al. Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100222854 Demarais et al. Sep 2010 A1
20100249702 Magana et al. Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100268217 Habib Oct 2010 A1
20100298821 Garbagnati Nov 2010 A1
20100324472 Wulfman Dec 2010 A1
20110009750 Taylor et al. Jan 2011 A1
20110112530 Keller May 2011 A1
20110137155 Weber et al. Jun 2011 A1
20110146673 Keast et al. Jun 2011 A1
20110166499 Demarais et al. Jul 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110264086 Ingle Oct 2011 A1
20110306851 Wang Dec 2011 A1
20110319809 Smith Dec 2011 A1
20120029496 Smith Feb 2012 A1
20120029500 Jenson Feb 2012 A1
20120029509 Smith Feb 2012 A1
20120029511 Smith et al. Feb 2012 A1
20120029512 Willard et al. Feb 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120071870 Salahieh et al. Mar 2012 A1
20120109021 Hastings et al. May 2012 A1
20120130289 Demarais et al. May 2012 A1
20120130345 Levin et al. May 2012 A1
20120157992 Smith et al. Jun 2012 A1
20120157993 Jenson et al. Jun 2012 A1
20120172837 Demarais et al. Jul 2012 A1
20120184952 Jenson et al. Jul 2012 A1
20120191083 Moll et al. Jul 2012 A1
20120197246 Mauch Aug 2012 A1
20120209261 Mayse et al. Aug 2012 A1
20120271277 Fischell et al. Oct 2012 A1
20120296232 Ng Nov 2012 A1
20120296329 Ng Nov 2012 A1
20130006232 Pellegrino et al. Jan 2013 A1
20130012866 Deem et al. Jan 2013 A1
20130012867 Demarais et al. Jan 2013 A1
20130035681 Subramaniam et al. Feb 2013 A1
20130053732 Heuser Feb 2013 A1
20130066316 Steinke et al. Mar 2013 A1
20130085493 Bloom et al. Apr 2013 A1
20130090649 Smith et al. Apr 2013 A1
20130096604 Hanson et al. Apr 2013 A1
20130116687 Willard May 2013 A1
20130123778 Richardson et al. May 2013 A1
20130165916 Mathur et al. Jun 2013 A1
20130165917 Mathur et al. Jun 2013 A1
20130165923 Mathur et al. Jun 2013 A1
20130165924 Mathur et al. Jun 2013 A1
20130165925 Mathur et al. Jun 2013 A1
20130165926 Mathur et al. Jun 2013 A1
20130165990 Mathur et al. Jun 2013 A1
20130172815 Perry et al. Jul 2013 A1
20130172872 Subramaniam et al. Jul 2013 A1
20130172877 Subramaniam et al. Jul 2013 A1
20130172881 Hill et al. Jul 2013 A1
20130231658 Wang et al. Sep 2013 A1
20130231659 Hill et al. Sep 2013 A1
20130253628 Smith et al. Sep 2013 A1
20130274658 Steinke et al. Oct 2013 A1
20130289555 Mayse et al. Oct 2013 A1
20130289556 Mayse et al. Oct 2013 A1
20130296853 Sugimoto et al. Nov 2013 A1
20130304052 Rizq et al. Nov 2013 A1
20140018794 Anderson et al. Jan 2014 A1
20140018888 Ostroot et al. Jan 2014 A1
20140058294 Gross et al. Feb 2014 A1
20140058374 Edmunds et al. Feb 2014 A1
20140058376 Horn et al. Feb 2014 A1
20140066921 Coe et al. Mar 2014 A1
20140066924 Azamian et al. Mar 2014 A1
20140074083 Horn et al. Mar 2014 A1
20140074089 Nishii Mar 2014 A1
20140128859 Lee May 2014 A1
20140135661 Garrison et al. May 2014 A1
20140135715 Lambert et al. May 2014 A1
20140135755 Sutermeister et al. May 2014 A1
20140180077 Huennekens et al. Jun 2014 A1
20140180196 Stone et al. Jun 2014 A1
20140188103 Millett Jul 2014 A1
20140200578 Groff et al. Jul 2014 A1
20140236137 Tran et al. Aug 2014 A1
20140243821 Salahieh et al. Aug 2014 A1
20140249524 Kocur Sep 2014 A1
20140257266 Kasprzyk et al. Sep 2014 A1
20140257280 Hanson et al. Sep 2014 A1
20140257281 Squire et al. Sep 2014 A1
20140276724 Goshayeshgar Sep 2014 A1
20140276728 Goshayeshgar Sep 2014 A1
20140276747 Abunassar et al. Sep 2014 A1
20140276756 Hill Sep 2014 A1
20140276789 Dandler et al. Sep 2014 A1
20140276811 Koblish et al. Sep 2014 A1
20140303617 Shimada Oct 2014 A1
20140316496 Masson et al. Oct 2014 A1
20140330267 Harrington Nov 2014 A1
20140350533 Horvath et al. Nov 2014 A1
20140378962 Anderson et al. Dec 2014 A1
20140378966 Haverkost et al. Dec 2014 A1
20140378968 Sutermeister et al. Dec 2014 A1
20150005762 Belk et al. Jan 2015 A1
20150005764 Hanson et al. Jan 2015 A1
20150005799 Lindquist et al. Jan 2015 A1
20150018817 Willard Jan 2015 A1
20150018819 Sutermeister Jan 2015 A1
20150025525 Willard et al. Jan 2015 A1
20150025532 Hanson et al. Jan 2015 A1
20150025533 Groff et al. Jan 2015 A1
20150057656 Gupta et al. Feb 2015 A1
20150057657 Squire et al. Feb 2015 A1
20150066013 Salahieh et al. Mar 2015 A1
20150066023 Anderson et al. Mar 2015 A1
20150080882 Skinner et al. Mar 2015 A1
20150080883 Haverkost et al. Mar 2015 A1
20150105659 Salahieh et al. Apr 2015 A1
20150105773 Weber et al. Apr 2015 A1
20150105774 Lindquist et al. Apr 2015 A1
20150112328 Willard et al. Apr 2015 A1
20150112329 Ng Apr 2015 A1
20150119882 Cao et al. Apr 2015 A1
20150148794 Squire et al. May 2015 A1
20150148797 Willard May 2015 A1
20150190194 Weber et al. Jul 2015 A1
20150190195 Hanson et al. Jul 2015 A1
20150196354 Haverkost et al. Jul 2015 A1
20150201997 Osypka Jul 2015 A1
20150216591 Cao et al. Aug 2015 A1
20150265339 Lindquist et al. Sep 2015 A1
20150289770 Wang Oct 2015 A1
20150297292 Suter Meister et al. Oct 2015 A1
20150342673 Squire et al. Dec 2015 A1
20150366608 Weber et al. Dec 2015 A1
20160015452 Nabutovsky et al. Jan 2016 A1
20160022359 Sugimoto et al. Jan 2016 A1
20160066992 Mathur Mar 2016 A1
20160074112 Himmelstein et al. Mar 2016 A1
20160106984 Mathur et al. Apr 2016 A1
20160175582 Serna et al. Jun 2016 A1
20160184010 Nabutovsky et al. Jun 2016 A1
20160324574 Willard Nov 2016 A1
20160331451 Nabutovsky et al. Nov 2016 A1
20160367316 Smith et al. Dec 2016 A1
20160374748 Salahieh et al. Dec 2016 A9
20170000560 Mathur et al. Jan 2017 A1
Foreign Referenced Citations (255)
Number Date Country
2384866 Apr 2001 CA
102271607 Dec 2011 CN
202386778 Aug 2012 CN
102933169 Feb 2013 CN
202960760 Jun 2013 CN
103549993 Feb 2014 CN
106572881 Apr 2017 CN
29909082 Jul 1999 DE
10252325 May 2004 DE
10257146 Jun 2004 DE
102008048616 Apr 2010 DE
20 2004 021 941 May 2013 DE
20 2004 021 942 May 2013 DE
20 2004 021 949 May 2013 DE
20 2004 021 951 Jun 2013 DE
20 2004 021 952 Jun 2013 DE
20 2004 021 953 Jun 2013 DE
20 2004 021 944 Jul 2013 DE
558297 Sep 1993 EP
1064886 Jan 2001 EP
1180004 Feb 2002 EP
1264613 Dec 2002 EP
1297795 Apr 2003 EP
1332724 Aug 2003 EP
1335677 Aug 2003 EP
1433448 Jun 2004 EP
1442719 Aug 2004 EP
1547537 Jun 2005 EP
1579889 Sep 2005 EP
1634542 Mar 2006 EP
1667595 Jun 2006 EP
1698296 Sep 2006 EP
1709922 Oct 2006 EP
1715798 Nov 2006 EP
1865870 Dec 2007 EP
1906853 Apr 2008 EP
1946712 Jul 2008 EP
1948301 Jul 2008 EP
1961394 Aug 2008 EP
1009303 Jun 2009 EP
2076193 Jul 2009 EP
2076194 Jul 2009 EP
2076198 Jul 2009 EP
2197533 Jun 2010 EP
2208506 Jul 2010 EP
2241279 Oct 2010 EP
2320821 May 2011 EP
2329859 Jun 2011 EP
2341839 Jul 2011 EP
2352542 Aug 2011 EP
2355737 Aug 2011 EP
2370015 Oct 2011 EP
2378956 Oct 2011 EP
2429641 Mar 2012 EP
2438877 Apr 2012 EP
2452648 May 2012 EP
2455034 May 2012 EP
2455035 May 2012 EP
2455036 May 2012 EP
2519173 Nov 2012 EP
2555699 Feb 2013 EP
2558016 Feb 2013 EP
2568905 Mar 2013 EP
2598068 Jun 2013 EP
2598070 Jun 2013 EP
2598070 Jun 2013 EP
2598071 Jun 2013 EP
2613724 Jul 2013 EP
2656807 Oct 2013 EP
2694150 Feb 2014 EP
2694158 Feb 2014 EP
2701795 Mar 2014 EP
2709517 Mar 2014 EP
2731531 May 2014 EP
2755588 Jul 2014 EP
2760532 Aug 2014 EP
2788078 Oct 2014 EP
2793724 Oct 2014 EP
2797533 Nov 2014 EP
2797534 Nov 2014 EP
2818129 Dec 2014 EP
2836151 Feb 2015 EP
2848225 Mar 2015 EP
2851027 Mar 2015 EP
2872064 May 2015 EP
2895093 Jul 2015 EP
2914328 Sep 2015 EP
2967734 Jan 2016 EP
3003191 Apr 2016 EP
3010435 Apr 2016 EP
3010437 Apr 2016 EP
3016605 May 2016 EP
3019103 May 2016 EP
3019106 May 2016 EP
3024405 Jun 2016 EP
3024406 Jun 2016 EP
3035878 Jun 2016 EP
3035879 Jun 2016 EP
3041425 Jul 2016 EP
3043733 Jul 2016 EP
3049007 Aug 2016 EP
3057520 Aug 2016 EP
3057521 Aug 2016 EP
3060153 Aug 2016 EP
3091922 Nov 2016 EP
3091923 Nov 2016 EP
3091924 Nov 2016 EP
3102136 Dec 2016 EP
3131489 Feb 2017 EP
3138521 Mar 2017 EP
3148467 Apr 2017 EP
3157455 Apr 2017 EP
2313062 Nov 1997 GB
2003510126 Mar 2003 JP
2016086998 May 2016 JP
6122217 Aug 2016 JP
WO-9103207 Mar 1991 WO
WO-9117731 Nov 1991 WO
WO-199211898 Jul 1992 WO
WO-1992020291 Nov 1992 WO
WO-199407446 Apr 1994 WO
WO-9418896 Sep 1994 WO
WO-9501751 Jan 1995 WO
WO-199510319 Apr 1995 WO
WO-1995025472 Sep 1995 WO
WO-9531142 Nov 1995 WO
WO-199634559 Nov 1996 WO
WO-9703604 Feb 1997 WO
WO-9732532 Sep 1997 WO
WO-9725917 Oct 1997 WO
WO-1997036548 Oct 1997 WO
WO-9745156 Dec 1997 WO
WO-9745157 Dec 1997 WO
WO-9818393 May 1998 WO
WO-9834565 Aug 1998 WO
WO-9835638 Aug 1998 WO
WO-1998042403 Oct 1998 WO
WO-199900060 Jan 1999 WO
WO-9916370 Apr 1999 WO
WO-9934741 Jul 1999 WO
WO-199952424 Oct 1999 WO
WO-1999062413 Dec 1999 WO
WO-2000000100 Jan 2000 WO
WO-0010475 Mar 2000 WO
WO-0047118 Aug 2000 WO
WO-0059394 Oct 2000 WO
WO-0064387 Nov 2000 WO
WO-0069376 Nov 2000 WO
WO-0072909 Dec 2000 WO
WO-2001022897 Apr 2001 WO
WO-2001070114 Sep 2001 WO
WO-0174255 Oct 2001 WO
WO-0195820 Dec 2001 WO
WO-0215807 Feb 2002 WO
WO-0228475 Apr 2002 WO
WO-0239915 May 2002 WO
WO-02080766 Oct 2002 WO
WO-02089871 Nov 2002 WO
WO-2003022167 Mar 2003 WO
WO-03077781 Sep 2003 WO
WO-2003082080 Oct 2003 WO
WO-2004049976 Jun 2004 WO
WO-2004069300 Aug 2004 WO
WO-2004076146 Sep 2004 WO
WO-2004105807 Dec 2004 WO
WO-2004110258 Dec 2004 WO
WO-2005002662 Jan 2005 WO
WO-2005007000 Jan 2005 WO
WO-2005030072 Apr 2005 WO
WO-2005037070 Apr 2005 WO
WO-2005041748 May 2005 WO
WO-2005074829 Aug 2005 WO
WO-2005110528 Nov 2005 WO
WO-2006041881 Apr 2006 WO
WO2006105121 Oct 2006 WO
WO-2006105121 Oct 2006 WO
WO-2007008954 Jan 2007 WO
WO-2007008954 Jan 2007 WO
WO-2007033379 Mar 2007 WO
WO-2007047870 Apr 2007 WO
WO2007078997 Jul 2007 WO
WO-2007078997 Jul 2007 WO
WO-2007113865 Oct 2007 WO
WO-2007146215 Dec 2007 WO
WO2008049084 Apr 2008 WO
WO-2008049084 Apr 2008 WO
WO-2008049087 Apr 2008 WO
WO-2008102363 Aug 2008 WO
WO-2009036471 Mar 2009 WO
WO-2009113064 Sep 2009 WO
WO-2009121017 Oct 2009 WO
WO-2009137819 Nov 2009 WO
WO-2010042653 Apr 2010 WO
WO-2010056771 May 2010 WO
WO-2010070766 Jun 2010 WO
WO-2010099207 Sep 2010 WO
WO-2010102310 Sep 2010 WO
WO-2010134503 Nov 2010 WO
WO-2011005901 Jan 2011 WO
WO-2011060200 May 2011 WO
WO-2011055143 May 2011 WO
WO-2011082278 Jul 2011 WO
WO-2011082279 Jul 2011 WO
WO-2011119857 Sep 2011 WO
2011130534 Oct 2011 WO
WO-2011126580 Oct 2011 WO
WO-2011130534 Oct 2011 WO
WO-2011143468 Nov 2011 WO
WO-2012016135 Feb 2012 WO
WO-2012016137 Feb 2012 WO
WO-2012033860 Mar 2012 WO
WO-2012075156 Jun 2012 WO
WO-2012122157 Sep 2012 WO
WO-2012130337 Oct 2012 WO
WO-2012131107 Oct 2012 WO
WO-2012135703 Oct 2012 WO
WO-2012161875 Nov 2012 WO
WO-2012174375 Dec 2012 WO
WO-2013013156 Jan 2013 WO
WO-2013028812 Feb 2013 WO
WO-2013040201 Mar 2013 WO
WO-2013049601 Apr 2013 WO
WO-2013055685 Apr 2013 WO
WO-2013070724 May 2013 WO
WO-2013077283 May 2013 WO
WO-2013096913 Jun 2013 WO
WO-2013096916 Jun 2013 WO
WO-2013096919 Jun 2013 WO
WO-2013096920 Jun 2013 WO
WO-2013096922 Jun 2013 WO
WO-2013101446 Jul 2013 WO
WO-2013101452 Jul 2013 WO
WO-2013112844 Aug 2013 WO
WO-2013131046 Sep 2013 WO
WO-2013154775 Oct 2013 WO
WO2013169340 Nov 2013 WO
WO-2014022379 Feb 2014 WO
WO-2014036160 Mar 2014 WO
WO-2014056460 Apr 2014 WO
WO-2014059165 Apr 2014 WO
WO-2014071223 May 2014 WO
WO-2014078301 May 2014 WO
WO-2014096969 Jun 2014 WO
WO-2014100226 Jun 2014 WO
WO-2014110579 Jul 2014 WO
WO-2014149690 Sep 2014 WO
WO-2014150204 Sep 2014 WO
WO-2014158727 Oct 2014 WO
WO-2014164445 Oct 2014 WO
WO-2014163987 Oct 2014 WO
WO-2014179768 Nov 2014 WO
WO-2014189887 Nov 2014 WO
WO-2015161181 Oct 2015 WO
WO-2015183952 Dec 2015 WO
WO-2015196169 Dec 2015 WO
Non-Patent Literature Citations (161)
Entry
US 8,398,630, 3/2013 (withdrawn)
International Search Report and Written Opinion for International Application No. PCT/US2015/029796 dated Aug. 11, 2015 12 pages.
Gornick, C. et al., “Validation of a New Noncontact Catheter System for Electroanatomic Mapping of Left Ventricular Endocardium.” Circulation, 1999; 99: 829-835.
Tanaka, K. et al., “A New Radiofrequency Thermal Balloon Catheter for Pulmonary Vein Isolation.” Journal of the American College of Cardiology, vol. 38, No. 7, 2001, 8 pages.
Satake, S., “Usefulness of a New Radiofrequency Thermal Balloon Catheter for Pulmonary Vein Isolation: A New Device for Treatment of Atrial Fibrillation.” Journal of Cardiovascular Electrophysiology, vol. 14, No. 6, Jun. 2003, 7pages.
Pieper et al., “Design and Implementation of a New Computerized System for Intraoperative Cardiac Mapping.” Journal of Applied Physiology, 1991, vol. 71, No. 4, pp. 1529-1539.
Remo, Benjamin F. et al., “Safety and Efficacy of Renal Denervation as a Novel Treatment of Ventricular Tachycardia Storm in Patients with Cardiomyopathy.” Heart Rhythm, 2014, 11(4), 541-6.
U.S. Appl. No. 60/852,787, filed Oct. 18, 2006, 112 pages.
International Search Report and Written Opinion for International App. No. PCT/US2015/021835, dated Sep. 16, 2015, 15 pages.
U.S. Appl. No. 60/921,973, filed Apr. 4, 2007, 130 pages.
U.S. Appl. No. 60/976,733, filed Oct. 1, 2007, 49 pages.
Doumas, Michael et al., “Renal Nerve Ablation for Resistant Hypertension: The Dust Has Not Yet Settled.” The Journal of Clinical Hypertension. 2014; vol. 16, No. 6, 2 pages.
Messerli, Franz H. et al. “Renal Denervation for Resistant Hypertension: Dead or Alive?” Healio: Cardiology today's Intervention, May/Jun. 2014, 2 pages.
Miller, Reed, “Finding a Future for Renal Denervation With Better Controlled Trials.” Pharma & Medtech Business Intelligence, Article # 01141006003, Oct. 6, 2014, 4 pages.
Papademetriou, Vasilios et al., “Catheter-Based Renal Denervation for Resistant Hypertension: 12-Month Results of the EnligHTN I First-in-Human Study Using a Multielectrode Ablation System.” Hypertension. 2014; 64: 565-572.
Papademetriou, Vasilios et al., “Renal Nerve Ablation for Resistant Hypertension: How Did We Get Here, Present Status, and Future Directions.” Circulation. 2014; 129: 1440-1450.
Papademetriou, Vasilios, “Renal Denervation and Symplicity HTN-3: “Dubium Sapientiae Initium” (Doubt Is the Beginning of Wisdom)”, Circulation Research, 2014; 115: 211-214.
Beale et al., “Minimally Invasive Treatment for Varicose Veins: A Review of Endovenous Laser Treatment and Radiofrequency Ablation”. Lower Extremity Wounds 3(4), 2004, 10 pages.
Eick Olaf “Temperature Controlled Radiofrequency Ablation.” Indian Pacing and Electrophysiology Journal vol. 2. No. 3 2002 8 pages.
European Search Report dated Feb. 22, 2013; Application No. 12180432.2; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages.
European Search Report dated Feb. 28, 2013; European Application No. 12180427.2; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 4 pages.
European Search Report dated May 3, 2012; European Patent Application No. 11192514.5; Applicant: Ardian Inc.; 7 pages.
European Search Report dated Jan. 30, 2013; Application No. 12180428.0; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages.
European Search Report dated Jan. 30, 2013; Application No. 12180430.6; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages.
European Search Report dated Jan. 30, 2013; Application No. 12180431.4; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages.
European Search Report dated Jan. 30, 2013; European Application No. 12180426.4; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages.
European Search Report dated May 3, 2012; European Patent Application No. 11192511.1; Applicant: Ardain Inc.; 6 pages.
U.S. Appl. No. 95/002,110, filed Aug. 29, 2012, Demarais et al.
U.S. Appl. No. 95/002,209, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,233, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,243, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,253, filed Sep. 13, 2012, Demarais et al.
U.S. Appl. No. 95/002,255, filed Sep. 13, 2012, Demarais et al.
U.S. Appl. No. 95/002,292, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,327, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,335, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,336, filed Sep. 14, 2012, Levin et al.
U.S. Appl. No. 95/002,356, filed Sep. 14, 2012, Demarais et al.
“2011 Edison Award Winners.” Edison Awards: Honoring Innovations & Innovators, 2011, 6 pages, <http://www.edisonawards.com/BestNewProduct_2011.php>.
“2012 top 10 advances in heart disease and stroke research: American Heart Association/America Stroke Association Top 10 Research Report.” American Heart Association, Dec. 17, 2012, 5 pages, <http://newsroom.heart.org/news/2012-top-10-advances-in-heart-241901>.
“Ardian(R) Receives 2010 EuroPCR Innovation Award and Demonstrates Further Durability of Renal Denervation Treatment for Hypertension.” PR Newswire, Jun. 3, 2010, 2 pages, <http://www.prnewswire.com/news-releases/ardianr-receives-2010-europer-innovation-award-and-demonstrates-further-durability-of-renal-denervation-treatment-for-hypertension-95545014.html>.
“Boston Scientific to Acquire Vessix Vascular, Inc.: Company to Strengthen Hypertension Program with Acquisition of Renal Denervation Technology.” Boston Scientific: Advancing science for life—Investor Relations, Nov. 8, 2012, 2 pages, <http://phx.corporate-ir.net/phoenix.zhtml?c=62272&p=irol-newsArticle&id=1756108>.
“Cleveland Clinic Unveils Top 10 Medical Innovations for 2012: Experts Predict Ten Emerging Technologies that will Shape Health Care Next Year.” Cleveland Clinic, Oct. 6, 2011, 2 pages. <http://my.clevelandclinic.org/media_relations/library/2011/2011-10-6-cleveland-clinic-unveils-top-10-medical-innovations-for-2012.aspx>.
“Does renal denervation represent a new treatment option for resistant hypertension?” Interventional News, Aug. 3, 2010, 2 pages. <http://www.cxvascular.com/in-latest-news/interventional-news---latest-news/does-renal-denervation-represent-a-new-treatment-option-for-resistant-hypertension>.
“Iberis—Renal Sympathetic Denervation System: Turning innovation into quality care.” [Brochure], Terumo Europe N.V., 2013, Europe, 3 pages.
“Neurotech Reports Announces Winners of Gold Electrode Awards.” Neurotech business report, 2009. 1 page. <http://www.neurotechreports.com/pages/goldelectrodes09.html>.
“Quick. Consistent. Controlled. OneShot renal Denervation System” [Brochure], Covidien: positive results for life, 2013, (n.l.), 4 pages.
“Renal Denervation Technology of Vessix Vascular, Inc. been acquired by Boston Scientific Corporation (BSX) to pay up to $425 Million.” Vessix Vascular Pharmaceutical Intelligence: A blog specializing in Pharmaceutical Intelligence and Analytics, Nov. 8, 2012, 21 pages, <http://pharmaceuticalintelligence.com/tag/vessix-vascular/>.
“The Edison AwardsIM” Edison Awards: Honoring Innovations & Innovators, 2013, 2 pages, <http://www.edisonawards.com/Awards.php>.
“The Future of Renal denervation for the Treatment of Resistant Hypertension.” St. Jude Medical, Inc., 2012, 12 pages.
“Vessix Renal Denervation System: So Advanced It's Simple.” [Brochure], Boston Scientific: Advancing science for life, 2013, 6 pages.
Asbell, Penny, “Conductive Keratoplasty for the Correction of Hyperopia.” Tr Am Ophth Soc, 2001, vol. 99, 10 pages.
Badoer, Emilio, “Cardiac afferents play the dominant role in renal nerve inhibition elicited by volume expansion in the rabbit.” Am J Physiol Regul Integr Comp Physiol, vol. 274, 1998, 7 pages.
Bengel, Frank, “Serial Assessment of Sympathetic Reinnervation After Orthotopic Heart Transplantation: A longitudinal Study Using PET and C-11 Hydroxyephedrine.” Circulation, vol. 99, 1999,7 pages.
Benito, F., et al. “Radiofrequency catheter ablation of accessory pathways in infants.” Heart, 78:160-162 (1997).
Bettmann, Michael, Carotid Stenting and Angioplasty: A Statement for Healthcare Professionals From the Councils on Cardiovascular Radiology, Stroke, Cardio-Thoracic and Vascular Surgery, Epidemiology and Prevention, and Clinical Cardiology, American Heart Association, Circulation, vol. 97, 1998, 4 pages.
Bohm, Michael et al., “Rationale and design of a large registry on renal denervation: the Global SYMPLICITY registry.” EuroIntervention, vol. 9, 2013, 9 pages.
Brosky, John, “EuroPCR 2013: CE-approved devices line up for renal denervation approval.” Medical Device Daily, May 28, 2013, 3 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines_article&forceid=83002>.
Davis, Mark et al., “Effectiveness of Renal Denervation Therapy for Resistant Hypertension.” Journal of the American College of Cardiology, vol. 62, No. 3, 2013, 11 pages.
Dibona, G.F. “Sympathetic nervous system and kidney in hypertension.” Nephrol and Hypertension, 11: 197-200 (2002).
Dubuc, M., et al., “Feasibility of cardiac cryoablation using a transvenous steerable electrode catheter.” J Intery Cardiac Electrophysiol, 2:285-292 (1998).
Final Office Action; U.S. Appl. No. 12/827,700; dated Feb. 5, 2013, 61 pages.
Geisler, Benjamin et al., “Cost-Effectiveness and Clinical Effectiveness of Catheter-Based Renal Denervation for Resistant Hypertension.” Journal of the American College of Cardiology, col. 60, No. 14, 2012, 7 pages.
Gelfand, M., et al., “Treatment of renal failure and hypertension.” U.S. Appl. No. 60/442,970, filed Jan. 29, 2003, 23 pages.
Gertner, Jon, “Meet the Tech Duo That's Revitalizing the Medical Device Industry.” Fast Company, Apr. 15, 2013, 6:00 am, 17 pages, <http://www.fastcompany.com/3007845/meet-tech-duo-thats-revitalizing-medical-device-industry>.
Golwyn, D. H., Jr., et al. “Percutaneous Transcatheter Renal Ablation with Absolute Ethanol for Uncontrolled Hypertension or Nephrotic Syndrome: Results in 11 Patients with End-Stage Renal Disease.” JVIR, 8: 527-533 (1997).
Hall, W. H., et al. “Combined embolization and percutaneous radiofrequency ablation of a solid renal tumor.” Am. J. Roentgenol,174: 1592-1594 (2000).
Han, Y.-M, et al., “Renal artery ebolization with diluted hot contrast medium: An experimental study.” J Vasc Intery Radiol, 12: 862-868 (2001).
Hansen, J. M., et al. “The transplanted human kidney does not achieve functional reinnervation.” Clin. Sci, 87: 13-19 (1994).
Hendee, W. R. et al. “Use of Animals in Biomedical Research: The Challenge and Response.” American Medical Association White Paper (1988) 39 pages.
Hering, Dagmara et al., “Chronic kidney disease: role of sympathetic nervous system activation and potential benefits of renal denervation.” EuroIntervention, vol. 9, 2013, 9 pages.
Huang et al., “Renal denervation prevents and reverses hyperinsulinemia-induced hypertension in rats.” Hypertension 32 (1998) pp. 249-254.
Imimdtanz, “Medtronic awarded industry's highest honor for renal denervation system.” The official blog of Medtronic Australasia, Nov. 12, 2012, 2 pages, <http://97waterlooroad.wordpress.com/2012/11/12/medtronic-awarded-industrys-highest-honour-for-renal-denervation-system/>.
Kaiser, Chris, AHA Lists Year's Big Advances in CV Research, medpage Today, Dec. 18, 2012, 4 pages, <http://www.medpagetoday.com/Cardiology/PCI/36509>.
Kompanowska, E., et al., “Early Effects of renal denervation in the anaesthetised rat: Natriuresis and increased cortical blood flow.” J Physiol, 531. 2:527-534 (2001).
Lee, S.J., et al. “Ultrasonic energy in endoscopic surgery.” Yonsei Med J, 40:545-549 (1999).
Linz, Dominik et al., “Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs.” Heart Rhythm, vol. 0, No. 0, 2013, 6 pages.
Lustgarten, D.L.,et al., “Cryothermal ablation: Mechanism of tissue injury and current experience in the treatment of tachyarrhythmias.” Progr Cardiovasc Dis, 41:481-498 (1999).
Mabin, Tom et al., “First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension.” EuroIntervention, vol. 8, 2012, 5 pages.
Mahfoud, Felix et al., “Ambulatory Blood Pressure Changes after Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Circulation, 2013, 25 pages.
Mahfoud, Felix et al., “Expert consensus document from the European Society of Cardiology on catheter-based renal denervation.” European Heart Journal, 2013, 9 pages.
Mahfoud, Felix et al., “Renal Hemodynamics and Renal Function After Catheter-Based Renal Sympathetic Denervation in Patients With Resistant Hypertension.” Hypertension, 2012, 6 pages.
Medical-Dictionary.com, Definition of “Animal Model,” http://medical-dictionary.com (search “Animal Model”), 2005, 1 page.
Medtronic, Inc., Annual Report (Form 10-K) (Jun. 28, 2011) 44 pages.
Millard, F. C., et al, “Renal Embolization for ablation of function in renal failure and hypertension.” Postgraduate Medical Journal, 65, 729-734, (1989).
Oliveira, V., et al., “Renal denervation normalizes pressure and baroreceptor reflex in high renin hypertension in conscious rats.” Hypertension, 19:II-17-II-21 (1992).
Ong, K. L., et al. “Prevalence, Awareness, Treatment, and Control of Hypertension Among United States Adults 1999-2004.” Hypertension, 49: 69-75 (2007) (originally published online Dec. 11, 2006).
Ormiston, John et al., “First-in-human use of the OneShotIM renal denervation system from Covidien.” EuroIntervention, vol. 8, 2013, 4 pages.
Ormiston, John et al., “Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial.” EuroIntervention, vol. 9, 2013, 5 pages.
Pedersen, Amanda, “TCT 2012: Renal denervation device makers play show and tell.” Medical Device Daily, Oct. 26, 2012, 2 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines_article&forceid=80880>.
Peet, M., “Hypertension and its Surgical Treatment by bilateral supradiaphragmatic splanchnicectomy” Am J Surgery (1948) pp. 48-68.
Renal Denervation (RDN), Symplicity RDN System Common Q&A (2011), 4 pages, http://www.medtronic.com/rdn/mediakit/RDN%20FAQ.pdf.
Schauerte, P., et al. “Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation.” Circulation, 102:2774-2780 (2000).
Schlaich, Markus et al., “Renal Denervation in Human Hypertension: Mechanisms, Current Findings, and Future Prospects.” Curr Hypertens Rep, vol. 14, 2012, 7 pages.
Schmid, Axel et al., “Does Renal Artery Supply Indicate Treatment Success of Renal Denervation.” Cardiovasc Intervent Radiol, vol. 36, 2013, 5 pages.
Schmieder, Roland E. et al., “Updated ESH position paper on interventional therapy of resistant hypertension.” EuroIntervention, vol. 9, 2013, 9 pages.
Sievert, Horst, “Novelty Award EuroPCR 2010.” Euro PCR, 2010, 15 pages.
Solis-Herruzo et al., “Effects of lumbar sympathetic block on kidney function in cirrhotic patients with hepatorenal syndrome,” J. Hepatol. 5 (1987), pp. 167-173.
Stella, A., et al., “Effects of reversible renal denervation on haemodynamic and excretory functions on the ipsilateral and contralateral kidney in the cat.” Hypertension, 4:181-188 (1986).
Stouffer, G. A. et al., Journal of Molecular and Cellular Cardiology, vol. 62, 2013, 6 pages.
Swartz, J. F., et al., “Radiofrequency endocardial catheter ablation of accessory atrioventricular pathway atrial insertion sites.” Circulation, 87: 487-499 (1993).
Uchida, F., et al., “Effect of radiofrequency catheter ablation on parasympathetic denervation: A comparison of three different ablation sites.” PACE, 21:2517-2521 (1998).
Verloop, W. L. et al., “Renal denervation: a new treatment option in resistant arterial hypertension.” Neth Heart J., Nov. 30, 2012, 6 pages, <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547427/>.
Weinstock, M., et al., “Renal denervation prevents sodium retention and hypertension in salt sensitive rabbits with genetic baroreflex impairment.” Clinical Science, 90:287-293 (1996).
Wilcox, Josiah N., Scientific Basis Behind Renal Denervation for the Control of Hypertension, ICI 2012, Dec. 5-6, 2012. 38 pages.
Worthley, Stephen et al., “Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial.” European Heart Journal, vol. 34, 2013, 9 pages.
Worthley, Stephen, “The St. Jude Renal Denervation System Technology and Clinical Review.” The University of Adelaide Australia, 2012, 24 pages.
Zuern, Christine S., “Impaired Cardiac Baroflex Sensitivity Predicts Response to Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Journal of the American College of Cardiology, 2013, doi: 10.1016/j.jacc.2013.07.046, 24 pages.
European Search Report for European Application No. 13159256, dated Oct. 17, 2013, 6 pages.
Ahmed, Humera et al., Renal Sympathetic Denervation Using an Irrigated Radiofrequency Ablation Catheter for the Management of Drug-Resistant Hypertension, JACC Cardiovascular Interventions, vol. 5, No. 7, 2012, pp. 758-765.
Avitall et al., “The creation of linear contiguous lesions in the atria with an expandable loop catheter,”Journal of the American College of Cardiology, 1999; 33; pp. 972-984.
Blessing, Erwin et al., Cardiac Ablation and Renal Denervation Systems Have Distinct Purposes and Different Technical Requirements, JACC Cardiovascular Interventions, vol. 6, No. 3, 2013, 1 page.
ClinicalTrials.gov, Renal Denervation in Patients with uncontrolled Hypertension in Chinese (2011), 6pages. www.clinicaltrials.gov/ct2/show/NCT01390831.
Excerpt of Operator's Manual of Boston Scientific's EPT-1000 XP Cardiac Ablation Controller & Accessories, Version of Apr. 2003, (6 pages).
Excerpt of Operator's Manual of Boston Scientific's Maestro 30000 Cardiac Ablation System, Version of Oct. 17, 2005 , (4 pages).
Holmes et al., Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation: Clinical Spectrum and Interventional Considerations, JACC: Cardiovascular Interventions, 2: 4, 2009, 10 pages.
Kandarpa, Krishna et al., “Handbook of Interventional Radiologic Procedures”, Third Edition, pp. 194-210 (2002).
Mount Sinai School of Medicine clinical trial for Impact of Renal Sympathetic Denervation of Chronic Hypertension, Mar. 2013, 11 pages. http://clinicaltrials.gov/ct2/show/NCT01628198.
Opposition to European Patent No. EP1802370, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 20 pages.
Opposition to European Patent No. EP2037840, Granted Dec. 7, 2011, Date of Opposition Sep. 7, 2012, 25 pages.
Opposition to European Patent No. EP2092957, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 26 pages.
Oz, Mehmet, Pressure Relief, TIME, Jan. 9, 2012, 2 pages. <www.time.come/time/printout0,8816,2103278,00.html>.
Papademetriou, Vasilios, Renal Sympathetic Denervation for the Treatment of Difficult-to-Control or Resistant Hypertension, Int. Journal of Hypertension, 2011, 8 pages.
Prochnau, Dirk et al., Catheter-based renal denervation for drug-resistant hypertension by using a standard electrophysiology catheter; Euro Intervention 2012, vol. 7, pp. 1077-1080.
Purerfellner, Helmut et al., Incidence, Management, and Outcome in Significant Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation, Am. J. Cardiol , 93, Jun. 1, 2004, 4 pages.
Purerfellner, Helmut et al., Pulmonary Vein Stenosis Following Catheter Ablation of Atrial Fibrillation, Curr. Opin. Cardio. 20 :484-490, 2005.
Schneider, Peter A., “Endovascular Skills—Guidewire and Catheter Skills for Endovascular Surgery,” Second Edition Revised and Expanded, 10 pages, (2003).
ThermoCool Irrigated Catheter and Integrated Ablation System, Biosense Webster (2006), 6 pages.
Tsao, Hsuan-Ming, Evaluation of Pulmonary Vein Stenosis after Catheter Ablation of Atrial Fibrillation, Cardiac Electrophysiology Review, 6, 2002, 4 pages.
Wittkampf et al., “Control of radiofrequency lesion size by power regulation,” Journal of the American Heart Associate, 1989, 80: pp. 962-968.
Zheng et al., “Comparison of the temperature profile and pathological effect at unipolar, bipolar and phased radiofrequency current configurations,” Journal of Interventional Cardiac Electrophysiology, 2001, pp. 401-410.
Allen, E.V., Sympathectomy for essential hypertension, Circulation, 1952, 6:131-140.
Bello-Reuss, E. et al., “Effects of Acute Unilateral Renal Denervation in the Rat,” Journal of Clinical Investigation, vol. 56, Jul. 1975, pp. 208-217.
Bello-Reuss, E. et al., “Effects of Renal Sympathetic Nerve Stimulation on Proximal Water and Sodium Reabsorption,” Journal of Clinical Investigation, vol. 57, Apr. 1976, pp. 1104-1107.
Bhandari, A. and Ellias, M., “Loin Pain Hemaluria Syndrome: Pain Control with RFA to the Splanchanic Plexus,” The Pain Clinc, 2000, vol. 12, No. 4, pp. 323-327.
Curtis, John J. et al., “Surgical Therapy for Persistent Hypertension After Renal Transplantation” Transplantation, 31:125-128 (1981).
Dibona, Gerald F. et al., “Neural Control of Renal Function,” Physiological Reviews, vol. 77, No. 1, Jan. 1997, The American Physiological Society 1997, pp. 75-197.
Dibona, Gerald F., “Neural Control of the Kidney—Past, Present and Future,” Nov. 4, 2002, Novartis Lecture, Hypertension 2003, 41 part 2, 2002 American Heart Association, Inc., pp. 621-624.
Janssen, Ben J.A. et al., “Effects of Complete Renal Denervation and Selective Afferent Renal Denervation on the Hypertension Induced by Intrenal Norepinephrine Infusion in Conscious Rats”, Journal of Hypertension 1989, 7: 447-455.
Katholi, Richard E., “Renal Nerves in the Pathogenesis of Hypertension in Experimental Animals and Humans,” Am J. Physiol. vol. 245, 1983, the American Physiological Society 1983, pp. F1-F14.
Krum, Henry et al., “Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: A Mulitcentre Safety and Proof-of Principle Cohort Study,” Lancet 2009; 373:1275-1281.
Krum, et al., “Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension.” New England Journal of Med, Aug. 2009, 361 ;9.
Luippold, Gerd et al., “Chronic Renal Denervation Prevents Glomerular Hyperfiltration in Diabetic Rats”, Nephrol Dial Transplant, vol. 19, No. 2, 2004, pp. 342-347.
Mahfoud et al. “Treatment strategies for resistant arterial hypertension” Dtsch Arztebl Int. 2011;108:725-731.
Osborn, et al., “Effect of Renal Nerve Stimulation on Renal Blood Flow Autoregulation and Antinatriuresis During Reductions in Renal Perfusion Pressure,” Proceedings of the Society for Experimentla Biology and Medicine, vol. 168, 77-81, 1981.
Page, I.H. et al., “The Effect of Renal Denervation on Patients Suffering From Nephritis,” Feb. 27, 1935;443-458.
Page, I.H. et al., “The Effect of Renal Denervation on the Level of Arterial Blood Pressure and Renal Function in Essential Hypertension,” J. Clin Invest. 1934;14:27-30.
Rocha-Singh, “Catheter-Based Sympathetic Renal Denervation,” Endovascular Today, Aug. 2009.
Schlaich, M.P. et al., “Renal Denervation as a Therapeutic Approach for Hypertension: Novel Implictions for an Old Concept,” Hypertension, 2009; 54:1195-1201.
Schlaich, M.P. et al., “Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension,” N Engl J Med 2009; 361(9): 932-934.
Smithwick, R.H. et al., “Splanchnicectomy for Essential Hypertension,” Journal Am Med Assn, 1953; 152:1501-1504.
Symplicity HTN-1 Investigators; Krum H, Barman N, Schlaich M, et al. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011 ;57(5):911-917.
Symplicity HTN-2 Investigators, “Renal Sympathetic Denervation in Patients with Treatment-Resistant Hypertension (The Symplicity HTN-2 Trial): A Randomised Controlled Trial”; Lancet, Dec. 4, 2010, vol. 376, pp. 1903-1909.
United States Renal Data System, USRDS 2003 Annual Data Report: Atlas of End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2003, 593 pages.
Valente, John F. et al., “Laparoscopic Renal Denervation for Intractable ADPKD-Related Pain”, Nephrol Dial Transplant (2001) 16:160.
Wagner, C.D. et al., “Very Low Frequency Oscillations in Arterial Blood Pressure After Autonomic Blockade in Conscious Dogs,” Feb. 5, 1997, Am J Physiol Regul Integr Comp Physiol 1997, vol. 272, 1997 the American Physiological Society, pp. 2034-2039.
Dodge, et al., “Lumen Diameter of Normal Human Coronary Arteries Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation”, Circulation, 1992, vol. 86 (1), pp. 232-246.
Opposition to European Patent No. 2465470, Granted Oct. 28, 2015, Date of Opposition Jul. 27, 2016, 34 pp.
U.S. Appl. No. 11/363,867, filed Feb. 27, 2006, 70 pp.
U.S. Appl. No. 60/813,589, filed Dec. 29, 2005, 62 pgs.
Ureter, https://en.wikipedia.org/wiki/Ureter, Jun. 2016, 6 pgs.
Related Publications (1)
Number Date Country
20150320475 A1 Nov 2015 US