Catheter assembly including ECG sensor and magnetic assemblies

Abstract
A stylet for use in guiding a distal tip of a catheter to a predetermined location within the body of a patient. In one embodiment the stylet is configured for use within a lumen of the catheter and comprises a core wire, an ECG sensor, and a magnetic assembly. The ECG sensor senses an ECG signal of a patient when the stylet is disposed within the lumen of the catheter and the catheter is disposed within the body of the patient. The magnetic assembly includes at least one element capable of producing a magnetic or electromagnetic field for detection by a sensor external to the patient. In another embodiment, the stylet includes a pre-shaped distal segment that is deflected with respect to a more proximal portion of the stylet, which in turn causes a distal segment of the catheter to be deflected when the stylet is received within the lumen.
Description
BRIEF SUMMARY

Briefly summarized, embodiments of the present invention are directed to a stylet for use in guiding a distal tip of a catheter to a predetermined location within the body of a patient. In one embodiment the stylet is configured for use within a lumen of the catheter and comprises a core wire, an ECG sensor, and a magnetic assembly. The ECG sensor senses an ECG signal of a patient when the stylet is disposed within the lumen of the catheter and the catheter is disposed within the body of the patient. The magnetic assembly includes at least one element capable of producing a magnetic or electromagnetic field for detection by a sensor external to the patient.


In another embodiment, the stylet includes a pre-shaped distal segment that is deflected with respect to a more proximal portion of the stylet, which in turn causes a distal segment of the catheter to be deflected when the stylet is received within the catheter lumen.


These and other features of embodiments of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of embodiments of the invention as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

A more particular description of embodiments of the invention will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 is a top view of a catheter assembly including a shaped, torqueable stylet according to one example embodiment of the present invention;



FIG. 2 is a top view of the stylet of FIG. 1;



FIG. 3A is a top view of a shaped distal portion of the stylet of FIG. 2, according to one possible configuration;



FIG. 3B is a top view of the shaped distal portion of the stylet of FIG. 2, according to another possible configuration;



FIG. 3C is a top view of the shaped distal portion of the stylet of FIG. 2, according to yet another possible configuration;



FIG. 3D is a top view of the shaped distal portion of the stylet of FIG. 2, according to still another possible configuration;



FIG. 4A is a top view of a catheter assembly including a stylet loaded therein and configured in accordance with one embodiment of the present invention;



FIG. 4B is a top view of the stylet of FIG. 4A, according to one embodiment;



FIG. 5 is a cross sectional view of a distal segment of the stylet of FIG. 4B, according to one embodiment;



FIGS. 6A-6F are various views of a stylet in accordance with another embodiment;



FIG. 7 is a cross sectional view of a distal segment of the stylet of FIG. 4B, according to another embodiment;



FIG. 8 is a partial cross sectional view of a distal segment of a stylet configured in accordance with one example embodiment;



FIG. 9 is a partial cross sectional view of a distal segment of a stylet configured in accordance with another embodiment;



FIG. 10 is a partial cross sectional view of a distal segment of a stylet configured in accordance with yet another embodiment;



FIG. 11 is a partial cross sectional view of a distal segment of a stylet and catheter configured in accordance with one embodiment;



FIG. 12 is a cross sectional view of a distal segment of a stylet configured in accordance with one embodiment;



FIG. 13 is a cross sectional view of a distal segment of a stylet configured in accordance with one embodiment;



FIG. 14 is a cross sectional view of a distal segment of a stylet configured in accordance with one embodiment;



FIG. 15 is a cross sectional view of a distal segment of a stylet configured in accordance with one embodiment;



FIG. 16 is a cross sectional view of a distal segment of a stylet configured in accordance with one embodiment;



FIG. 17 is a cross sectional view of a distal segment of a stylet configured in accordance with one embodiment;



FIG. 18 is a cross sectional view of a distal segment of a stylet configured in accordance with one embodiment;



FIG. 19 is a cross sectional view of a distal segment of a stylet configured in accordance with one embodiment;



FIG. 20 is a cross sectional view of a distal segment of a stylet configured in accordance with one embodiment;



FIG. 21 is a cross sectional view of a distal segment of a stylet configured in accordance with one embodiment; and



FIG. 22 is a cross sectional view of a distal segment of a stylet configured in accordance with one embodiment.





DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the invention, and are not limiting of the present disclosure nor are they necessarily drawn to scale.



FIGS. 1-22 depict various features of embodiments of the present invention, which is generally directed, in one embodiment, to a catheter assembly including a pre-loaded stylet therein. In one embodiment, the catheter assembly includes a distal portion shaped in a bent configuration. The bent configuration of the catheter distal portion is caused by the pre-loaded stylet, which includes a pre-shaped distal segment deflected in a bent configuration. Thus, the pre-shaped distal segment of the stylet urges the distal portion of the catheter into a similar bent configuration.


Further, the pre-loaded stylet is configured to be torqueable, thus enabling the stylet to be rotatable within the catheter lumen. A hydrophilic coating applied to an outer surface of the stylet facilitates such stylet rotation. Rotation of the shaped stylet enables the pre-shaped distal segment to be changed in orientation. This in turn causes a change in orientation of the distal portion of the catheter to occur. Such “steerability” enables the catheter to be more easily guided through the vasculature of a patient during placement of the catheter.


In another embodiment, a stylet for use in guiding a distal tip of a catheter in which the stylet is disposed to a predetermined location within the vasculature of a patient is disclosed. The stylet includes a magnetic assembly proximate its distal tip for use with an external magnetic sensor to provide information relating to general positioning/orientation of the catheter tip during navigation through the patient vasculature. The stylet further includes an ECG sensor proximate its distal tip for use with an external ECG monitoring system to determine proximity of the catheter distal tip relative to an electrical impulse-emitting node of the patient's heart, such as the SA node in one example. Such electrical impulses are also referred to herein as “ECG signals.” Inclusion of the magnetic and ECG sensors with the stylet enables the catheter to be guided with a relatively high level of precision to a predetermined location proximate the patient's heart.


For clarity it is to be understood that the word “proximal” refers to a direction relatively closer to a clinician using the device to be described herein, while the word “distal” refers to a direction relatively further from the clinician. For example, the end of a catheter placed within the body of a patient is considered a distal end of the catheter, while the catheter end remaining outside the body is a proximal end of the catheter. Further, the words “including,” “has,” and “having,” as used herein, including the claims, shall have the same meaning as the word “comprising.”


Reference is first made to FIG. 1, which depicts a catheter assembly, generally designated at 10 and configured in accordance with one example embodiment of the present invention. As shown, the catheter assembly 10 includes a catheter 12 having a proximal end 12A, a distal end 12B, and defining at least one lumen 14 extending therebetween. In the present embodiment, the catheter is a PICC, though in other embodiments other types of catheters, having a variety of size, lumen, and prescribed use configurations can benefit from the principles described herein. Further, though shown here with an open distal end, the catheter in other embodiments can have a closed distal end. As such, the present discussion is presented by way of example and should therefore not be construed as being limiting of the present invention in any way. Note that the catheter 12 can be formed from one or more of a variety of materials, including polyurethane, polyvinyl chloride, and/or silicone.


A bifurcation, or hub 16, can be included at the catheter proximal end 12A. The hub 16 permits fluid communication between extension tubing 18 and 20 and the lumen(s) 14 of the catheter 12. Each extension tubing component 18 and 20 includes on a proximal end a connector 22 for enabling the catheter assembly 10 to be operably connected to one or more of a variety of medical devices, including syringes, pumps, infusion sets, etc. Again note that the particular design and configuration of the afore-described components are exemplary only.


The catheter 12 includes a distal portion 24 as part of the catheter that is configured for insertion within the vasculature of a patient. As seen in FIG. 1, the distal portion 24 of the catheter 12 includes a deflected, bent configuration with respect to the more proximal portion of the catheter 12. As will be described further below, this bent configuration is caused by a stylet disposed within the catheter and facilitates relatively easier navigation and placement of the distal tip of the catheter in a preferred location within the patient vasculature.


Together with FIG. 1, reference is now made to FIG. 2. FIG. 1 further shows a stylet 30 extending from a proximal end of the extension tubing 20 and configured in accordance with one embodiment of the present invention. As shown in FIG. 2 removed from the catheter 12, the stylet 30 includes an elongate core wire that defines a proximal end 30A and a distal end 30B. The stylet 30 is pre-loaded within the lumen 14 of the catheter 12 such that the distal end 30B is substantially flush with the opening at the catheter distal end 12B, and such that the proximal portion of the stylet extends from the proximal end of the catheter or one of the extension tubes 18 and 20. Note that, though considered here as a stylet, in other embodiments a guidewire or other catheter guiding apparatus could include the principles of embodiments of the present disclosure described herein.


As mentioned, the body of the stylet 30 is configured as an elongate core wire and is composed of a memory material such as, in one embodiment, a nickel and titanium-containing alloy commonly known by the acronym “nitinol.” Nitinol possesses characteristics that serve well in the present application, including shape memory and torqueability characteristics, as will be explained. In another embodiment, other suitable materials such as stainless steel could be used for the stylet construction. In yet another embodiment, it is appreciated that the distal segment can be manufactured from a memory material such as nitinol, while the more proximal portion of the stylet core wire is manufactured with stainless steel or other suitable material.


The stylet 30 further includes a distal segment 32 that is pre-shaped to have a bent configuration with respect to the more proximal portion of the stylet. In particular, the stylet distal segment 32 is bent off-axis with respect to a substantially linear longitudinal axis 36 of the stylet core wire in the view depicted in FIG. 2. Manufacture of the stylet 30 from a shape memory material such as nitinol enables the stylet to be configured such that the core wire retains the curved or other bent distal segment shape shown in FIG. 2 during use with the catheter assembly 10. The distal segment 32 is “pre-shaped” in that it is manufactured to possess a bent or offset configuration before its assembly and retains the configuration after insertion within the catheter 12.


The bent configuration of the distal segment 32 in the embodiment illustrated in FIG. 2 defines an arc or curve having a radius R. In other embodiments, however, the distal segment can be bent or offset from the more proximal portion of the stylet in other ways, such as in FIG. 3C, for example, where the distal segment is approximately linearly offset to define an angle θ with the longitudinal axis of the proximal portion of the stylet 30. Combinations of linear and curved bend profiles are also possible. These and other possible bent or offset configurations are therefore contemplated as falling within the claims of the present invention.


Reference is now made to FIG. 3A, which depicts further details of the stylet 30, according to one embodiment. As shown, the pre-shaped distal segment 32 includes a distal portion of the core wire having a diameter D2 that is reduced with respect to the diameter D1 of the more proximal portion of the core wire. The stylet core wire transitions from diameter D1 to D2 at a smooth, linear tapered transition region 40, though in other embodiments a stepped taper, convex or concave taper, or no taper need be present.


A tubing sleeve 42 is slid over the reduced diameter stylet core wire along the distal segment 32 and is sized to substantially match the diameter D1 of the proximal portion of the stylet core wire, though it can be sized differently, if desired. The sleeve 42 is adhered to the core wire near the transition region 40 and at the distal end 30B of the core wire by an adhesive 46, such as a UV, 2-part epoxy, or other suitable adhesive. So secured, an air gap 48 is created between an outer surface of the core wire and an inner surface of the sleeve 42. In other embodiments, the air gap can be enlarged, reduced, or eliminated.


In the present embodiment, the sleeve 42 includes reinforcement 44 to maintain the sleeve in a bent configuration similar to the bent configuration of the stylet distal segment core wire. The reinforcement 44 can be a metal coil or braided mesh or substrate that is integrated into the structure of the sleeve 42 and is capable of bending so as to assume and maintain a bent shape similar to that shown in FIG. 3A. Characteristics of the sleeve 42 that can be adjusted so as to modify its performance include its wall thickness, melt index, and composition. In the present embodiment, the sleeve 42 is composed of polyimide and the reinforcement 44 is coiled stainless steel. Of course, other suitable materials can be employed, either in lieu of or in combination with, these constituents. In other embodiments, the reinforcement can be configured so as to merely strengthen the sleeve and not maintain its bent configuration, or the reinforcement can be removed from all or a portion of the sleeve. In the latter case, a sleeve having no reinforcement can nevertheless be formed so as to have a pre-shaped, bent configuration. In any of the above embodiments, however, the sleeve can be configured to assist the distal segment 32 of the stylet core wire in urging the distal portion of the catheter 12 into a similar bent configuration, as seen in FIG. 1 and as will be explained in further detail below.


As mentioned, the stylet 30 having a pre-shaped distal segment 32, such as that described in connection with FIG. 3A, is pre-loaded in one embodiment into the catheter 12 before insertion such that the distal segment resides within the lumen 14 at the distal portion 24 of the catheter, placing the distal tips of both the stylet and the catheter in substantial alignment with one another. Note that in other embodiments the distal tips of the stylet and catheter can be in a non-aligning configuration, if desired, and that the catheter can include multiple lumens. So positioned, the distal segment 32 of the stylet 30 imparts an urging force on the distal portion 24 of the catheter 12 such that the catheter distal portion assumes a bent configuration similar to that of the stylet distal segment. As such, it is appreciated that while the stylet 30 is loaded within the catheter 12, the distal portion 24 of the catheter takes on the bent configuration of the distal segment 32 of the stylet. Once the stylet 30 is removed, the catheter 12 is free to return to an unbent configuration commensurate with its original shape when manufactured.


The stylet 30 in one embodiment further includes on its outer surface a hydrophilic coating 38 to assist in rotating the stylet within the lumen 14 of the catheter 12 during use. The wettable coating 38 can be activated, for instance, by flushing the catheter lumen 14 with saline or other aqueous solution, thereby facilitating rotation of the stylet within the lumen. In other embodiments, no coating is included on the stylet. In yet other embodiments, the coating can be included on an inner surface of the catheter, or the composition of the catheter and stylet can be chosen such that a net low coefficient of friction exists between the two surfaces.


A handle 34 can be provided near the proximal end 30A of the stylet 30 so as to enable a user to rotate the stylet within the catheter lumen 14. Because the stylet 30 is at least partially composed of nitinol or other suitable material in one embodiment, the stylet is configured to be torqued by user application of a rotational force thereto via the handle 34. The handle 34 may take one of many shapes and configurations, including that shown in FIGS. 1 and 2, for example. Torqueability of the stylet 30, together with its hydrophilic coating 38, makes possible selective rotation of the stylet within the catheter lumen 14, which in turn enables selective rotation and orientation of the bent distal segment 32. As before mentioned, no coating may be necessary in one embodiment. In addition, the handle 34 is attached to the stylet core wire so as to correspond with the orientation of the bent distal segment 32. Thus one can determine the orientation of the direction of bend of the distal segment 32 when the distal segment is disposed within the vasculature of a patient by observing the orientation of the handle 34. The handle 34 in one embodiment may include a visual guide or key thereon to assist the clinician in ascertaining the orientation of the bent distal segment 32.


As mentioned, the stylet distal segment 32, having a pre-shaped bent configuration, urges the distal portion 24 of the catheter into a similar bent configuration when the stylet 30 is received in the catheter lumen 14 as shown and described. Rotation of the stylet 30 within the catheter lumen 14 in the manner described above therefore causes a corresponding change in the orientation of the bent configuration of the catheter distal portion 24, shown for example in phantom in FIG. 1. Thus, the catheter distal portion 24 and its corresponding distal tip are “steerable” via torqueable rotation of the stylet 30 by a clinician grasping and turning the handle 34. Such steerability is desirous to enable the catheter distal tip to be navigated through the tortuous vasculature of a patient during placement of the catheter 12. Note that the distal segment 32 is sufficiently resilient to prevent trauma or damage to the vasculature during navigation therein.


In greater detail, with the handle 34 being oriented in a direction corresponding to the direction of bend in the stylet distal segment 32, the clinician placing the catheter within the patient vasculature can ascertain the orientation of the bent catheter distal portion 24, which is disposed within the vasculature during placement, by observing the orientation of the handle 34. The handle 34 therefore acts as a key in determining orientation of the bent configuration of the distal segment 34 of the stylet 30/distal portion 24 of the catheter 12. This aspect assists the clinician in placing the catheter 12 in the patient vasculature so as to place the distal tip of the catheter 12 in a predetermined position by advancing the catheter 12 with the pre-loaded stylet 30 therein. Once the catheter 12 has been placed as desired, the stylet 30 can be removed from the catheter lumen 14 and corresponding extension tubing 18/20 and the catheter prepared for use.


Reference is now made to 3B and 3C, which show aspects of other possible stylet distal segment configurations according to embodiments of the present invention. The distal segment 32 shown in FIG. 3B includes a reduced diameter core wire as in FIG. 3A, but includes no sleeve covering the distal core wire segment. The distal segment 32 shown in FIG. 3C also includes no sleeve, but includes a core wire segment having a non-reduced diameter with respect to the proximal core wire portion. Thus, it is seen that various core wire diameters and omissions of the sleeve or other components may be intended while still residing within the scope of embodiments of the present invention.


Reference is now made to FIG. 3D, which shows yet another example of a stylet distal segment according to one embodiment. In particular, the stylet distal segment 32 of FIG. 3D includes a reduced diameter core wire, sleeve 42 having reinforcement 44, and air gap 48, as earlier described in connection with FIG. 3A. A plurality of magnets 60 is disposed in a portion of the air gap 48. The magnets 60 are employed in the distal segment to enable the distal segment 32 of the stylet 30 to be observable by an exterior tip location system configured to detect the magnetic field of the magnets as the stylet tip advances, together with the catheter distal tip, through the patient vasculature. In the present embodiment, the magnets 60 are ferromagnetic of a solid cylindrical shape, but in other embodiments they may vary from this design in not only shape, but composition, number, size, magnetic type, and position in the stylet distal segment. For instance, the magnetic assembly may include a single or multiple electromagnets disposed in the distal segment in a uni-polar or bi-polar design, in one embodiment.


Note that embodiments of the present disclosure may vary from what is explicitly described herein. For instance, differences in sleeve, air gap, and core wire grind may be present in a stylet distal segment so as to alter bend and resiliency characteristics thereof while still falling under the present claims.



FIGS. 4A-11 depict various features of further embodiments of the present disclosure, directed as before to a stylet for use in guiding a distal tip of a catheter in which the stylet is disposed to a predetermined location within the vasculature of a patient. The stylet includes a magnetic assembly proximate its distal tip for use with an external magnetic sensor to provide information regarding general positioning/orientation of the catheter tip during navigation through the patient vasculature. The stylet further includes an ECG sensor proximate its distal tip for use with an external ECG monitoring system to determine proximity of the catheter distal tip relative to an electrical impulse-emitting node of the patient's heart, such as the SA node in one example. Such electrical impulses are also referred to herein as “ECG signals.” Inclusion of the magnetic assembly and ECG sensor with the stylet enables the catheter to be guided with a relatively high level of precision to a predetermined location proximate the patient's heart.


Reference is first made to FIG. 4A, which depicts a catheter assembly, generally designated at 110 and configured in accordance with one example embodiment of the present invention. As shown, the catheter assembly 110 includes a catheter 112 having a proximal end 112A, a distal end 112B, and defining at least one lumen 114 extending therebetween. In the present embodiment, the catheter is a peripherally-inserted central catheter (“PICC”), though in other embodiments other types of catheters, having a variety of size, lumen, and prescribed use configurations can benefit from the principles described herein. Further, though shown here with an open distal end, the catheter in other embodiments can have a closed distal end. As such, the present discussion is presented by way of example and should therefore not be construed as being limiting of the present invention in any way.


A hub 116 is included at the catheter proximal end 112A. The hub 116 permits fluid communication between extension tubing 118 and 120 and the lumen(s) 114 of the catheter 112. Each extension tubing component 118 and 120 includes on a proximal end a connector 122 for enabling the catheter assembly 110 to be operably connected to one or more of a variety of medical devices, including syringes, pumps, infusion sets, etc. Again note that the particular design and configuration of the afore-described components are exemplary only. For instance, in one embodiment, the catheter need not include a hub or extension legs. The composition of the catheter in this and other embodiments described herein includes a suitable material, such as polyurethane, silicone, etc.


The catheter 112 includes a distal portion 124 configured for insertion within the vasculature of a patient. The catheter 112 is flexible so as to enable it to bend while being advanced through the patient vasculature.


Together with FIG. 4A, reference is now made to FIG. 4B. FIG. 4A further shows a stylet 130 extending from a proximal end of the extension tubing 120 and configured in accordance with one embodiment of the present invention. As shown in FIG. 4B, the stylet 130 as removed from the catheter 112 defines a proximal end 130A and a distal end 130B and generally includes a core wire 131, a handle 134, and a tether 135. The stylet 130 is pre-loaded within the lumen 114 of the catheter 112 in one embodiment such that the distal end 130B is substantially flush with the opening at the catheter distal end 112B, and such that the proximal portion of the core wire 131, the handle 134, and the tether 135 are located proximal to the proximal end of the catheter or one of the extension tubes 118 and 120. Note that, though described herein as a stylet, in other embodiments a guidewire or other catheter guiding apparatus could include the principles of the present invention described herein.


The core wire 131 defines an elongate configuration and is composed of a suitable stylet material including stainless steel or a memory material such as nitinol in one embodiment. Though not shown here, manufacture of the core wire 131 from nitinol in one embodiment enables the portion of the core wire corresponding to a distal segment 132 of the stylet 130 to have a pre-shaped bent configuration, as has already been described.


Further, the nitinol construction lends torqueability to the core wire 131. Thus, the pre-shaped core wire distal segment 132, together with core wire torqueability, enables the distal segment of the stylet 130 to be manipulated while disposed within the catheter lumen 114 during catheter insertion, which in turn enables the distal portion 124 of the catheter 112 to be navigated through the vasculature during catheter insertion. In the presently illustrated embodiment, no pre-shaping of the stylet distal segment is shown.


Note also that the present stylet can be employed in a catheter placement system that employs one or more of ultrasound, magnetic-based stylet tip tracking, and ECG-based tip navigation/position confirmation technologies to accurately place a catheter in the vasculature of a patient. Details regarding aspects of an example of such a system are given below, and can also be found in U.S. Pat. No. 8,388,541, titled “Integrated System for Intravascular Placement of a Catheter,” filed Nov. 25, 2008; and U.S. Pat. No. 9,649,048, titled “Systems and Methods for Breaching a Sterile Field for Intravascular Placement of a Catheter,” filed Apr. 17, 2009, each which is incorporated herein by reference in its entirety.


A handle 134 is provided at a proximal end 131A of the stylet 130 so as to enable insertion/removal of the stylet from the catheter lumen 114. In embodiments where the stylet core wire 131 is torqueable, the handle 134 enables the core wire 131 to be rotated within the catheter lumen 114, such as when rotation of a pre-shaped distal segment 132 of the stylet 130 is desired to assist in navigating the catheter distal portion 124 through the vasculature of the patient. In this case, the handle 134 is attached to the stylet core wire so as to correspond with the orientation of the bent distal segment 132. Thus one can determine the orientation of the direction of bend of the distal segment 132 when the distal segment is disposed within the vasculature of a patient by observing the orientation of the handle 134. The handle 134 may include a guide or key thereon to assist the clinician in ascertaining the orientation of the bent distal segment 132.


Rotation, insertion, and/or removal of the stylet 130 via the handle 134 is further facilitated in one embodiment by application of a hydrophilic coating 138 to an outer surface of the core wire 131 and accompanying sleeve to be described further below. The wettable hydrophilic coating 138 can be activated, for instance, by flushing the catheter lumen 114 with saline or other aqueous solution, thereby facilitating rotation of the stylet within the lumen. The handle 134 may take one of many shapes and configurations, including that shown in FIGS. 2, 4A, and 6A, for example. Note also that in an unbent configuration, the core wire 31 of the stylet 130 defines a substantially linear longitudinal axis 136.


In the present embodiment, the handle 134 attaches to a distal end of the tether 135. In the present embodiment, the tether 135 is a flexible, shielded cable housing a plurality of electrically conductive wires. The wires are electrically connected to components, to be discussed below, disposed in the distal segment 132 of the stylet 130, and as such, they provide a conductive pathway from the distal segment through to the proximal end 130A of the stylet, where an electrical connector 156 is attached. As will be explained, the electrical connector 156 can take one of many forms and is configured for operable connection to an external magnetic and/or ECG sensor device in assisting navigation of the stylet 130 and catheter 112 to a desired location within the patient vasculature. Note that in another embodiment, the stylet can be un-tethered and electrical connectivity with the stylet distal segment components can be achieved by attaching temporary clips at the handle where the electrical wires from such components exit the stylet, for instance.


Reference is now made to FIG. 5, which depicts further details of the stylet 130, according to one embodiment. As shown, the distal segment 132 includes a distal portion of the core wire 131 defining a diameter D2 that is reduced with respect to the diameter D1 of the more proximal portion of the core wire. The stylet core wire transitions from diameter D1 to D2 at a tapered transition region 140, though in other embodiments no taper need be present. The reduced diameter portion of the core wire lends desired stiffness and tensile properties thereto, though it is appreciated that in other embodiments no reduction in core wire diameter is necessary.


A sleeve 142 is slid over the reduced diameter stylet core wire along the distal segment 132 and is sized to substantially match the diameter D1 of the proximal portion of the stylet core wire. The sleeve 142 is adhered to the core wire near the transition region 140 and at the distal end 130B of the core wire by an adhesive 146, such as a UV, 2-part epoxy, or other suitable adhesive. So secured, an air gap 148 is created between an outer surface of the core wire and an inner surface of the sleeve 142. In other embodiments, the air gap can be enlarged, reduced, or eliminated.


In the present embodiment, the sleeve 142 includes reinforcement 144 to assist the core wire 131 in providing proper stylet distal end stiffness and, in cases where the distal segment of the stylet is pre-shaped in a bent configuration, to assist in maintaining the core wire in the bent configuration. The reinforcement 144 can be a metal coil or braided mesh or substrate that is integrated into the structure of the sleeve 142 and is capable of manipulation so as to assume and maintain a bent shape, if desired.


Characteristics of the sleeve 142 that can be adjusted so as to modify its performance include its wall thickness, melt index, and composition. In the present embodiment, the sleeve 142 is composed of materials including polyimide and the reinforcement 144 is coiled stainless steel. Of course, other suitable materials can be employed, either in lieu of or in combination with, these constituents. As mentioned, in embodiments of the present invention the reinforcement can be configured so as to merely strengthen the sleeve and not maintain a bent configuration as in FIG. 5, to maintain a bent configuration as in FIG. 6A, or the reinforcement can be removed from all or a portion of the sleeve.


The stylet distal segment 132 further includes an ECG sensor or sensor assembly, generally designated at 150, according to one embodiment. The ECG sensor assembly 150 enables the stylet, preloaded in the lumen 114 of the catheter 112 during patient insertion, to be employed in detecting an intra-atrial ECG signal produced by an SA or other node of the patient's heart, thus assisting in navigating the distal end 112B of the catheter to a predetermined location within the vasculature proximate the patient's heart. Thus, the ECG sensor assembly 150 serves as an aide in confirming proper placement of the catheter distal end 112B.


In the embodiment illustrated in FIG. 5, the ECG sensor assembly 150 includes a distal portion of the core wire 131, which is electrically conductive, as is the rest of the core wire. A conductive distal coil 152 is disposed about the distal portion of the core wire 131 adjacent the core wire distal tip 131B. The distal coil 152 is composed of a conductive material, such as stainless steel. A tip weld 154 is included on the core wire distal tip 131B to bond the distal coil 152 to the core wire distal tip 131B. The tip weld 154 further provides an atraumatic distal tip configuration for the core wire 131. In another embodiment, the distal coil 152 is configured so as to define a diameter equal to that of the tubing sleeve 142 and to define a constant diameter along the stylet length. In yet another embodiment, no coil is included.


Before catheter placement, the stylet 130 is preloaded into the lumen 114 of the catheter 112. Note that in one embodiment the stylet 130 is preloaded within the catheter lumen 114 before use such that the distal segment 132 of the stylet resides within the lumen at the distal portion 124 of the catheter, placing the distal tips of both the stylet and the catheter in substantial alignment with one another. Once the catheter has been introduced into the patient vasculature and is advanced toward the patient's heart, the distal portion of the core wire 131, being electrically conductive, begins to detect the electrical impulses produced by the SA node or other suitable node of the patient's heart. The distal coil 152 is included about the core wire distal tip 131B to increase the relative surface area of the core wire distal portion so as to improve reception of the electrical impulses from the SA node. Note that other structures could be provided to provide the same functionality. As such, the ECG sensor assembly 150 serves as a sensor or electrode for detecting the ECG heart signals. The elongate core wire 131 proximal to the core wire distal segment serves as a conductive pathway to convey the electrical impulses produced by the SA node and received by the ECG sensor assembly 150 away from the distal segment 132 of the stylet 130 to the tether 135.


An electrical wire or other suitable structure in the tether 135 conveys the signals to an ECG sensor module located external to the patient. The tether 135 is operably connected to the ECG sensor module via the electrical connector 156, or other suitable direct or indirect connective configuration. Monitoring of the ECG signal received by the external sensor module enables a clinician to observe and analyze changes in the signal as the catheter advances toward the SA node. When the received ECG signal matches a desired profile, the clinician can determine that the catheter distal end 112B has reached a desired position with respect to the SA node. In one implementation, for example, this desired position lies within the lower one-third (⅓rd) portion of the superior vena cava (“SVC”). Once it has been positioned as desired, the catheter 112 may be secured in place and the stylet 130 removed from the catheter lumen 114.


In the present embodiment of FIG. 5, the distal segment 132 of the stylet 130 further includes a magnetic assembly, generally designated at 160. The magnetic assembly 160 in the illustrated embodiment includes a plurality of magnets 162 disposed in a portion of the air gap 148, and as such the magnets are interposed between an outer surface of the core wire 131 and an inner surface of the sleeve 142. In the present embodiment, the magnets 162 are ferromagnetic of a solid cylindrical shape stacked end-to-end, but in other embodiments they may vary from this design in not only shape, but also composition, number, size, magnetic type, and position in the stylet distal segment. In one particular embodiment, the magnets 162 include neodymium. In other embodiments, other rare-earth or alternative types of magnets or magnetic elements may be employed. In yet other embodiments, an electromagnet or other element capable of producing an electromagnetic field that can be externally detected and monitored may also be used.


The magnets 162 are employed in the stylet distal segment 132, preloaded within the lumen 114 of the catheter 112 during catheter placement within the patient's vasculature, to enable the position of the distal segment to be observable relative to a magnetic sensor placed in close proximity to the patient's body as part of an exterior tip location system. The tip location system is configured to detect the magnetic field of the magnets 162 as the stylet distal segment 132 advances, together with the catheter distal portion 124, through the patient vasculature. In this way, a clinician placing the catheter 112 is able to generally determine the location, orientation, and/or advancement of the catheter distal end 112B within the patient vasculature and detect when catheter malposition is occurring, such as advancement of the catheter along an undesired vein, for instance.


The ECG sensor assembly 150 and magnetic assembly 160 can work in concert in assisting a clinician in placing a catheter within the vasculature. Generally, the magnetic assembly 160 of the stylet 130 assists the clinician in generally navigating the vasculature from initial catheter insertion into the vasculature so as to place the distal end 112B of the catheter 112 in the general region of the patient's heart. The ECG sensor assembly 150 can then be employed to guide the catheter distal end 112B to the desired location within the SVC by enabling the clinician to observe changes in the ECG signals produced by the heart as the stylet distal segment and its ECG sensor assembly approach the SA node. Again, once a suitable ECG signal profile is observed, the clinician can determine that the distal end of both the stylet 130 and catheter 112 have arrived at the desired location with respect to the patient's heart.



FIGS. 6A-6F depict the stylet 130 for use in a catheter, such as the catheter 110, according to one embodiment. As shown, the stylet 130 includes the core wire 131 attached to the handle 134, with the tether 135 extending proximally from the handle to the electrical connector 156 to enable interconnection with an external ECG sensor module or other suitable device for receiving ECG signals detected by the ECG sensor assembly of the stylet. Though not shown here, in one embodiment the stylet 130 can include a shaped distal portion as described in connection with FIGS. 1-3D above, such that a distal portion of the catheter is deflected when the stylet is preloaded therein. Note, however, that the discussion to follow applies to stylets including both shaped and non-shaped distal segments.


The stylet 130 shown in FIG. 6B includes the core wire 131 and the distal segment 132. As shown in FIGS. 6C and 6D, the core wire 131 reduces from a diameter D1 to a diameter D2 over a relatively longer transition region 140 than in the previous embodiment. The portion of the core wire 131 corresponding to the transition region 140 is disposed within the sleeve 142, which attaches to the core wire by the adhesive 146 in the manner shown in FIG. 6C. The air gap 148 is defined between the core wire 131 and the sleeve 142, as before. The reduced diameter portion of the core wire 131 is deflected from an axially central position in the sleeve to an offset position so as to extend adjacent to a portion of the inner surface of the sleeve 142, as shown in FIG. 6D. The core wire 131, in this deflected state, extends to its distal tip 131B, which corresponds to the distal end 130B of the stylet 130.


The deflected position of the core wire 131 provides space for the placement of a plurality of magnetic elements, in this case permanent magnets 162, along a portion of the length of the distal segment 132. As illustrated in FIGS. 6B, 6D, and 6E, 20 cylindrical permanent ferromagnetic magnets are placed end to end. Of course, the type, number, shape, and arrangement of the magnets or other magnetic elements could vary from what is depicted and described herein. So configured, the magnets 162 define the magnetic assembly 160 that enables the distal end 130B of the stylet 130 to be located via an external magnetic sensor module during a procedure to place the catheter in the patient vasculature. For example, in one embodiment, the magnets 162 are employed in the stylet distal segment 132 to enable the position/orientation of the stylet distal end 130B to be observable relative to an external sensor placed on the patient's chest. As has been mentioned, the external sensor is configured to detect the magnetic field of the magnets 162 as the stylet advances with the catheter through the patient vasculature. In this way, a clinician placing the catheter is able to generally determine the location/orientation of the catheter distal end within the patient vasculature and detect when catheter malposition is occurring, such as advancement of the catheter along an undesired vein, for instance.


An electrically conductive epoxy 166 fills the hollow distal end of the sleeve proximate the stylet distal end 130B. The epoxy 166 is in electrical communication with the core wire 131 and serves to increase the relative surface area of the core wire 131 at the distal tip 131B thereof. So configured, the distal portion of the core wire 131 and conductive epoxy 166 define an ECG sensor, with the rest of the core wire defining a conductive pathway with respect to the sensor, thus enabling the location of the stylet distal end 130B and corresponding catheter distal end 112B to be positioned near the SA node of the patient's heart using an external ECG sensor module, in the manner as described above. Thus, the magnetic assembly and ECG sensor assembly both provide assistance in navigating a catheter or other indwelling device: the magnetic assembly by providing position/orientation data for the catheter, and the ECG sensor assembly providing proximity data for the catheter with reference to an ECG-signal emitting component, such as the SA node of the patient's heart. These modalities can be used exclusively of one another, successively, or in concert to aid in catheter advancement. Note that in one embodiment the conductive epoxy 166 can be rounded to provide a rounded stylet distal end 130B. In another embodiment, the conductive epoxy can be replaced by another conductive material such as stainless steel or other suitable metal, etc.


As a brief example of the use of the stylet magnetic and ECG sensor assemblies in assisting in the placement of a catheter, in one embodiment an external sensor is employed by a catheter placement system to detect a magnetic field produced by the magnetic elements of the stylet, which is removably predisposed within the lumen of the catheter during catheter insertion and advancement. The external sensor can be placed on the chest of the patient during catheter insertion to enable the magnetic field of the stylet magnetic elements, disposed in the catheter as described above, to be detected during catheter transit through the patient vasculature. As the magnetic elements of the stylet magnetic assembly are co-terminal with the distal end of the catheter, detection by the external sensor of the magnetic field of the magnetic elements provides information to the clinician and enables the clinician to monitor the position/orientation of the catheter distal end during its transit. Such information can be displayed on a display unit of the catheter placement system for instance. In this way, a clinician placing the catheter is able to generally determine the location/orientation of the catheter distal end within the patient vasculature relative to the TLS sensor 50 and detect when catheter malposition, such as advancement of the catheter along an undesired vein, is occurring.


As described, the stylet further includes an ECG sensor as a sensing component for sensing ECG signals produced by the SA node. In one embodiment the ECG sensor of the stylet works in concert with reference and ground ECG electrodes placed on the skin surface of the patient. ECG signals detected by the stylet ECG sensor can be received by the external sensor referred to above or other suitable component of a catheter placement system, together with signals received by the reference and ground electrodes on the patient's skin. These data can be processed and monitored as the stylet-equipped catheter advances through the patient vasculature. In one embodiment, an electrocardiogram waveform is reproduced on the display using the ECG data. The clinician placing the catheter can monitor the ECG data to determine optimum placement of the distal tip of the catheter, such as proximate the SA node in one embodiment. In one implementation, monitoring of the magnetic assembly data are employed during initial advancement of the catheter through the patient vasculature, while the ECG sensor assembly data are monitored as the catheter approaches a desired final location near the heart, though other combinations of these modalities are also contemplated, including simultaneous use of both modalities in one embodiment.


Note that, in contrast to what is shown in FIGS. 6B-6E, the distal segment of the stylet can be configured such that it defines a constant outside diameter with respect to the more proximal portion thereof.


As has been previously mentioned, other types of magnetic elements, alternative to the permanent magnets described in connection with FIGS. 5 and 6A-6E, may be included with the stylet 130 to form a portion of the magnetic assembly 160 for enabling the position/orientation of the catheter distal end 112B to be generally determined during vasculature navigation. FIG. 7 depicts an example of one such alternative, wherein an electromagnetic (“EM”) coil 172 is employed in the magnetic assembly 160 of the stylet distal segment 132. The EM coil 172 is depicted in the present embodiment as a winding of conductive wire, such as insulated copper wire, wound about a portion of the distal core wire 131 in the air gap 148 within the sleeve 142. Note that the covering of the EM coil 172 by the sleeve 142 provides a secondary level of electrical isolation of electrical energy for the EM coil 172. The coil wire is electrically insulated in the present embodiment so as to prevent its interfering with the ECG signals carried by the core wire 131. Lead wires 174 operably connect with the EM coil 172 and extend proximally along the core wire 131, through the handle 134 and tether 135 to terminate at the connector 156. The lead wires 174 are disposed along the core wire 131 and the rest of the stylet 130 in a free floating, strain relief configuration in the present embodiment so as to prevent detachment thereof from the EM coil 172. A suitable power source can be operably coupled to the lead wires 174 to provide electricity to the EM coil 172.


When energized, the EM coil 172 produces an electromagnetic field that is detectable by an external sensor module in a manner similar to that described in connection with FIG. 5. Note that the relative strength of the field produced by the EM coil 172 is dependent on various factors including the length of the wire from which the coils are made, number of coil windings, and the thickness of the core wire 131 over which the coil is wound. As such, it is appreciated that the electromagnetic field of the EM coil 172 can be varied by altering these and other aspects of the magnetic assembly 160.


A stylet configured in accordance with yet another embodiment is shown in FIG. 8. The stylet 130 of FIG. 8 includes the ECG sensor assembly 150 and magnetic assembly 160, as before. In contrast to the previous embodiment, the EM coil 172 is not disposed within the sleeve 142. Rather, a distal end of the sleeve 142 terminates at and abuts a proximal end of the EM coil 172. The lead wires 174 for the EM coil 172 are fed through the hollow interior of the sleeve 142 to the handle and tether.


The ECG sensor assembly 150 is disposed proximally of the magnetic assembly 160 and has a configuration differing from previous embodiments. As shown, the ECG sensor assembly 150 here includes two ECG leads 182. Each ECG lead 182, defining an annular band is disposed about a portion of an outer surface of the sleeve 142 is operably connected to a respective ECG lead wire 174. Each of the ECG lead wires 174 extends through the hollow interior of the sleeve 142 to the handle and tether, terminating at the electrical connector 156 or other suitable termination. As has been explained, the ECG leads 182 operably connect with an external ECG sensor module, via the lead wires 174 and connector 156, to enable the catheter distal end 112B to be navigated through a patient's vasculature to a predetermined location proximate the heart of the patient. The stylet 130 further includes an atraumatic tip 188 of epoxy, UV adhesive, or other suitable material.


Note that the annular band structure of the ECG leads of FIG. 8 are merely one example of leads that can be included with the stylet/catheter assembly to enable ECG signals produced by the heart to be detected and forwarded to an external ECG sensor module. As such, the depictions and accompanying descriptions herein should not be considered limiting of embodiments of the present invention in any way. Note also that the number and position of the ECG leads on the stylet or catheter can vary from what is shown and described herein.



FIGS. 9-11 depict additional possible embodiments of the stylet 130 and catheter assembly 110. In FIG. 9, the stylet distal segment 132 includes the magnetic assembly 160 and ECG sensor assembly 150 as in FIG. 8. In contrast to FIG. 8, however, the ECG lead wires 184 are encapsulated within the wall of the sleeve 142 to provide strain relief for the lead wires and to facilitate ease of manufacturability. Such a configuration also frees up relatively more space in the central portion of the stylet. FIG. 10 shows an embodiment similar to that of FIG. 9, with the sleeve 142 being extended over the EM coil 172 so as to substantially cover the entirety of the stylet distal segment 132.


In FIG. 11, the stylet 130 is shown disposed in the lumen 114 of the catheter 112 and including the sleeve 142 and magnetic assembly 160 in a configuration similar to that shown in FIG. 8. In the present embodiment, however, the ECG sensor assembly 150 is not included on the stylet 130, but rather includes the ECG leads 182 disposed on the catheter itself. Particularly, the ECG leads 182 are integrated into the wall of the catheter such that an outer surface of each lead is exposed at the outer surface of the catheter. This configuration enables the ECG leads 182 of the ECG sensor assembly 150 to serve as electrodes in the manner previously described, but on a catheter having a closed distal end as shown in FIG. 11. The ECG lead wires 184 are electrically connected to the ECG leads 182 and disposed within the wall of the catheter itself so as to extend proximally to an external ECG sensor module or other suitable device.


Thus, placement of the ECG leads 182 at an outer catheter surface as shown in FIG. 11 enables the leads to act as electrodes and be in continual contact with the blood present in the vasculature of the patient, which blood serves as a conducting medium for the ECG signal from the heart. Note that in previous embodiments, the ECG leads disposed on the stylet itself are in contact with the blood most often via a catheter having an open proximal end. Again, it should be noted that the embodiments depicted in FIGS. 8-11 are exemplary of the various possible configurations for the stylet and its magnetic and ECG sensor assemblies, and that the type, size, and number of elements of these components may be varied as one skilled in the art will appreciate. For instance, the ECG sensor can be included on a stylet without the magnetic assembly present in one embodiment.


Attention is now directed generally to FIGS. 12-22, which depict further examples of the distal segment 132 of the stylet 130 including both magnetic and sensor assemblies, according to present embodiments. In FIG. 12, the distal segment 132 includes the tubing 142 inside which is disposed a distal portion of the core wire 131, terminating at the core wire distal end 131B. The magnetic assembly 160, including a plurality of permanent magnets 162 or other suitable magnetic/electromagnetic elements, is disposed distally to the core wire 131, though other positional configurations for the magnetic assembly are possible. A conductive wire 190 proximally extends within the tubing 142 from the stylet distal end 130B to the proximal end of the stylet for connection with a suitable ECG sensor module or other suitable monitoring device. A distal end 190B of the conductive wire 190 is substantially co-terminal with the stylet distal end 130B, though other more proximal terminating configurations are also possible. A conductive epoxy 166 is included at the distal end of the tubing 142 to secure the conductive wire distal end 190B and increase the conductive surface area for ECG signal monitoring by the ECG sensor, implemented here as the distal portion of the conductive wire 190. Of course, other suitable tip configurations can be used, including atraumatic tips, tip welds, non-conductive adhesives, or nothing at all. In another embodiment, the conductive wire can be embedded within the tubing and is exposed only at the distal end of the stylet.


The embodiment of FIG. 13 is similar to that of FIG. 12, wherein the conductive wire 190 does not extend the length of the stylet 130 but rather is connected at a proximal end 190A thereof to the core wire 131. Thus the conductive pathway from the conductive wire distal end 190B, which serves as the ECG sensor, is established by the lengths of both the conductive wire 190 and the core wire 131. The conductive wire proximal end 190A can be secured to the core wire via a weld, adhesive, etc. This embodiment may be used, for example, where the tubing 142 does not proximally extend the entire length of the stylet 130, but rather only along the distal segment thereof. Indeed, in the embodiments described herein, the tubing can extend along all or only a portion of the stylet length.


In FIG. 14, a conductive coil 194 proximally extends within the tubing 142 and about the magnetic assembly 160 from the stylet distal end 130B to a connection point with the core wire 131 at the proximal end 194A of the coil. The conductive coil proximal end 194A can be secured to the core wire 131 via a weld, adhesive, etc. A distal end 194B of the conductive coil 194 is substantially co-terminal with the stylet distal end 130B, though other more proximal terminating configurations are also possible. A conductive epoxy 166 is included at the distal end of the tubing 142 to secure the conductive coil distal end 194B and increase the conductive surface area for ECG signal monitoring by the ECG sensor, implemented here as the distal portion of the conductive coil 194. In other embodiments, the conductive epoxy or other suitable material can extend a greater or lesser distance into the tubing 142 than what is shown in the accompanying drawings. In another embodiment, the conductive coil can proximally extend the length of the stylet 130 for connection with a suitable ECG sensor module or other suitable monitoring device. In yet another embodiment, a distal portion of the core wire can be shaped, such as via grinding, then coiled to form a conductive coil that is integral to the core wire.


In FIG. 15, the tubing 142 can be made electrically conductive, such as via impregnation therein of a conductive material, or by coating an inner or outer surface thereof with a conductive material. Thus a distal portion of the tubing 142 at the distal end 130B of the stylet 130 serves as an ECG sensor and more proximal portions of the tubing define a conductive pathway for carrying the ECG signals therefrom.


In FIG. 16, internal tubing 198 can be included within the tubing 142 of the stylet distal segment 132 as part of an ECG sensor assembly. In the present embodiment, a proximal end 198A of the internal tubing 198 is attached to a portion of the core wire 131 via heat-shrinking, adhesive, etc., while a distal end 198B is substantially co-terminal with the stylet distal end 130B or is in intimate contact with the conductive epoxy 166 so as to enable the reception of ECG signals for transmission along the internal tubing 198 and core wire 131 to a suitable ECG sensor module external to the patient, as has been described.


In FIG. 17, the tubing 142 from earlier embodiments is replaced with a conductive tubing structure, such as a metallic hypotube 202, which attaches to the core wire 131 at a proximal end 202A and extends to the stylet distal end 130B of the stylet 130 where its distal end 202B contacts the conductive epoxy 166. The hypotube 202 can include perforations 204, such as horizontal, vertical, round, or helical notches or through-holes completely or partially defined through the hypotube surface so as to increase flexibility of the hypotube.


Note that, in this and other embodiments, the conductive epoxy 166 or other tip configuration, such as atraumatic tips, adhesives, tip welds, etc., can be suitable shaped as seen in FIG. 17 so as to ease advancement of the catheter and stylet through patient vasculature. In one embodiment for example, the conductive epoxy tip can be replaced by a tip including stainless steel, either pre-formed before attachment, e.g., via welding, adhesive, etc., to the stylet distal end or shaped after attachment. Such a tip can be attached directly to the stylet core wire, to another conductive wire in the stylet, or to another ECG sensor configuration.



FIG. 18 shows another tubing embodiment, wherein the tubing is defined by a conductive external coil 208, attached at a proximal end 208A thereof and extending to a distal end 208B, which is in contact with the conductive epoxy 166 at the stylet distal end 130B. A safety wire 210 can be included so as to extend between a distal portion of the core wire 131 and the distal tip epoxy 166 so as to prevent separation of the external coil 208 from the stylet 130. In another embodiment, the safety wire can be replaced with internal tubing that is disposed about the magnetic assembly 160.


In FIG. 19, the conductive epoxy 166 extends proximally from the distal end 130B of the stylet 130, contained by the tubing 142, so as to be in electrical communication with the core wire 131. Thus, a distal portion of the conductive epoxy 166 serves as an ECG sensor, while more proximal portions thereof provide a conductive pathway, together with the core wire, to enable the transmission of ECG signals through the stylet 130. Note that in another embodiment, the tubing can extend the length of the stylet.


In FIG. 20, an annular conductive ring 214 is included as an ECG sensor at the stylet distal end 130B and is connected to a lead wire 216 that extends proximally along the length of the stylet 130 for connection with a suitable ECG sensor module or other suitable device. The ring 214 can be inset into the tubing 142 and can be in electrical communication with the conductive epoxy 166. As before, the conductive epoxy can be omitted from the design. In another embodiment, the lead wire 216 can be electrically connected to the core wire instead of extending the entire length of the stylet.


In FIG. 21, a conductive coil 218 is positioned distal to and attached to the tubing 142. A tip weld 154 is formed on the stylet distal end 130B so as to electrically connect with the conductive coil 218. The conductive wire 190 extends distally from the core wire 131 to the tip weld 154 as shown in FIG. 21, or to the conductive coil 218. In another embodiment, the conductive wire can extend the length of the stylet. In yet another embodiment, the conductive coil can be replaced by a conductive hypotube, if desired, which can act as filler material for the plasma weld that forms the tip weld 154.


In FIG. 22, the core wire 130 includes a distal tip 131B that defines an atraumatic tip configuration, with the conductive epoxy 166 included to secure the distal tip to the tubing 142. Such a core wire distal tip can be formed by grinding, plasma welding, etc., and provides an ECG sensor with relatively large surface area for reception of ECG signals.


It is noted that in example embodiments, distal tips can be formed by a variety of procedures, including grinding or plasma welding as discussed in connection with FIG. 22, insertion and adhesion to the stylet of an already formed tip, insertion of a conductive slug into the stylet tubing that is then melted and formed with a die, etc. It should be further noted that the embodiments shown in the previously described drawings are merely examples of possible configurations for providing a magnetic assembly and an ECG sensor with a stylet for guidance of a catheter or other indwelling device within the body of a patient. As such, the claims of the present disclosure should not be construed as being limited to only those embodiments explicitly described herein.


Embodiments of the present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the present disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A catheter assembly, comprising: a stylet including: a core wire having a straight proximal segment aligned with a longitudinal axis of the core wire, and a pre-shaped distal segment having a bent configuration deflected from the longitudinal axis; anda sleeve positioned over the pre-shaped distal segment, the sleeve adhered to the core wire near a distal end of the straight proximal segment; anda catheter having a distal portion, the pre-shaped distal segment of the core wire designed to bend the distal portion of the catheter into the bent configuration upon insertion of the stylet into the catheter.
  • 2. The catheter assembly according to claim 1, wherein the stylet includes a memory shape material, and wherein the pre-shaped distal segment of the stylet defines an arc shape.
  • 3. The catheter assembly according to claim 2, wherein the stylet includes nitinol, and wherein the stylet further includes a handle to axially rotate the stylet.
  • 4. The catheter assembly according to claim 1, wherein the straight proximal segment of the core wire has a first diameter, and wherein the pre-shaped distal segment of the core wire includes a second diameter less than the first diameter.
  • 5. The catheter assembly according to claim 4, wherein the core wire transitions from the first diameter to the second diameter along a tapered region.
  • 6. The catheter assembly according to claim 5, wherein the sleeve is adhered to the core wire at a proximal end of the tapered region.
  • 7. The catheter assembly according to claim 6, wherein the stylet comprises an air gap along the second diameter between an outer surface of the pre-shaped distal segment of the core wire and an inner surface of the sleeve.
  • 8. The catheter assembly according to claim 7, further comprising a magnetic element disposed in the air gap, the magnetic element having a magnetic field strength sufficient to be detectable following insertion of the catheter assembly into a patient.
  • 9. The catheter assembly according to claim 8, wherein the magnetic element is a plurality of permanent magnets.
  • 10. The catheter assembly according to claim 8, wherein the magnetic element is one or more electromagnets.
  • 11. The catheter assembly according to claim 1, wherein the sleeve includes a reinforcement element to maintain the pre-shaped distal segment in the bent configuration.
  • 12. The catheter assembly according to claim 11, wherein the reinforcement element is selected from the group consisting of a coil, a braided mesh, a substrate, and combinations thereof.
  • 13. The catheter assembly according to claim 11, wherein the reinforcement element is a stainless steel coil and the sleeve is composed of polyimide.
  • 14. The catheter assembly according to claim 1, wherein the stylet further comprises a hydrophilic coating.
  • 15. The catheter assembly according to claim 1, wherein the stylet further comprises a handle oriented in a direction corresponding to a direction of the bent configuration.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 12/545,762, filed Aug. 21, 2009, now U.S. Pat. No. 9,901,714, which claims the benefit of U.S. Provisional Patent Application No. 61/091,233, filed Aug. 22, 2008, and titled “Catheter Including Preloaded Steerable Stylet;” and U.S. Provisional Patent Application No. 61/095,451, filed Sep. 9, 2008, and titled “Catheter Assembly Including ECG and Magnetic-Based Sensor Stylet,” each of which is incorporated herein by reference in its entirety.

US Referenced Citations (1720)
Number Name Date Kind
3133244 Wojtulewicz May 1964 A
3297020 Mathiesen Jan 1967 A
3625200 Muller Dec 1971 A
3674014 Tillander Jul 1972 A
3795855 Browning Mar 1974 A
3817241 Grausz Jun 1974 A
3847157 Caillouette et al. Nov 1974 A
3868565 Kuipers Feb 1975 A
3896373 Zelby Jul 1975 A
3902501 Citron et al. Sep 1975 A
3986373 Goodlaxson Oct 1976 A
3995623 Blake et al. Dec 1976 A
4003369 Heilman et al. Jan 1977 A
4063561 McKenna Dec 1977 A
4072146 Howes Feb 1978 A
4114601 Abels Sep 1978 A
4149535 Volder Apr 1979 A
4173228 Van Steenwyk et al. Nov 1979 A
4175566 Millar Nov 1979 A
4181120 Kunii et al. Jan 1980 A
4224949 Scott et al. Sep 1980 A
4244362 Anderson Jan 1981 A
4289139 Enjoji et al. Sep 1981 A
4317078 Weed et al. Feb 1982 A
4327722 Groshong et al. May 1982 A
4327723 Frankhouser May 1982 A
4362166 Furler et al. Dec 1982 A
4365639 Goldreyer Dec 1982 A
4380237 Newbower Apr 1983 A
4407294 Vilkomerson Oct 1983 A
4417886 Frankhouser et al. Nov 1983 A
4429693 Blake et al. Feb 1984 A
4431005 McCormick Feb 1984 A
4431214 Buffington Feb 1984 A
4445501 Bresler May 1984 A
4459854 Richardson et al. Jul 1984 A
4469106 Harui Sep 1984 A
4483343 Beyer et al. Nov 1984 A
4491137 Jingu Jan 1985 A
4565201 Lass Jan 1986 A
4572198 Codrington Feb 1986 A
4577634 Gessman Mar 1986 A
4582067 Silverstein et al. Apr 1986 A
4587975 Salo et al. May 1986 A
4588394 Schulte et al. May 1986 A
4593687 Gray Jun 1986 A
4595012 Webler et al. Jun 1986 A
4601706 Aillon Jul 1986 A
4608989 Drue Sep 1986 A
4608992 Hakim et al. Sep 1986 A
4619247 Inoue et al. Oct 1986 A
4622644 Hansen Nov 1986 A
4644960 Johans Feb 1987 A
4652820 Maresca Mar 1987 A
4660571 Hess et al. Apr 1987 A
4665925 Millar May 1987 A
4667230 Arakawa et al. May 1987 A
4674518 Salo Jun 1987 A
4676249 Arenas et al. Jun 1987 A
4681106 Kensey et al. Jul 1987 A
4681117 Brodman et al. Jul 1987 A
4688578 Takano et al. Aug 1987 A
4692148 Kantrowitz et al. Sep 1987 A
4697595 Breyer et al. Oct 1987 A
4700997 Strand Oct 1987 A
4706681 Breyer et al. Nov 1987 A
4710708 Rorden et al. Dec 1987 A
4733669 Segal Mar 1988 A
4737794 Jones Apr 1988 A
4741356 Letzo et al. May 1988 A
4742356 Kuipers May 1988 A
4753247 Kirsner Jun 1988 A
4770185 Silverstein et al. Sep 1988 A
4771788 Millar Sep 1988 A
4781685 Lehmann et al. Nov 1988 A
4784646 Feingold Nov 1988 A
4787070 Suzuki et al. Nov 1988 A
4787396 Pidorenko Nov 1988 A
4790809 Kuntz Dec 1988 A
4793361 DuFault Dec 1988 A
4794930 Machida et al. Jan 1989 A
4796632 Boyd et al. Jan 1989 A
4798588 Aillon Jan 1989 A
4798598 Bonello et al. Jan 1989 A
4809681 Kantrowitz et al. Mar 1989 A
4809713 Grayzel Mar 1989 A
4813729 Speckhart Mar 1989 A
4821731 Martinelli et al. Apr 1989 A
4834709 Banning May 1989 A
4836214 Sramek Jun 1989 A
4840182 Carlson Jun 1989 A
4840622 Hardy Jun 1989 A
4841977 Griffith et al. Jun 1989 A
4849692 Blood Jul 1989 A
4850358 Millar Jul 1989 A
4852580 Wood Aug 1989 A
4856317 Pidorenko et al. Aug 1989 A
4856529 Segal Aug 1989 A
4860757 Lynch et al. Aug 1989 A
4867169 Machida et al. Sep 1989 A
4869263 Segal et al. Sep 1989 A
4869718 Brader Sep 1989 A
4873987 Djordjevich et al. Oct 1989 A
4887606 Yock et al. Dec 1989 A
4887615 Taylor Dec 1989 A
4889128 Millar Dec 1989 A
4899756 Sonek Feb 1990 A
4901725 Nappholz et al. Feb 1990 A
4905698 Strohl, Jr. et al. Mar 1990 A
4911173 Terwilliger Mar 1990 A
4911174 Pederson et al. Mar 1990 A
4917669 Bonaldo Apr 1990 A
4924870 Wlodarczyk et al. May 1990 A
4943770 Ashley-Rollman et al. Jul 1990 A
4945305 Blood Jul 1990 A
4947852 Nassi et al. Aug 1990 A
4957110 Vogel et al. Sep 1990 A
4957111 Millar Sep 1990 A
4961433 Christian Oct 1990 A
4966148 Millar Oct 1990 A
4967753 Haase et al. Nov 1990 A
4977886 Takehana et al. Dec 1990 A
4989608 Ratner Feb 1991 A
4989610 Patton et al. Feb 1991 A
4995396 Inaba et al. Feb 1991 A
4998916 Hammerslag et al. Mar 1991 A
5004456 Botterbusch et al. Apr 1991 A
5005592 Cartmell Apr 1991 A
5016173 Kenet et al. May 1991 A
5025799 Wilson Jun 1991 A
5029585 Lieber et al. Jul 1991 A
5040548 Yock Aug 1991 A
5042486 Pfeiler et al. Aug 1991 A
5045071 McCormick et al. Sep 1991 A
5046497 Millar Sep 1991 A
5050607 Bradley et al. Sep 1991 A
5057095 Fabian Oct 1991 A
5058583 Geddes et al. Oct 1991 A
5058595 Kern Oct 1991 A
5067489 Lind Nov 1991 A
5076278 Vilkomerson et al. Dec 1991 A
5078140 Kwoh Jan 1992 A
5078148 Nassi et al. Jan 1992 A
5078149 Katsumata et al. Jan 1992 A
5078678 Katims Jan 1992 A
5078714 Katims Jan 1992 A
5084022 Claude Jan 1992 A
5092341 Kelen Mar 1992 A
5099845 Besz et al. Mar 1992 A
5099850 Matsui et al. Mar 1992 A
5100387 Ng Mar 1992 A
5105829 Fabian et al. Apr 1992 A
5109862 Kelen et al. May 1992 A
5114401 Stuart et al. May 1992 A
5121750 Katims Jun 1992 A
5125410 Misono et al. Jun 1992 A
5134370 Jefferts et al. Jul 1992 A
5144955 O'Hara Sep 1992 A
5146151 Korn Sep 1992 A
5156151 Imran Oct 1992 A
5158086 Brown et al. Oct 1992 A
5160342 Reger et al. Nov 1992 A
5161536 Vilkomerson et al. Nov 1992 A
5174295 Christian et al. Dec 1992 A
5174299 Nelson Dec 1992 A
5184601 Putman Feb 1993 A
5184627 de Toledo Feb 1993 A
5190045 Frazin Mar 1993 A
5202985 Goyal Apr 1993 A
5205830 Dassa et al. Apr 1993 A
5211165 Dumoulin et al. May 1993 A
5211636 Mische May 1993 A
5212988 White et al. May 1993 A
5214615 Bauer May 1993 A
5217026 Stoy et al. Jun 1993 A
5220924 Frazin Jun 1993 A
5233994 Shmulewitz Aug 1993 A
5235987 Wolfe Aug 1993 A
5239464 Blair et al. Aug 1993 A
5240004 Walinsky et al. Aug 1993 A
5243995 Maier Sep 1993 A
5246007 Frisbie et al. Sep 1993 A
5246426 Lewis et al. Sep 1993 A
5247171 Wlodarczyk et al. Sep 1993 A
5251635 Dumoulin et al. Oct 1993 A
5255680 Darrow et al. Oct 1993 A
5257636 White Nov 1993 A
5257979 Jagpal Nov 1993 A
5261409 Dardel Nov 1993 A
5265610 Darrow et al. Nov 1993 A
5265614 Hayakawa et al. Nov 1993 A
5267569 Lienhard Dec 1993 A
5269306 Warnking et al. Dec 1993 A
5270810 Nishimura Dec 1993 A
5271404 Corl et al. Dec 1993 A
5273025 Sakiyama et al. Dec 1993 A
5273042 Lynch et al. Dec 1993 A
5274551 Corby, Jr. Dec 1993 A
5275053 Wlodarczyk et al. Jan 1994 A
5279129 Ito Jan 1994 A
5279607 Schentag et al. Jan 1994 A
5280786 Wlodarczyk et al. Jan 1994 A
5287331 Schindel et al. Feb 1994 A
5289373 Zarge et al. Feb 1994 A
5292342 Nelson et al. Mar 1994 A
5307072 Jones, Jr. Apr 1994 A
5311871 Yock May 1994 A
5313949 Yock May 1994 A
5318025 Dumoulin et al. Jun 1994 A
5325860 Seward et al. Jul 1994 A
5325873 Hirschi et al. Jul 1994 A
5330496 Alferness Jul 1994 A
5331966 Bennett et al. Jul 1994 A
5333614 Feiring Aug 1994 A
5337678 Grout Aug 1994 A
5341807 Nardella Aug 1994 A
5343865 Gardineer et al. Sep 1994 A
5345940 Seward et al. Sep 1994 A
5348020 Hutson Sep 1994 A
5350352 Buchholtz et al. Sep 1994 A
5357961 Fields et al. Oct 1994 A
5365935 Righter et al. Nov 1994 A
5366443 Eggers et al. Nov 1994 A
5368048 Stoy et al. Nov 1994 A
5375596 Twiss et al. Dec 1994 A
5376083 Mische Dec 1994 A
5377678 Dumoulin et al. Jan 1995 A
5385053 Wlodarczyk et al. Jan 1995 A
5385146 Goldreyer Jan 1995 A
5391199 Ben-Haim Feb 1995 A
5394876 Ma Mar 1995 A
5394877 Orr et al. Mar 1995 A
5395366 D'Andrea et al. Mar 1995 A
5398683 Edwards et al. Mar 1995 A
5398691 Martin et al. Mar 1995 A
5411485 Tennican et al. May 1995 A
5413107 Oakley et al. May 1995 A
5417208 Winkler May 1995 A
5417701 Holmes May 1995 A
5422478 Wlodarczyk et al. Jun 1995 A
5423334 Jordan Jun 1995 A
5423877 Mackey Jun 1995 A
5425367 Shapiro et al. Jun 1995 A
5425370 Vilkomerson Jun 1995 A
5425382 Golden et al. Jun 1995 A
5427114 Colliver et al. Jun 1995 A
5429132 Guy et al. Jul 1995 A
5429617 Hammersmark et al. Jul 1995 A
5431641 Grozinger et al. Jul 1995 A
5433729 Adams et al. Jul 1995 A
5437276 Takada Aug 1995 A
5437277 Dumoulin et al. Aug 1995 A
5438873 Wlodarczyk et al. Aug 1995 A
5443066 Dumoulin et al. Aug 1995 A
5443489 Ben-Haim Aug 1995 A
5445150 Dumoulin et al. Aug 1995 A
5445166 Taylor Aug 1995 A
5450846 Goldreyer Sep 1995 A
5453575 O'Donnell et al. Sep 1995 A
5453576 Krivitski Sep 1995 A
5456256 Schneider et al. Oct 1995 A
5456718 Szymaitis Oct 1995 A
5464016 Nicholas et al. Nov 1995 A
5474065 Meathrel et al. Dec 1995 A
5476090 Kishi Dec 1995 A
5480422 Ben-Haim Jan 1996 A
5487729 Avellanet et al. Jan 1996 A
5490522 Dardel Feb 1996 A
5492538 Johlin, Jr. Feb 1996 A
5494038 Wang et al. Feb 1996 A
5500011 Desai Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5505205 Solomon et al. Apr 1996 A
5509822 Negus et al. Apr 1996 A
5513637 Twiss et al. May 1996 A
5515160 Schulz et al. May 1996 A
5515853 Smith et al. May 1996 A
5517989 Frisbie et al. May 1996 A
5522878 Montecalvo et al. Jun 1996 A
5522880 Barone et al. Jun 1996 A
5526812 Dumoulin et al. Jun 1996 A
5531664 Adachi et al. Jul 1996 A
5536248 Weaver et al. Jul 1996 A
5540230 Vilkomerson Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542938 Avellanet et al. Aug 1996 A
5546949 Frazin et al. Aug 1996 A
5546951 Ben-Haim Aug 1996 A
5555618 Winkler Sep 1996 A
5558091 Acker et al. Sep 1996 A
5568809 Ben-haim Oct 1996 A
D375450 Bidwell et al. Nov 1996 S
5570671 Hickey Nov 1996 A
5575291 Hayakawa et al. Nov 1996 A
5588442 Scovil et al. Dec 1996 A
5592939 Martinelli Jan 1997 A
5598846 Peszynski Feb 1997 A
5599299 Weaver et al. Feb 1997 A
5600330 Blood Feb 1997 A
5603333 Konings Feb 1997 A
5606981 Tartacower Mar 1997 A
5610967 Moorman et al. Mar 1997 A
5617866 Marian, Jr. Apr 1997 A
5622169 Golden et al. Apr 1997 A
5622170 Schulz Apr 1997 A
5622184 Ashby et al. Apr 1997 A
5623931 Wung et al. Apr 1997 A
5624430 Eton et al. Apr 1997 A
5626554 Ryaby et al. May 1997 A
5626870 Monshipouri et al. May 1997 A
5630419 Ranalletta May 1997 A
5638819 Manwaring et al. Jun 1997 A
5640967 Fine et al. Jun 1997 A
5644612 Moorman et al. Jul 1997 A
5645065 Shapiro et al. Jul 1997 A
5651047 Moorman et al. Jul 1997 A
5654864 Ritter et al. Aug 1997 A
D383968 Bidwell et al. Sep 1997 S
5662115 Torp et al. Sep 1997 A
5665103 Lafontaine et al. Sep 1997 A
5665477 Meathrel et al. Sep 1997 A
5666473 Wallace Sep 1997 A
5666958 Rothenberg et al. Sep 1997 A
5669383 Johnson Sep 1997 A
5669388 Vilkomerson Sep 1997 A
5676159 Navis Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5682890 Kormos et al. Nov 1997 A
5691898 Rosenberg et al. Nov 1997 A
5694945 Ben-Haim Dec 1997 A
5695479 Jagpal Dec 1997 A
5697377 Wittkampf Dec 1997 A
5699801 Atalar et al. Dec 1997 A
5700889 Blair Dec 1997 A
5701898 Adam et al. Dec 1997 A
5702433 Taylor et al. Dec 1997 A
5711299 Manwaring et al. Jan 1998 A
5713362 Vilkomerson Feb 1998 A
5713363 Seward et al. Feb 1998 A
5713858 Heruth et al. Feb 1998 A
5713946 Ben-Haim Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716389 Walinsky et al. Feb 1998 A
5718241 Ben-Haim et al. Feb 1998 A
D391838 Bidwell et al. Mar 1998 S
5722412 Pflugrath et al. Mar 1998 A
5727550 Montecalvo Mar 1998 A
5727552 Ryan Mar 1998 A
5727553 Saad Mar 1998 A
5729055 Manning Mar 1998 A
5729129 Acker Mar 1998 A
5729584 Moorman et al. Mar 1998 A
5730129 Darrow et al. Mar 1998 A
5731996 Gilbert Mar 1998 A
5733323 Buck et al. Mar 1998 A
5738096 Ben-Haim Apr 1998 A
5740808 Panescu et al. Apr 1998 A
5742394 Hansen Apr 1998 A
5744953 Hansen Apr 1998 A
5748767 Raab May 1998 A
5749835 Glantz May 1998 A
5749938 Coombs May 1998 A
5751785 Moorman et al. May 1998 A
5752513 Acker et al. May 1998 A
5758650 Miller et al. Jun 1998 A
5762064 Polvani Jun 1998 A
5767669 Hansen et al. Jun 1998 A
5767960 Orman Jun 1998 A
5769786 Wiegel Jun 1998 A
5769843 Abela et al. Jun 1998 A
5769881 Schroeppel et al. Jun 1998 A
5771896 Sliwa, Jr. et al. Jun 1998 A
5775322 Silverstein et al. Jul 1998 A
5775332 Goldman Jul 1998 A
5776064 Kalfas et al. Jul 1998 A
5776080 Thome et al. Jul 1998 A
5779638 Vesely et al. Jul 1998 A
5782767 Pretlow, III Jul 1998 A
5782773 Kuo et al. Jul 1998 A
5785657 Breyer et al. Jul 1998 A
5792055 McKinnon Aug 1998 A
5795297 Daigle Aug 1998 A
5795298 Vesely et al. Aug 1998 A
5795632 Buchalter Aug 1998 A
5797849 Vesely et al. Aug 1998 A
5800352 Ferre et al. Sep 1998 A
5800410 Gawreluk Sep 1998 A
5800497 Bakels et al. Sep 1998 A
5803089 Ferre et al. Sep 1998 A
5810733 Van Creveld et al. Sep 1998 A
RE35924 Winkler Oct 1998 E
5817022 Vesely Oct 1998 A
5817024 Ogle et al. Oct 1998 A
5820549 Marian, Jr. Oct 1998 A
5820560 Sinderby et al. Oct 1998 A
5824031 Cookston et al. Oct 1998 A
5827192 Gopakumaran et al. Oct 1998 A
5829444 Ferre et al. Nov 1998 A
5830145 Tenhoff Nov 1998 A
5831260 Hansen Nov 1998 A
5833608 Acker Nov 1998 A
5833622 Meathrel et al. Nov 1998 A
5835561 Moorman et al. Nov 1998 A
5836882 Frazin Nov 1998 A
5836990 Li Nov 1998 A
5840024 Taniguchi et al. Nov 1998 A
5840025 Ben-Haim Nov 1998 A
5840030 Ferek-Petric et al. Nov 1998 A
5840031 Crowley Nov 1998 A
5842986 Avrin et al. Dec 1998 A
5842998 Gopakumaran et al. Dec 1998 A
5843076 Webster, Jr. et al. Dec 1998 A
5843153 Johnston et al. Dec 1998 A
5844140 Seale Dec 1998 A
5846198 Killmann Dec 1998 A
5855553 Tajima et al. Jan 1999 A
5859893 Moorman et al. Jan 1999 A
5865748 Co et al. Feb 1999 A
5868673 Vesely Feb 1999 A
5873822 Ferre et al. Feb 1999 A
5876328 Fox et al. Mar 1999 A
5879297 Haynor et al. Mar 1999 A
5893363 Little et al. Apr 1999 A
5897495 Aida et al. Apr 1999 A
5899860 Pfeiffer et al. May 1999 A
5902238 Golden et al. May 1999 A
5907487 Rosenberg et al. May 1999 A
5908385 Chechelski et al. Jun 1999 A
5910113 Pruter Jun 1999 A
5910120 Kim et al. Jun 1999 A
5913820 Bladen et al. Jun 1999 A
5913830 Miles Jun 1999 A
5919141 Money et al. Jul 1999 A
5919170 Woessner Jul 1999 A
5928145 Ocali et al. Jul 1999 A
5929607 Rosenberg et al. Jul 1999 A
5931788 Keen et al. Aug 1999 A
5931818 Werp et al. Aug 1999 A
5931863 Griffin, III et al. Aug 1999 A
5935160 Auricchio Aug 1999 A
5941858 Johnson Aug 1999 A
5941889 Cermak Aug 1999 A
5941904 Johnston et al. Aug 1999 A
5944022 Nardella et al. Aug 1999 A
5944023 Johnson et al. Aug 1999 A
5951472 Van Vaals et al. Sep 1999 A
5951598 Bishay et al. Sep 1999 A
5953683 Hansen et al. Sep 1999 A
5957857 Hartley Sep 1999 A
5961923 Nova et al. Oct 1999 A
5967978 Littmann et al. Oct 1999 A
5967980 Ferre et al. Oct 1999 A
5967991 Gardineer et al. Oct 1999 A
5969722 Palm Oct 1999 A
5971933 Gopakumaran et al. Oct 1999 A
5971983 Lesh Oct 1999 A
5978705 KenKnight et al. Nov 1999 A
5983126 Wittkampf Nov 1999 A
5984908 Davis et al. Nov 1999 A
5991693 Zalewski Nov 1999 A
5997473 Taniguchi et al. Dec 1999 A
5997481 Adams et al. Dec 1999 A
6006123 Nguyen et al. Dec 1999 A
6011988 Lynch et al. Jan 2000 A
6014473 Hossack et al. Jan 2000 A
6014580 Blume et al. Jan 2000 A
6015414 Werp et al. Jan 2000 A
6017496 Nova et al. Jan 2000 A
6019724 Gronningsaeter et al. Feb 2000 A
6019725 Vesely et al. Feb 2000 A
6022342 Mukherjee Feb 2000 A
6023638 Swanson Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6031765 Lee et al. Feb 2000 A
6032070 Flock et al. Feb 2000 A
6039694 Larson et al. Mar 2000 A
6050718 Schena et al. Apr 2000 A
6052610 Koch Apr 2000 A
6052618 Dahlke et al. Apr 2000 A
D424693 Pruter May 2000 S
6058323 Lemelson May 2000 A
6059718 Taniguchi et al. May 2000 A
6063032 Grunwald May 2000 A
6064905 Webster, Jr. et al. May 2000 A
6066094 Ben-Haim May 2000 A
6068599 Saito et al. May 2000 A
6073043 Schneider Jun 2000 A
6074367 Hubbell Jun 2000 A
6075442 Welch Jun 2000 A
6076007 England et al. Jun 2000 A
6081737 Shah Jun 2000 A
6082366 Andra et al. Jul 2000 A
6083170 Ben-Haim Jul 2000 A
6099524 Lipson et al. Aug 2000 A
6100026 Nova et al. Aug 2000 A
6102044 Naidyhorski Aug 2000 A
6102862 Grunwald et al. Aug 2000 A
6107699 Swanson Aug 2000 A
6112111 Glantz Aug 2000 A
6112115 Feldman et al. Aug 2000 A
6113504 Kuesters Sep 2000 A
6115624 Lewis et al. Sep 2000 A
6120445 Grunwald Sep 2000 A
6122538 Sliwa, Jr. et al. Sep 2000 A
6128174 Ritter et al. Oct 2000 A
6129668 Haynor et al. Oct 2000 A
6129724 Fleischman Oct 2000 A
6132378 Marino Oct 2000 A
6132379 Patacsil et al. Oct 2000 A
6135961 Pflugrath et al. Oct 2000 A
6136274 Nova et al. Oct 2000 A
6138681 Chen et al. Oct 2000 A
6139496 Chen et al. Oct 2000 A
6139502 Fredriksen Oct 2000 A
6139540 Rost et al. Oct 2000 A
6144300 Dames Nov 2000 A
6148823 Hastings Nov 2000 A
6152933 Werp et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6165144 Talish et al. Dec 2000 A
6165977 Mochly-Rosen Dec 2000 A
6166496 Lys et al. Dec 2000 A
6166806 Tjin Dec 2000 A
6167765 Weitzel Jan 2001 B1
6172499 Ashe Jan 2001 B1
6173199 Gabriel Jan 2001 B1
6173715 Sinanan et al. Jan 2001 B1
6175756 Ferre et al. Jan 2001 B1
6176829 Vilkomerson Jan 2001 B1
6187744 Rooney Feb 2001 B1
6190370 Tsui Feb 2001 B1
6191136 Marban Feb 2001 B1
6193743 Brayton et al. Feb 2001 B1
6197001 Wilson et al. Mar 2001 B1
6200305 Berthiaume et al. Mar 2001 B1
6203499 Imling et al. Mar 2001 B1
6208884 Kumar et al. Mar 2001 B1
6211626 Lys et al. Apr 2001 B1
6211666 Acker Apr 2001 B1
6212426 Swanson Apr 2001 B1
6212430 Kung Apr 2001 B1
6216027 Willis et al. Apr 2001 B1
6216028 Haynor et al. Apr 2001 B1
6216029 Paltieli Apr 2001 B1
6217517 Grunwald Apr 2001 B1
6223087 Williams Apr 2001 B1
6226547 Lockhart et al. May 2001 B1
6230042 Slettenmark May 2001 B1
6230046 Crane et al. May 2001 B1
6231518 Grabek et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6233994 Roy et al. May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6238344 Gamelsky et al. May 2001 B1
6241673 Williams Jun 2001 B1
6246231 Ashe Jun 2001 B1
6246898 Vesely et al. Jun 2001 B1
6248072 Murkin Jun 2001 B1
6248074 Ohno et al. Jun 2001 B1
6248075 McGee et al. Jun 2001 B1
6249234 Ely et al. Jun 2001 B1
6253770 Acker et al. Jul 2001 B1
6254543 Grunwald et al. Jul 2001 B1
6258035 Hoeksel et al. Jul 2001 B1
6259938 Zarychta et al. Jul 2001 B1
6259941 Chia et al. Jul 2001 B1
6261231 Damphousse et al. Jul 2001 B1
6263230 Haynor et al. Jul 2001 B1
6266550 Selmon et al. Jul 2001 B1
6266551 Osadchy et al. Jul 2001 B1
6266552 Slettenmark Jul 2001 B1
6266563 KenKnight et al. Jul 2001 B1
6270493 Lalonde et al. Aug 2001 B1
6271833 Rosenberg et al. Aug 2001 B1
6272371 Shlomo Aug 2001 B1
6272374 Flock et al. Aug 2001 B1
6275258 Chim Aug 2001 B1
6275724 Dickinson et al. Aug 2001 B1
6277077 Brisken et al. Aug 2001 B1
6284459 Nova et al. Sep 2001 B1
6285898 Ben-Haim Sep 2001 B1
6287259 Grunwald Sep 2001 B1
6287260 Hascoet et al. Sep 2001 B1
6288704 Flack et al. Sep 2001 B1
6292678 Hall et al. Sep 2001 B1
6292680 Somogyi et al. Sep 2001 B1
6292901 Lys et al. Sep 2001 B1
6293955 Houser et al. Sep 2001 B1
6296604 Garibaldi et al. Oct 2001 B1
6298261 Rex Oct 2001 B1
6304768 Blume et al. Oct 2001 B1
6306097 Park et al. Oct 2001 B1
6306105 Rooney et al. Oct 2001 B1
6311082 Creighton, IV et al. Oct 2001 B1
6315709 Garibaldi et al. Nov 2001 B1
6315727 Coleman et al. Nov 2001 B1
6319668 Nova et al. Nov 2001 B1
6323769 Dames Nov 2001 B1
6323770 Dames Nov 2001 B1
6324416 Seibert Nov 2001 B1
6325540 Lounsberry et al. Dec 2001 B1
6325762 Tjin Dec 2001 B1
6329139 Nova et al. Dec 2001 B1
6329916 Dames Dec 2001 B1
6330467 Creighton, IV et al. Dec 2001 B1
6332089 Acker et al. Dec 2001 B1
6332874 Eliasen et al. Dec 2001 B1
6340588 Nova et al. Jan 2002 B1
6340868 Lys et al. Jan 2002 B1
6341231 Ferre et al. Jan 2002 B1
6346081 Vilkomerson Feb 2002 B1
6348911 Rosenberg et al. Feb 2002 B1
6350160 Feuersanger et al. Feb 2002 B1
6352363 Munger et al. Mar 2002 B1
6354999 Dgany et al. Mar 2002 B1
6355026 Mick Mar 2002 B1
6356791 Westlund et al. Mar 2002 B1
6360123 Kimchi et al. Mar 2002 B1
6361499 Bates et al. Mar 2002 B1
6364823 Garibaldi et al. Apr 2002 B1
6364839 Little et al. Apr 2002 B1
6366804 Mejia Apr 2002 B1
6368285 Osadchy et al. Apr 2002 B1
6370411 Osadchy et al. Apr 2002 B1
6373240 Govari Apr 2002 B1
6373388 Dames Apr 2002 B1
6374134 Bladen et al. Apr 2002 B1
6374670 Spelman et al. Apr 2002 B1
6375606 Garibaldi et al. Apr 2002 B1
6375639 Duplessie et al. Apr 2002 B1
6377857 Brayton et al. Apr 2002 B1
6379302 Kessman et al. Apr 2002 B1
6379303 Seitz et al. Apr 2002 B1
6379307 Filly et al. Apr 2002 B1
6381485 Hunter et al. Apr 2002 B1
6385472 Hall et al. May 2002 B1
6385476 Osadchy et al. May 2002 B1
6398736 Seward Jun 2002 B1
6398738 Millar Jun 2002 B1
6401723 Garibaldi et al. Jun 2002 B1
6406422 Landesberg Jun 2002 B1
6406442 McFann et al. Jun 2002 B1
6412978 Watanabe et al. Jul 2002 B1
6412980 Lounsberry et al. Jul 2002 B1
6417839 Odell Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6418335 Avrin et al. Jul 2002 B2
6423002 Hossack Jul 2002 B1
6423050 Twardowski Jul 2002 B1
6427079 Schneider et al. Jul 2002 B1
6428551 Hall et al. Aug 2002 B1
6430315 Makram-Ebeid Aug 2002 B1
6432069 Godo et al. Aug 2002 B1
6438411 Guttman et al. Aug 2002 B1
6442416 Schultz Aug 2002 B1
6445943 Ferre et al. Sep 2002 B1
6456874 Hafer et al. Sep 2002 B1
6459919 Lys et al. Oct 2002 B1
6463121 Milnes Oct 2002 B1
6466815 Saito et al. Oct 2002 B1
6471656 Shalman et al. Oct 2002 B1
6471658 Daniels et al. Oct 2002 B1
6471700 Burbank et al. Oct 2002 B1
6473167 Odell Oct 2002 B1
6474341 Hunter et al. Nov 2002 B1
6475152 Kelly, Jr. et al. Nov 2002 B1
6475223 Werp et al. Nov 2002 B1
6477402 Lynch et al. Nov 2002 B1
6484118 Govari Nov 2002 B1
6487916 Gomm et al. Dec 2002 B1
6491671 Larson, III et al. Dec 2002 B1
6493573 Martinelli et al. Dec 2002 B1
6494832 Feldman et al. Dec 2002 B1
6496715 Lee et al. Dec 2002 B1
6498944 Ben-Haim et al. Dec 2002 B1
6500141 Irion et al. Dec 2002 B1
6505062 Ritter et al. Jan 2003 B1
6506159 Hascoet et al. Jan 2003 B2
6507751 Blume et al. Jan 2003 B2
6508802 Rosengart et al. Jan 2003 B1
6511413 Landesberg Jan 2003 B2
6512958 Swoyer et al. Jan 2003 B1
6514202 Grunwald Feb 2003 B2
6514226 Levin et al. Feb 2003 B1
6514249 Maguire et al. Feb 2003 B1
6515657 Zanelli Feb 2003 B1
6516212 Bladen et al. Feb 2003 B1
6516231 Flammang Feb 2003 B1
6516807 Panescu et al. Feb 2003 B1
6517520 Chang et al. Feb 2003 B2
6522906 Salisbury, Jr. et al. Feb 2003 B1
6522907 Bladen et al. Feb 2003 B1
6522909 Garibaldi et al. Feb 2003 B1
6524303 Garibaldi Feb 2003 B1
6528954 Lys et al. Mar 2003 B1
6528991 Ashe Mar 2003 B2
6529761 Creighton, IV et al. Mar 2003 B2
6529766 Guendel Mar 2003 B1
6534982 Jakab Mar 2003 B1
6535625 Chang et al. Mar 2003 B1
6537192 Elliott et al. Mar 2003 B1
6537196 Creighton, IV et al. Mar 2003 B1
6538634 Chui et al. Mar 2003 B1
6540699 Smith Apr 2003 B1
6542766 Hall et al. Apr 2003 B2
6544251 Crawford Apr 2003 B1
6545678 Ohazama Apr 2003 B1
6546270 Goldin et al. Apr 2003 B1
6546279 Bova et al. Apr 2003 B1
6546787 Schiller et al. Apr 2003 B1
6552841 Lasser et al. Apr 2003 B1
6556858 Zeman Apr 2003 B1
6562019 Sell May 2003 B1
6564087 Pitris et al. May 2003 B1
6569101 Quistgaard et al. May 2003 B2
6569103 Hoeksel et al. May 2003 B2
6569160 Goldin et al. May 2003 B1
6569862 Marban May 2003 B1
6571004 Florent et al. May 2003 B1
6574518 Lounsberry et al. Jun 2003 B1
6575908 Barnes et al. Jun 2003 B2
6577080 Lys et al. Jun 2003 B2
6577896 Werner et al. Jun 2003 B2
6584343 Ransbury et al. Jun 2003 B1
6589181 Grunwald et al. Jul 2003 B2
6593754 Steber et al. Jul 2003 B1
6593884 Gilboa et al. Jul 2003 B1
6597943 Taha et al. Jul 2003 B2
6599249 Nordgren et al. Jul 2003 B1
6607488 Jackson et al. Aug 2003 B1
6610058 Flores Aug 2003 B2
6611141 Schulz et al. Aug 2003 B1
6615071 Casscells, III et al. Sep 2003 B1
6615155 Gilboa Sep 2003 B2
6616610 Steininger et al. Sep 2003 B2
6618612 Acker et al. Sep 2003 B1
6626832 Paltieli et al. Sep 2003 B1
6626834 Dunne et al. Sep 2003 B2
6626902 Kucharczyk et al. Sep 2003 B1
6630879 Creighton, IV et al. Oct 2003 B1
6635027 Cragg et al. Oct 2003 B1
6645148 Nguyen-Dinh et al. Nov 2003 B2
6648875 Simpson et al. Nov 2003 B2
6649914 Moorman et al. Nov 2003 B1
6652505 Tsugita Nov 2003 B1
6652506 Bowe et al. Nov 2003 B2
6660024 Flaherty et al. Dec 2003 B1
6662034 Segner et al. Dec 2003 B2
6663661 Boneau Dec 2003 B2
6666828 Greco et al. Dec 2003 B2
6672308 Gaspari Jan 2004 B1
6677752 Creighton, IV et al. Jan 2004 B1
6679857 Bastia et al. Jan 2004 B1
6684176 Willins et al. Jan 2004 B2
6685644 Seo et al. Feb 2004 B2
6687531 Ferre et al. Feb 2004 B1
6689119 Di Caprio et al. Feb 2004 B1
6690963 Ben-Haim et al. Feb 2004 B2
6690964 Bieger et al. Feb 2004 B2
6690968 Mejia Feb 2004 B2
6694167 Ferre et al. Feb 2004 B1
6695786 Wang et al. Feb 2004 B2
6701179 Martinelli et al. Mar 2004 B1
6701918 Fariss et al. Mar 2004 B2
6702804 Ritter et al. Mar 2004 B1
6704590 Haldeman Mar 2004 B2
6709390 Marie Pop Mar 2004 B1
6711429 Gilboa et al. Mar 2004 B1
6711431 Sarin et al. Mar 2004 B2
6719699 Smith Apr 2004 B2
6719724 Walker et al. Apr 2004 B1
6719756 Muntermann Apr 2004 B1
6720745 Lys et al. Apr 2004 B2
6733458 Steins et al. May 2004 B1
6733473 Reifart May 2004 B1
6733511 Hall et al. May 2004 B2
6736782 Pfeiffer et al. May 2004 B2
6738656 Ferre et al. May 2004 B1
6740103 Hall et al. May 2004 B2
6743177 Ito Jun 2004 B2
6754596 Ashe Jun 2004 B2
6755789 Stringer et al. Jun 2004 B2
6755816 Ritter et al. Jun 2004 B2
6755822 Reu et al. Jun 2004 B2
6757557 Bladen et al. Jun 2004 B1
6763261 Casscells, III et al. Jul 2004 B2
6764449 Lee et al. Jul 2004 B2
6768496 Bieger et al. Jul 2004 B2
6772001 Maschke Aug 2004 B2
6774624 Anderson et al. Aug 2004 B2
6783536 Vilsmeier et al. Aug 2004 B2
6784660 Ashe Aug 2004 B2
6785571 Glossop Aug 2004 B2
6786219 Garibaldi et al. Sep 2004 B2
6786870 Miyaki et al. Sep 2004 B2
6788967 Ben-Haim et al. Sep 2004 B2
6794667 Noshi Sep 2004 B2
6799066 Steines et al. Sep 2004 B2
6815651 Odell Nov 2004 B2
6816266 Varshneya et al. Nov 2004 B2
6817364 Garibaldi et al. Nov 2004 B2
6834201 Gillies et al. Dec 2004 B2
6844713 Steber et al. Jan 2005 B2
6845142 Ohishi Jan 2005 B2
6850788 Al-Ali Feb 2005 B2
6856823 Ashe Feb 2005 B2
6860422 Hull et al. Mar 2005 B2
6862467 Moore et al. Mar 2005 B2
6869390 Elliott et al. Mar 2005 B2
6875179 Ferguson et al. Apr 2005 B2
6879160 Jakab Apr 2005 B2
6887206 Hoeksel et al. May 2005 B2
6889091 Hine et al. May 2005 B2
6895268 Rahn et al. May 2005 B1
6902528 Garibaldi et al. Jun 2005 B1
6905469 Hascoet et al. Jun 2005 B2
6908433 Pruter Jun 2005 B1
6911026 Hall et al. Jun 2005 B1
6923782 O'Mahony et al. Aug 2005 B2
6926673 Roberts et al. Aug 2005 B2
6926674 Tenerz et al. Aug 2005 B2
6934575 Ferre et al. Aug 2005 B2
6936010 Fang et al. Aug 2005 B2
6939313 Saadat et al. Sep 2005 B2
6940379 Creighton Sep 2005 B2
6941166 MacAdam et al. Sep 2005 B2
6945938 Grunwald Sep 2005 B2
6947788 Gilboa et al. Sep 2005 B2
6950689 Willis et al. Sep 2005 B1
6953754 Machida et al. Oct 2005 B2
6958677 Carter Oct 2005 B1
6959214 Pape et al. Oct 2005 B2
6962566 Quistgaard et al. Nov 2005 B2
6968846 Viswanathan Nov 2005 B2
6975197 Creighton, IV Dec 2005 B2
6976962 Bullis Dec 2005 B2
6976987 Flores Dec 2005 B2
6980843 Eng et al. Dec 2005 B2
6980852 Jersey-Willuhn et al. Dec 2005 B2
6980921 Anderson et al. Dec 2005 B2
6986739 Warren et al. Jan 2006 B2
6986744 Krivitski Jan 2006 B1
6999821 Jenney et al. Feb 2006 B2
7001355 Nunomura et al. Feb 2006 B2
7008418 Hall et al. Mar 2006 B2
7010338 Ritter et al. Mar 2006 B2
7015393 Weiner et al. Mar 2006 B2
7017584 Garibaldi et al. Mar 2006 B2
7019610 Creighton, IV et al. Mar 2006 B2
7020512 Ritter et al. Mar 2006 B2
D518574 Chaggares Apr 2006 S
7022075 Grunwald et al. Apr 2006 B2
7022082 Sonek Apr 2006 B2
7026927 Wright et al. Apr 2006 B2
7027634 Odell Apr 2006 B2
7028387 Huynh et al. Apr 2006 B1
7029446 Wendelken et al. Apr 2006 B2
7033603 Nelson et al. Apr 2006 B2
D520139 Chaggares May 2006 S
D520140 Chaggares May 2006 S
7038398 Lys et al. May 2006 B1
7038657 Rosenberg et al. May 2006 B2
7043293 Baura May 2006 B1
7048733 Hartley et al. May 2006 B2
7054228 Hickling May 2006 B1
7065403 Mouchawar et al. Jun 2006 B1
7066914 Andersen Jun 2006 B2
7066924 Garibaldi et al. Jun 2006 B1
7069072 Jansen et al. Jun 2006 B2
D525363 Chaggares Jul 2006 S
7070565 Vaezy et al. Jul 2006 B2
7072704 Bucholz Jul 2006 B2
7082325 Hashimshony et al. Jul 2006 B2
7090639 Govari Aug 2006 B2
7096059 Geddes et al. Aug 2006 B2
7096148 Anderson et al. Aug 2006 B2
7096870 Lamprich et al. Aug 2006 B2
7098907 Houston et al. Aug 2006 B2
7103205 Wang et al. Sep 2006 B2
7104980 Laherty et al. Sep 2006 B1
7106043 Da Silva et al. Sep 2006 B1
7106431 Odell Sep 2006 B2
7106479 Roy et al. Sep 2006 B2
7107105 Bjorklund et al. Sep 2006 B2
7112197 Hartley et al. Sep 2006 B2
7128734 Wilson et al. Oct 2006 B1
7132804 Lys et al. Nov 2006 B2
7137976 Ritter et al. Nov 2006 B2
7141019 Pearlman Nov 2006 B2
7141812 Appleby et al. Nov 2006 B2
7142905 Slayton et al. Nov 2006 B2
7148970 de Boer Dec 2006 B2
7153291 Bierman Dec 2006 B2
7161453 Creighton, IV Jan 2007 B2
7162291 Nachaliel Jan 2007 B1
7167738 Schweikard et al. Jan 2007 B2
7169107 Jersey-Willuhn et al. Jan 2007 B2
7169109 Jansen et al. Jan 2007 B2
7174201 Govari et al. Feb 2007 B2
7175646 Brenneman et al. Feb 2007 B2
7180252 Lys et al. Feb 2007 B2
7184820 Jersey-Willuhn et al. Feb 2007 B2
7189198 Harburn et al. Mar 2007 B2
7189205 McMorrow et al. Mar 2007 B2
7189208 Beatty et al. Mar 2007 B1
7190819 Viswanathan Mar 2007 B2
7194295 Vilsmeier Mar 2007 B2
7204798 Zdeblick et al. Apr 2007 B2
7206064 Rogers et al. Apr 2007 B2
7207941 Sharf Apr 2007 B2
7211082 Hall et al. May 2007 B2
7214191 Stringer et al. May 2007 B2
7215326 Rosenberg May 2007 B2
7221104 Lys et al. May 2007 B2
7223256 Bierman May 2007 B2
7229400 Elliott et al. Jun 2007 B2
7231243 Tearney et al. Jun 2007 B2
7236157 Schena et al. Jun 2007 B2
7236816 Kumar et al. Jun 2007 B2
7236820 Mabary et al. Jun 2007 B2
7237313 Skujins et al. Jul 2007 B2
7241267 Furia Jul 2007 B2
7244234 Ridley et al. Jul 2007 B2
7248032 Hular et al. Jul 2007 B1
7248914 Hastings et al. Jul 2007 B2
7252633 Obata et al. Aug 2007 B2
7261691 Asomani Aug 2007 B1
7264584 Ritter et al. Sep 2007 B2
7270662 Visram et al. Sep 2007 B2
7276044 Ferry et al. Oct 2007 B2
7286034 Creighton Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7297140 Orlu et al. Nov 2007 B2
7299085 Bergelson et al. Nov 2007 B2
7300430 Wilson et al. Nov 2007 B2
7302288 Schellenberg Nov 2007 B1
7308296 Lys et al. Dec 2007 B2
7310150 Guillermo et al. Dec 2007 B2
7311702 Tallarida et al. Dec 2007 B2
7321228 Govari Jan 2008 B2
7326241 Jang Feb 2008 B2
7327872 Vaillant et al. Feb 2008 B2
7331462 Steppe Feb 2008 B2
7342058 Peppmoller et al. Mar 2008 B2
7349732 Kil et al. Mar 2008 B1
7355716 de Boer et al. Apr 2008 B2
7360427 Drinkwater et al. Apr 2008 B2
7366376 Shishkov et al. Apr 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7366563 Kleen et al. Apr 2008 B2
7373271 Schneider May 2008 B1
7381204 Wilson et al. Jun 2008 B2
7382949 Bouma et al. Jun 2008 B2
7384407 Rodriguez et al. Jun 2008 B2
7418169 Tearney et al. Aug 2008 B2
7447408 Bouma et al. Nov 2008 B2
7452331 Pruter Nov 2008 B1
7452358 Stern et al. Nov 2008 B2
7454244 Kassab et al. Nov 2008 B2
D585556 Kosaku Jan 2009 S
7479141 Kleen et al. Jan 2009 B2
7519424 Dennis et al. Apr 2009 B2
7529584 Laske et al. May 2009 B2
7534223 Boutilette et al. May 2009 B2
7538859 Tearney et al. May 2009 B2
7543239 Viswanathan et al. Jun 2009 B2
7546158 Allison et al. Jun 2009 B2
7547282 Lo et al. Jun 2009 B2
7551293 Yelin et al. Jun 2009 B2
D603050 Chen Oct 2009 S
7599730 Hunter et al. Oct 2009 B2
7606615 Makower et al. Oct 2009 B2
7613478 Jabri et al. Nov 2009 B2
7616992 Dennis et al. Nov 2009 B2
7627376 Dennis et al. Dec 2009 B2
7635336 Pruter Dec 2009 B1
7637163 Fetzer et al. Dec 2009 B2
7640053 Verin Dec 2009 B2
7651469 Osborne et al. Jan 2010 B2
7652080 Peppmoller et al. Jan 2010 B2
7660623 Hunter et al. Feb 2010 B2
7665893 Buchalter Feb 2010 B2
7666191 Orban, III et al. Feb 2010 B2
7668583 Fegert et al. Feb 2010 B2
7697972 Verard et al. Apr 2010 B2
7699782 Angelsen et al. Apr 2010 B2
7699829 Harris et al. Apr 2010 B2
7715925 Hafer et al. May 2010 B2
7727192 Tokumoto et al. Jun 2010 B2
7729743 Sabczynski et al. Jun 2010 B2
7751865 Jascob et al. Jul 2010 B2
7766839 Rogers et al. Aug 2010 B2
7771437 Hogg et al. Aug 2010 B2
7774051 Voth Aug 2010 B2
7774055 Min Aug 2010 B1
7794407 Rothenberg Sep 2010 B2
7798970 Lo et al. Sep 2010 B2
7819810 Stringer et al. Oct 2010 B2
7822464 Maschke et al. Oct 2010 B2
7828528 Estes et al. Nov 2010 B2
7831294 Viswanathan Nov 2010 B2
7833168 Taylor et al. Nov 2010 B2
7833214 Wilson et al. Nov 2010 B2
7840252 Strommer et al. Nov 2010 B2
D629526 Ladwig et al. Dec 2010 S
D629527 Crunkilton Dec 2010 S
7846157 Kozel Dec 2010 B2
7850613 Stribling Dec 2010 B2
D630756 Kitayama Jan 2011 S
D630757 Kitayama Jan 2011 S
7869854 Shachar et al. Jan 2011 B2
7869865 Govari et al. Jan 2011 B2
7873402 Shachar Jan 2011 B2
7909815 Whitmore, III et al. Mar 2011 B2
7931596 Rachlin et al. Apr 2011 B2
7947040 Davies et al. May 2011 B2
7969142 Krueger et al. Jun 2011 B2
7976469 Bonde et al. Jul 2011 B2
7976518 Shaughnessy et al. Jul 2011 B2
7981038 Kanade et al. Jul 2011 B2
7988633 Hossack et al. Aug 2011 B2
8016814 Blakstvedt et al. Sep 2011 B2
8046052 Verard et al. Oct 2011 B2
8055327 Strommer et al. Nov 2011 B2
8057394 Dala-Krishna Nov 2011 B2
8060185 Hunter et al. Nov 2011 B2
8078274 Kassab Dec 2011 B2
8078279 Dennis et al. Dec 2011 B2
8082025 Amitai et al. Dec 2011 B2
8082032 Kassab et al. Dec 2011 B2
8088072 Munrow et al. Jan 2012 B2
8090430 Makower et al. Jan 2012 B2
8099161 Kassab Jan 2012 B2
8105338 Anderson et al. Jan 2012 B2
8114143 Kassab et al. Feb 2012 B2
8118743 Park et al. Feb 2012 B2
8123691 Mine et al. Feb 2012 B2
8133698 Silver Mar 2012 B2
8142417 Pajunk et al. Mar 2012 B2
8150522 Echauz et al. Apr 2012 B2
8152724 Ridley et al. Apr 2012 B2
8155732 Scholz et al. Apr 2012 B2
8204582 Zantos et al. Jun 2012 B2
8214018 Markowitz et al. Jul 2012 B2
8221402 Francischelli et al. Jul 2012 B2
8240211 Zeitner et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8244339 Shen et al. Aug 2012 B2
8255035 Cao et al. Aug 2012 B2
8260395 Markowitz et al. Sep 2012 B2
8262577 Munrow et al. Sep 2012 B2
8298149 Hastings et al. Oct 2012 B2
8303502 Washburn et al. Nov 2012 B2
8303505 Webler et al. Nov 2012 B2
8326419 Rosenberg et al. Dec 2012 B2
8326651 McLaren et al. Dec 2012 B2
8340751 Markowitz et al. Dec 2012 B2
8346343 Kimura et al. Jan 2013 B2
8369922 Paul et al. Feb 2013 B2
8388541 Messerly et al. Mar 2013 B2
8388546 Rothenberg Mar 2013 B2
8391956 Zellers et al. Mar 2013 B2
8400164 Osadchy et al. Mar 2013 B2
8401616 Verard et al. Mar 2013 B2
8409103 Grunwald et al. Apr 2013 B2
8412313 Amitai et al. Apr 2013 B2
8425425 Hagy et al. Apr 2013 B2
8437833 Silverstein May 2013 B2
8439873 Donovan May 2013 B1
8442621 Gorek et al. May 2013 B2
8447384 Xu et al. May 2013 B2
D684265 Cadera Jun 2013 S
8456182 Bar-Tal et al. Jun 2013 B2
8478382 Burnside et al. Jul 2013 B2
8478388 Nguyen et al. Jul 2013 B2
8485980 Sinderby et al. Jul 2013 B2
8494608 Markowitz et al. Jul 2013 B2
8496592 Ridley et al. Jul 2013 B2
8504139 Jacobsen et al. Aug 2013 B2
8512256 Rothenberg Aug 2013 B2
8521122 Scott et al. Aug 2013 B2
8527036 Jalde et al. Sep 2013 B2
8538509 Harlev et al. Sep 2013 B2
8597193 Grunwald et al. Dec 2013 B2
8620412 Griffiths et al. Dec 2013 B2
8644907 Hartmann et al. Feb 2014 B2
8663116 Hamilton, Jr. Mar 2014 B2
8690776 Razzaque et al. Apr 2014 B2
8700137 Albert Apr 2014 B2
8715195 Ziv May 2014 B2
8721655 Viswanathan et al. May 2014 B2
8734440 Wu May 2014 B2
8761862 Ridley et al. Jun 2014 B2
8774907 Rothenberg Jul 2014 B2
8781555 Burnside et al. Jul 2014 B2
8784336 Bown et al. Jul 2014 B2
8801693 He et al. Aug 2014 B2
8849382 Cox et al. Sep 2014 B2
8858455 Rothenberg Oct 2014 B2
8934961 Lakin et al. Jan 2015 B2
8942784 Neidert et al. Jan 2015 B2
8965490 Lee et al. Feb 2015 B2
8971994 Burnside et al. Mar 2015 B2
9014794 Brodnick et al. Apr 2015 B2
9033889 Hamilton, Jr. May 2015 B2
9125578 Grunwald Sep 2015 B2
9179860 Markowitz et al. Nov 2015 B2
9198600 Grunwald et al. Dec 2015 B2
9339206 Grunwald May 2016 B2
9415188 He et al. Aug 2016 B2
9456766 Cox et al. Oct 2016 B2
9492097 Wilkes et al. Nov 2016 B2
9521961 Silverstein et al. Dec 2016 B2
9526440 Burnside et al. Dec 2016 B2
9532724 Grunwald Jan 2017 B2
9554716 Burnside et al. Jan 2017 B2
9636031 Cox May 2017 B2
9642986 Beasley May 2017 B2
9649048 Cox et al. May 2017 B2
9681823 Messerly et al. Jun 2017 B2
9833169 Rothenberg Dec 2017 B2
9839372 Bukhman et al. Dec 2017 B2
9901714 Lemon et al. Feb 2018 B2
9907513 Silverstein Mar 2018 B2
9999371 Messerly et al. Jun 2018 B2
10004875 Bown et al. Jun 2018 B2
10046139 Powers et al. Aug 2018 B2
10105121 Burnside et al. Oct 2018 B2
10165962 Messerly et al. Jan 2019 B2
10231643 Grunwald Mar 2019 B2
10231753 Burnside et al. Mar 2019 B2
10238418 Cox et al. Mar 2019 B2
10271762 Grunwald Apr 2019 B2
10349857 Grunwald Jul 2019 B2
10349890 Misener et al. Jul 2019 B2
10449330 Newman et al. Oct 2019 B2
10524691 Newman et al. Jan 2020 B2
10602958 Silverstein et al. Mar 2020 B2
20010014774 Grunwald Aug 2001 A1
20010027332 Grunwald et al. Oct 2001 A1
20020010392 Desai Jan 2002 A1
20020016549 Mejia Feb 2002 A1
20020019447 Renn et al. Feb 2002 A1
20020022777 Crieghton et al. Feb 2002 A1
20020032391 McFann et al. Mar 2002 A1
20020045810 Ben-Haim Apr 2002 A1
20020049488 Boneau Apr 2002 A1
20020055680 Miele et al. May 2002 A1
20020082559 Chang et al. Jun 2002 A1
20020113555 Lys et al. Aug 2002 A1
20020123679 Dominguez Sep 2002 A1
20020128554 Seward Sep 2002 A1
20020129952 Matsudate et al. Sep 2002 A1
20020133079 Sandhu Sep 2002 A1
20020156363 Hunter et al. Oct 2002 A1
20020156376 Wang et al. Oct 2002 A1
20020165448 Ben-Haim et al. Nov 2002 A1
20020165534 Hayzelden et al. Nov 2002 A1
20020165537 Kelley et al. Nov 2002 A1
20020173721 Grunwald et al. Nov 2002 A1
20020193756 Prindle Dec 2002 A1
20020198568 Hafer et al. Dec 2002 A1
20030009132 Schwartz et al. Jan 2003 A1
20030011359 Ashe Jan 2003 A1
20030013959 Grunwald et al. Jan 2003 A1
20030013966 Barnes et al. Jan 2003 A1
20030013986 Saadat Jan 2003 A1
20030018251 Solomon Jan 2003 A1
20030036696 Willis et al. Feb 2003 A1
20030040671 Somogyi et al. Feb 2003 A1
20030040743 Cosman et al. Feb 2003 A1
20030072805 Miyazawa et al. Apr 2003 A1
20030073901 Simon et al. Apr 2003 A1
20030076281 Morgan et al. Apr 2003 A1
20030083698 Whitehurst et al. May 2003 A1
20030088195 Vardi et al. May 2003 A1
20030092993 Grunwald May 2003 A1
20030100849 Jang May 2003 A1
20030114742 Lewkowicz et al. Jun 2003 A1
20030114777 Griffin et al. Jun 2003 A1
20030120150 Govari Jun 2003 A1
20030120154 Sauer et al. Jun 2003 A1
20030139661 Kimchy et al. Jul 2003 A1
20030149328 Elliott et al. Aug 2003 A1
20030149368 Hennemann et al. Aug 2003 A1
20030152290 Odell Aug 2003 A1
20030160721 Gilboa et al. Aug 2003 A1
20030162414 Schulz et al. Aug 2003 A1
20030163037 Bladen et al. Aug 2003 A1
20030163142 Paltieli et al. Aug 2003 A1
20030171691 Casscells et al. Sep 2003 A1
20030173953 Ashe Sep 2003 A1
20030181892 Pajunk et al. Sep 2003 A1
20030184544 Prudent Oct 2003 A1
20030191392 Haldeman Oct 2003 A1
20030191460 Hobbs et al. Oct 2003 A1
20030195420 Mendlein et al. Oct 2003 A1
20030199746 Fuimaono et al. Oct 2003 A1
20030208142 Boudewijn et al. Nov 2003 A1
20030216639 Gilboa et al. Nov 2003 A1
20030216723 Shinmura et al. Nov 2003 A1
20030220557 Cleary et al. Nov 2003 A1
20030220578 Ho et al. Nov 2003 A1
20030229298 Iwami et al. Dec 2003 A1
20030233042 Ashe Dec 2003 A1
20030236445 Couvillon Dec 2003 A1
20040010189 van Sloun et al. Jan 2004 A1
20040015070 Liang et al. Jan 2004 A1
20040024301 Hockett et al. Feb 2004 A1
20040030319 Korkor et al. Feb 2004 A1
20040054278 Kimchy et al. Mar 2004 A1
20040059217 Kessman et al. Mar 2004 A1
20040059237 Narayan et al. Mar 2004 A1
20040082916 Jenkins Apr 2004 A1
20040087877 Besz et al. May 2004 A1
20040088136 Ashe May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040097803 Panescu May 2004 A1
20040097804 Sobe May 2004 A1
20040097805 Verard et al. May 2004 A1
20040097806 Hunter et al. May 2004 A1
20040116809 Chow et al. Jun 2004 A1
20040127805 MacAdam et al. Jul 2004 A1
20040131998 Marom et al. Jul 2004 A1
20040133111 Szczech et al. Jul 2004 A1
20040133130 Ferry et al. Jul 2004 A1
20040135069 Odell Jul 2004 A1
20040138557 Le et al. Jul 2004 A1
20040138564 Hwang et al. Jul 2004 A1
20040138569 Grunwald et al. Jul 2004 A1
20040138570 Nita et al. Jul 2004 A1
20040143183 Toyoda et al. Jul 2004 A1
20040147837 Macaulay et al. Jul 2004 A1
20040150963 Holmberg et al. Aug 2004 A1
20040152972 Hunter Aug 2004 A1
20040155609 Lys et al. Aug 2004 A1
20040158140 Fuimaono et al. Aug 2004 A1
20040162487 Klingenbeck-Regn et al. Aug 2004 A1
20040171924 Mire et al. Sep 2004 A1
20040176688 Haldeman Sep 2004 A1
20040186461 DiMatteo Sep 2004 A1
20040199069 Connelly et al. Oct 2004 A1
20040210289 Wang et al. Oct 2004 A1
20040225233 Frankowski et al. Nov 2004 A1
20040230131 Kassab et al. Nov 2004 A1
20040230271 Wang et al. Nov 2004 A1
20040234453 Smith Nov 2004 A1
20040243018 Organ et al. Dec 2004 A1
20040243116 Joye et al. Dec 2004 A1
20040243118 Ayers et al. Dec 2004 A1
20040253365 Warren et al. Dec 2004 A1
20040254470 Drinkwater et al. Dec 2004 A1
20040254495 Mabary et al. Dec 2004 A1
20040260174 Keene Dec 2004 A1
20040267086 Anstadt et al. Dec 2004 A1
20050004450 Ben-Haim et al. Jan 2005 A1
20050021019 Hashimshony et al. Jan 2005 A1
20050033150 Takahashi et al. Feb 2005 A1
20050038355 Gellman et al. Feb 2005 A1
20050043640 Chang Feb 2005 A1
20050049486 Urquhart et al. Mar 2005 A1
20050049510 Haldeman et al. Mar 2005 A1
20050063194 Lys et al. Mar 2005 A1
20050070788 Wilson et al. Mar 2005 A1
20050075561 Golden Apr 2005 A1
20050085715 Dukesherer et al. Apr 2005 A1
20050085716 Hamm et al. Apr 2005 A1
20050085718 Shahidi Apr 2005 A1
20050085720 Jascob et al. Apr 2005 A1
20050090746 Ohtake Apr 2005 A1
20050101868 Ridley et al. May 2005 A1
20050101869 Burba et al. May 2005 A1
20050105081 Odell May 2005 A1
20050105101 Duling et al. May 2005 A1
20050112135 Cormier et al. May 2005 A1
20050113669 Helfer et al. May 2005 A1
20050113676 Weiner et al. May 2005 A1
20050113700 Yanagihara et al. May 2005 A1
20050113873 Weiner et al. May 2005 A1
20050113874 Connelly et al. May 2005 A1
20050113876 Weiner et al. May 2005 A1
20050143689 Ramsey, III Jun 2005 A1
20050148836 Kleen et al. Jul 2005 A1
20050148902 Minar et al. Jul 2005 A1
20050149002 Wang et al. Jul 2005 A1
20050151489 Lys et al. Jul 2005 A1
20050154308 Quistgaard et al. Jul 2005 A1
20050159644 Takano Jul 2005 A1
20050159790 Shalev Jul 2005 A1
20050165301 Smith et al. Jul 2005 A1
20050165313 Byron et al. Jul 2005 A1
20050175665 Hunter et al. Aug 2005 A1
20050175703 Hunter et al. Aug 2005 A1
20050178395 Hunter et al. Aug 2005 A1
20050178396 Hunter et al. Aug 2005 A1
20050182295 Soper et al. Aug 2005 A1
20050182454 Gharib et al. Aug 2005 A1
20050197674 McCabe et al. Sep 2005 A1
20050203368 Verin Sep 2005 A1
20050203396 Angelsen et al. Sep 2005 A1
20050205081 Barker et al. Sep 2005 A1
20050215901 Anderson et al. Sep 2005 A1
20050215945 Harris et al. Sep 2005 A1
20050222532 Bertolero et al. Oct 2005 A1
20050240102 Rachlin et al. Oct 2005 A1
20050245811 Scheffler Nov 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050256451 Adams et al. Nov 2005 A1
20050256521 Kozel Nov 2005 A1
20050256541 Stypulkowski Nov 2005 A1
20050283210 Blischak et al. Dec 2005 A1
20050283216 Pyles Dec 2005 A1
20050288586 Ferek-Petric Dec 2005 A1
20050288695 Jenson Dec 2005 A1
20060009759 Chrisitian et al. Jan 2006 A1
20060015003 Moaddes et al. Jan 2006 A1
20060025677 Verard et al. Feb 2006 A1
20060025697 Kurzweil et al. Feb 2006 A1
20060058633 Hoshino et al. Mar 2006 A1
20060065275 Lamprich et al. Mar 2006 A1
20060068074 Stefandl Mar 2006 A1
20060084867 Tremblay et al. Apr 2006 A1
20060106306 Essner et al. May 2006 A1
20060116571 Maschke et al. Jun 2006 A1
20060116576 McGee et al. Jun 2006 A1
20060116578 Grunwald et al. Jun 2006 A1
20060122514 Byrd et al. Jun 2006 A1
20060142656 Malackowski et al. Jun 2006 A1
20060149134 Soper et al. Jul 2006 A1
20060173251 Govari et al. Aug 2006 A1
20060173329 Irioka et al. Aug 2006 A1
20060173407 Shaughnessy et al. Aug 2006 A1
20060176242 Jaramaz et al. Aug 2006 A1
20060184074 Vaezy et al. Aug 2006 A1
20060206037 Braxton Sep 2006 A1
20060211944 Mauge et al. Sep 2006 A1
20060217655 Vitullo et al. Sep 2006 A1
20060217755 Eversull Sep 2006 A1
20060224188 Libbus et al. Oct 2006 A1
20060241432 Herline et al. Oct 2006 A1
20060247746 Danek et al. Nov 2006 A1
20060253029 Altmann et al. Nov 2006 A1
20060253115 Avitall et al. Nov 2006 A1
20060258895 Maschke Nov 2006 A1
20060276867 Viswanathan Dec 2006 A1
20060287595 Maschke Dec 2006 A1
20070010753 MacAdam Jan 2007 A1
20070016007 Govari et al. Jan 2007 A1
20070016013 Camus Jan 2007 A1
20070016068 Grunwald et al. Jan 2007 A1
20070016069 Grunwald et al. Jan 2007 A1
20070016070 Grunwald et al. Jan 2007 A1
20070016072 Grunwald et al. Jan 2007 A1
20070032746 Sell Feb 2007 A1
20070038113 Oonuki et al. Feb 2007 A1
20070049817 Preiss et al. Mar 2007 A1
20070049822 Bunce et al. Mar 2007 A1
20070049846 Bown et al. Mar 2007 A1
20070055141 Kruger et al. Mar 2007 A1
20070055142 Webler Mar 2007 A1
20070055294 Giap Mar 2007 A1
20070060992 Pappone Mar 2007 A1
20070062544 Rauk Bergstrom et al. Mar 2007 A1
20070066888 Maschke Mar 2007 A1
20070073155 Park et al. Mar 2007 A1
20070078343 Kawashima et al. Apr 2007 A1
20070087038 Richardson et al. Apr 2007 A1
20070093710 Maschke Apr 2007 A1
20070100236 McMorrow et al. May 2007 A1
20070100285 Griffin et al. May 2007 A1
20070112282 Skujins et al. May 2007 A1
20070123805 Shireman et al. May 2007 A1
20070129770 Younis Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070135886 Maschke Jun 2007 A1
20070156205 Larson et al. Jul 2007 A1
20070161853 Yagi et al. Jul 2007 A1
20070161914 Zdeblick et al. Jul 2007 A1
20070161915 Desai Jul 2007 A1
20070167738 Timinger et al. Jul 2007 A1
20070167743 Honda et al. Jul 2007 A1
20070167762 Kim et al. Jul 2007 A1
20070167769 Ikuma et al. Jul 2007 A1
20070167801 Webler et al. Jul 2007 A1
20070167997 Forsberg et al. Jul 2007 A1
20070197891 Shachar et al. Aug 2007 A1
20070197905 Timinger et al. Aug 2007 A1
20070197926 Danehorn et al. Aug 2007 A1
20070208255 Ridley et al. Sep 2007 A1
20070219453 Kremliovsky et al. Sep 2007 A1
20070225589 Viswanathan Sep 2007 A1
20070225610 Mickley et al. Sep 2007 A1
20070232882 Glossop et al. Oct 2007 A1
20070232896 Gilboa et al. Oct 2007 A1
20070238984 Maschke et al. Oct 2007 A1
20070239004 Kakee et al. Oct 2007 A1
20070239018 Fetzer et al. Oct 2007 A1
20070244413 Biggins Oct 2007 A1
20070247454 Rahn et al. Oct 2007 A1
20070249911 Simon Oct 2007 A1
20070250150 Pal Oct 2007 A1
20070255270 Carney Nov 2007 A1
20070265526 Govari et al. Nov 2007 A1
20070280974 Son et al. Dec 2007 A1
20070282196 Birk et al. Dec 2007 A1
20070282197 Bill et al. Dec 2007 A1
20070299352 Harlev et al. Dec 2007 A1
20070299353 Harlev et al. Dec 2007 A1
20080004652 Abboud et al. Jan 2008 A1
20080008745 Stinchcomb et al. Jan 2008 A1
20080009720 Schefelker et al. Jan 2008 A1
20080015442 Watson et al. Jan 2008 A1
20080021283 Kuranda Jan 2008 A1
20080027320 Bolorforosh et al. Jan 2008 A1
20080033282 Bar-Tal et al. Feb 2008 A1
20080033283 Dellaca et al. Feb 2008 A1
20080033316 Kassab et al. Feb 2008 A1
20080033350 Wilson et al. Feb 2008 A1
20080045908 Gould et al. Feb 2008 A1
20080051626 Sato et al. Feb 2008 A1
20080077158 Haider et al. Mar 2008 A1
20080081958 Denison et al. Apr 2008 A1
20080082136 Gaudiani Apr 2008 A1
20080097232 Rothenberg Apr 2008 A1
20080108949 Beasley et al. May 2008 A1
20080114095 Peppmoller et al. May 2008 A1
20080119697 Vadodaria et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080137927 Altmann et al. Jun 2008 A1
20080139944 Weymer et al. Jun 2008 A1
20080146939 McMorrow et al. Jun 2008 A1
20080146940 Jenkins et al. Jun 2008 A1
20080146941 Dala-Krishna Jun 2008 A1
20080146942 Dala-Krishna Jun 2008 A1
20080154100 Thalmeier et al. Jun 2008 A1
20080166453 Steele et al. Jul 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080183075 Govari et al. Jul 2008 A1
20080188830 Rosenblatt et al. Aug 2008 A1
20080190438 Harlev et al. Aug 2008 A1
20080195169 Pinter et al. Aug 2008 A1
20080200754 Buchalter Aug 2008 A1
20080200801 Wildes et al. Aug 2008 A1
20080200913 Viswanathan Aug 2008 A1
20080228082 Scheirer et al. Sep 2008 A1
20080236598 Gobel Oct 2008 A1
20080255404 Nogawa et al. Oct 2008 A1
20080255475 Kondrosky et al. Oct 2008 A1
20080269581 Wood et al. Oct 2008 A1
20080269611 Pedrizzetti et al. Oct 2008 A1
20080275465 Paul et al. Nov 2008 A1
20080275765 Kuchar Nov 2008 A1
20080288038 Paul et al. Nov 2008 A1
20080294041 Kassab Nov 2008 A1
20080319350 Wallace et al. Dec 2008 A1
20090005674 Saadat et al. Jan 2009 A1
20090005675 Grunwald et al. Jan 2009 A1
20090005679 Dala-Krishna Jan 2009 A1
20090018497 Birchard et al. Jan 2009 A1
20090024018 Boyden et al. Jan 2009 A1
20090030380 Binmoeller Jan 2009 A1
20090043205 Pelissier et al. Feb 2009 A1
20090062646 Creighton, IV et al. Mar 2009 A1
20090062684 Gregersen et al. Mar 2009 A1
20090062772 Wakeford Mar 2009 A1
20090080738 Zur et al. Mar 2009 A1
20090082661 Saladin et al. Mar 2009 A1
20090084382 Jalde et al. Apr 2009 A1
20090099468 Thiagalingam et al. Apr 2009 A1
20090101577 Fulkerson et al. Apr 2009 A1
20090115406 Anderson et al. May 2009 A1
20090118612 Grunwald et al. May 2009 A1
20090118637 Kassab et al. May 2009 A1
20090118706 Schweikert et al. May 2009 A1
20090124901 Fink et al. May 2009 A1
20090143736 Mittermeyer et al. Jun 2009 A1
20090156926 Messerly et al. Jun 2009 A1
20090163810 Kanade et al. Jun 2009 A1
20090171217 Kim et al. Jul 2009 A1
20090177083 Matsumura Jul 2009 A1
20090177090 Grunwald et al. Jul 2009 A1
20090182224 Shmarak et al. Jul 2009 A1
20090203989 Burnside et al. Aug 2009 A1
20090204113 MacAdam et al. Aug 2009 A1
20090209872 Pop Aug 2009 A1
20090209950 Starksen Aug 2009 A1
20090221908 Glossop Sep 2009 A1
20090227952 Blakstvedt et al. Sep 2009 A1
20090234328 Cox Sep 2009 A1
20090247835 Voipio Oct 2009 A1
20090253976 Harlev et al. Oct 2009 A1
20090258171 Uang Oct 2009 A1
20090259124 Rothenberg Oct 2009 A1
20090262982 Markowitz et al. Oct 2009 A1
20090270729 Corbucci et al. Oct 2009 A1
20090270746 Min Oct 2009 A1
20090275828 Shachar et al. Nov 2009 A1
20090281419 Troesken et al. Nov 2009 A1
20090297441 Canham et al. Dec 2009 A1
20090312629 Razzaque et al. Dec 2009 A1
20100004543 Ahlund et al. Jan 2010 A1
20100004547 Scholz et al. Jan 2010 A1
20100010355 Kassab Jan 2010 A1
20100010444 Bettuchi Jan 2010 A1
20100010612 Gelbart et al. Jan 2010 A1
20100016726 Meier Jan 2010 A1
20100036227 Cox et al. Feb 2010 A1
20100036284 Laynes et al. Feb 2010 A1
20100041973 Vu et al. Feb 2010 A1
20100041984 Shapland et al. Feb 2010 A1
20100049062 Ziv Feb 2010 A1
20100055153 Majmudar Mar 2010 A1
20100055184 Zeitels et al. Mar 2010 A1
20100057157 Govari et al. Mar 2010 A1
20100060472 Kimura et al. Mar 2010 A1
20100063401 Nishina et al. Mar 2010 A1
20100076305 Maier-Hein et al. Mar 2010 A1
20100076328 Matsumura et al. Mar 2010 A1
20100081934 Soltani et al. Apr 2010 A1
20100083719 Peppmoller et al. Apr 2010 A1
20100094116 Silverstein Apr 2010 A1
20100106011 Byrd et al. Apr 2010 A1
20100113917 Anderson May 2010 A1
20100114573 Huang et al. May 2010 A1
20100117659 Osadchy et al. May 2010 A1
20100130858 Arai et al. May 2010 A1
20100143119 Kooijman et al. Jun 2010 A1
20100152596 Griffiths et al. Jun 2010 A1
20100152604 Kaula et al. Jun 2010 A1
20100160772 Gardeski et al. Jun 2010 A1
20100168557 Deno et al. Jul 2010 A1
20100185097 Hall Jul 2010 A1
20100198048 Togawa Aug 2010 A1
20100198346 Keogh et al. Aug 2010 A1
20100204569 Burnside et al. Aug 2010 A1
20100204614 Lindquist et al. Aug 2010 A1
20100210938 Verard et al. Aug 2010 A1
20100210950 Dunbar et al. Aug 2010 A1
20100217116 Eck et al. Aug 2010 A1
20100222664 Lemon et al. Sep 2010 A1
20100222786 Kassab Sep 2010 A1
20100234724 Jacobsen et al. Sep 2010 A1
20100234733 Wahlheim Sep 2010 A1
20100249598 Smith et al. Sep 2010 A1
20100258033 Yang et al. Oct 2010 A1
20100268059 Ryu et al. Oct 2010 A1
20100273895 Stinchcomb et al. Oct 2010 A1
20100274150 Harlev et al. Oct 2010 A1
20100291521 Simon Nov 2010 A1
20100298702 Rogers et al. Nov 2010 A1
20100298704 Pelissier et al. Nov 2010 A1
20100298705 Pelissier et al. Nov 2010 A1
20100298712 Pelissier et al. Nov 2010 A1
20100312086 Beatty et al. Dec 2010 A9
20100317981 Grunwald Dec 2010 A1
20100318026 Grunwald Dec 2010 A1
20100331712 Rothenberg Dec 2010 A1
20110015496 Sherman et al. Jan 2011 A1
20110015527 Heasty et al. Jan 2011 A1
20110015533 Cox et al. Jan 2011 A1
20110034823 Gelbart et al. Feb 2011 A1
20110034940 Payner Feb 2011 A1
20110040212 Dietz et al. Feb 2011 A1
20110052694 Stinchcomb et al. Mar 2011 A1
20110087105 Ridley et al. Apr 2011 A1
20110087106 Ridley et al. Apr 2011 A1
20110087107 Lindekugel et al. Apr 2011 A1
20110106101 Tortonese et al. May 2011 A1
20110112396 Shachar et al. May 2011 A1
20110136242 Marx et al. Jun 2011 A1
20110137156 Razzaque et al. Jun 2011 A1
20110196235 Dunbar et al. Aug 2011 A1
20110196248 Grunwald Aug 2011 A1
20110196255 Kassab Aug 2011 A1
20110237935 Kalpin et al. Sep 2011 A1
20110245659 Ma et al. Oct 2011 A1
20110282187 Harlev et al. Nov 2011 A1
20110282188 Burnside et al. Nov 2011 A1
20110282285 Blanchard et al. Nov 2011 A1
20110282686 Venon et al. Nov 2011 A1
20110295108 Cox et al. Dec 2011 A1
20110306859 Saldivar et al. Dec 2011 A1
20110306867 Gopinathan et al. Dec 2011 A1
20110313293 Lindekugel et al. Dec 2011 A1
20120004564 Dobak, III Jan 2012 A1
20120035460 Stangenes et al. Feb 2012 A1
20120035539 Tegg Feb 2012 A1
20120046562 Powers et al. Feb 2012 A1
20120059249 Verard et al. Mar 2012 A1
20120059270 Grunwald Mar 2012 A1
20120059271 Amitai et al. Mar 2012 A1
20120071751 Sra et al. Mar 2012 A1
20120071759 Hagy et al. Mar 2012 A1
20120071782 Patil et al. Mar 2012 A1
20120078342 Vollkron et al. Mar 2012 A1
20120095319 Kondrosky et al. Apr 2012 A1
20120108950 He et al. May 2012 A1
20120115007 Felder et al. May 2012 A1
20120136242 Qi et al. May 2012 A1
20120143029 Silverstein et al. Jun 2012 A1
20120143078 Kassab et al. Jun 2012 A1
20120172727 Hastings et al. Jul 2012 A1
20120220854 Messerly et al. Aug 2012 A1
20120265084 Stewart et al. Oct 2012 A1
20120283582 Mahapatra et al. Nov 2012 A1
20120296200 Shachar et al. Nov 2012 A1
20120296213 Mauldin, Jr. et al. Nov 2012 A1
20120310052 Mahapatra et al. Dec 2012 A1
20120310066 Shachar et al. Dec 2012 A1
20120310660 Liu et al. Dec 2012 A1
20120316440 Munrow et al. Dec 2012 A1
20130006100 Shachar et al. Jan 2013 A1
20130006102 Wilkes et al. Jan 2013 A1
20130018248 Hurezan Jan 2013 A1
20130035590 Ma et al. Feb 2013 A1
20130041254 Hagy et al. Feb 2013 A1
20130041269 Stahmann et al. Feb 2013 A1
20130060116 Messerly et al. Mar 2013 A1
20130079628 Groszmann et al. Mar 2013 A1
20130085416 Mest Apr 2013 A1
20130090938 Fishman et al. Apr 2013 A1
20130102890 Dib Apr 2013 A1
20130123597 Rothenberg May 2013 A1
20130131503 Schneider et al. May 2013 A1
20130169272 Eichler et al. Jul 2013 A1
20130213147 Rice et al. Aug 2013 A1
20130217999 Burnside et al. Aug 2013 A1
20130223702 Holsing et al. Aug 2013 A1
20130245434 Messerly et al. Sep 2013 A1
20130281837 Ridley et al. Oct 2013 A1
20130289417 Grunwald et al. Oct 2013 A1
20130296691 Ashe Nov 2013 A1
20130296693 Wenzel et al. Nov 2013 A1
20130303878 Nevo et al. Nov 2013 A1
20130303896 Kalpin et al. Nov 2013 A1
20130303945 Blumenkranz et al. Nov 2013 A1
20130317338 Silverstein Nov 2013 A1
20130324841 Kamen et al. Dec 2013 A1
20130338503 Cohen et al. Dec 2013 A1
20130338517 Rothenberg Dec 2013 A1
20130345555 Kanade et al. Dec 2013 A1
20140031674 Newman et al. Jan 2014 A1
20140046261 Newman et al. Feb 2014 A1
20140066798 Albert Mar 2014 A1
20140089836 Damani et al. Mar 2014 A1
20140094694 Moctezuma de la Barrera Apr 2014 A1
20140094768 Stangenes et al. Apr 2014 A1
20140107475 Cox et al. Apr 2014 A1
20140128712 Banet et al. May 2014 A1
20140163356 Burnside et al. Jun 2014 A2
20140180074 Green et al. Jun 2014 A1
20140187917 Clark et al. Jul 2014 A1
20140187990 Banet et al. Jul 2014 A1
20140188133 Misener Jul 2014 A1
20140221862 Tambe Aug 2014 A1
20140228689 Ishikawa et al. Aug 2014 A1
20140243659 Rothenberg Aug 2014 A1
20140249428 Ingold, Jr. et al. Sep 2014 A1
20140249505 Bukhman Sep 2014 A1
20140253270 Nicholls et al. Sep 2014 A1
20140257080 Dunbar et al. Sep 2014 A1
20140275957 Lupotti Sep 2014 A1
20140275990 Hagy et al. Sep 2014 A1
20140276010 Anderson Sep 2014 A1
20140303492 Burnside et al. Oct 2014 A1
20140309624 Bown et al. Oct 2014 A1
20140343398 He et al. Nov 2014 A1
20150005621 Liu Jan 2015 A1
20150018701 Cox et al. Jan 2015 A1
20150025365 Esguerra Wilczynski et al. Jan 2015 A1
20150025402 Rothenberg Jan 2015 A1
20150051489 Caluser et al. Feb 2015 A1
20150073285 Albert et al. Mar 2015 A1
20150080716 Powers et al. Mar 2015 A1
20150209008 Ridley et al. Jul 2015 A1
20150216445 Carmeli et al. Aug 2015 A1
20150216446 Bukhman et al. Aug 2015 A1
20150223775 Hamilton, Jr. Aug 2015 A1
20150245809 Hagy et al. Sep 2015 A1
20150245872 Hagy et al. Sep 2015 A1
20150246247 Binnekamp et al. Sep 2015 A1
20150282734 Schweikert et al. Oct 2015 A1
20150289781 Grunwald et al. Oct 2015 A1
20150297114 Cox et al. Oct 2015 A1
20150317810 Grunwald et al. Nov 2015 A1
20150335310 Bernstein et al. Nov 2015 A1
20150335383 Cohen Nov 2015 A9
20160067449 Misener et al. Mar 2016 A1
20160278869 Grunwald Sep 2016 A1
20160374589 Misener et al. Dec 2016 A1
20170000367 Grunwald Jan 2017 A1
20170020561 Cox et al. Jan 2017 A1
20170079548 Silverstein et al. Mar 2017 A1
20170079552 Grunwald Mar 2017 A1
20170079615 Burnside et al. Mar 2017 A1
20170079681 Burnside et al. Mar 2017 A1
20170086782 Hagy et al. Mar 2017 A1
20170151022 Jascob et al. Jun 2017 A1
20170215762 Burnside et al. Aug 2017 A1
20170231700 Cox et al. Aug 2017 A1
20170281029 Messerly et al. Oct 2017 A1
20170348510 Shevgoor et al. Dec 2017 A1
20170348511 Burkholz et al. Dec 2017 A1
20180070856 Grunwald Mar 2018 A1
20180103869 Bukhman et al. Apr 2018 A1
20180116551 Newman et al. May 2018 A1
20180145443 Andreason et al. May 2018 A1
20180296122 Messerly et al. Oct 2018 A1
20190069877 Burnside et al. Mar 2019 A1
20190099108 Messerly et al. Apr 2019 A1
20190246945 Grunwald Aug 2019 A1
20190290208 Toth et al. Sep 2019 A1
20190320982 Misener et al. Oct 2019 A1
20200054858 Newman et al. Feb 2020 A1
20200119488 Stats et al. Apr 2020 A1
20200138332 Newman et al. May 2020 A1
20200237255 Silverstein et al. Jul 2020 A1
20200237403 Southard et al. Jul 2020 A1
20200345983 Misener Nov 2020 A1
20210077201 Cox et al. Mar 2021 A1
Foreign Referenced Citations (222)
Number Date Country
642647 Oct 1993 AU
1860597 Jun 1999 AU
20009592 Sep 2000 AU
20015250 Jun 2001 AU
768362 Dec 2003 AU
2001229024 Sep 2005 AU
2001283703 May 2006 AU
2006904933 Sep 2006 AU
2006202149 Mar 2009 AU
2006283022 Feb 2012 AU
1197745 Dec 1985 CA
2420676 Jul 2010 CA
2619909 Jan 2014 CA
2031655 Feb 1989 CN
1672649 Sep 2005 CN
1913833 Feb 2007 CN
101854853 Oct 2010 CN
102209490 Oct 2011 CN
102802514 Nov 2012 CN
102821679 Dec 2012 CN
103037761 Apr 2013 CN
103037762 Apr 2013 CN
103118591 May 2013 CN
103189009 Jul 2013 CN
4319033 Jun 1994 DE
0362821 Apr 1990 EP
0399536 Nov 1990 EP
0359697 Nov 1994 EP
0823261 Feb 1998 EP
0928976 Jul 1999 EP
1025805 Aug 2000 EP
1015967 Apr 2002 EP
1311226 May 2003 EP
1504713 Feb 2005 EP
1117331 May 2005 EP
1117332 Aug 2005 EP
1118019 May 2006 EP
1717601 Nov 2006 EP
1887940 Feb 2008 EP
1932477 Jun 2008 EP
2337491 Jun 2011 EP
2440122 Apr 2012 EP
2464407 Jun 2012 EP
2482719 Aug 2012 EP
2531098 Dec 2012 EP
2575610 Apr 2013 EP
2575611 Apr 2013 EP
2603145 Jun 2013 EP
2605699 Jun 2013 EP
2474268 Jul 2013 EP
2618727 Jul 2013 EP
2632360 Sep 2013 EP
2219526 Mar 2014 EP
2712547 Apr 2014 EP
2313143 Sep 2014 EP
2992825 May 2017 EP
2170162 Aug 2017 EP
2265175 Aug 2017 EP
2545349 Sep 1986 FR
01097440 Apr 1989 JP
03173542 Jul 1991 JP
9-503054 Mar 1997 JP
09-094298 Apr 1997 JP
10043310 Feb 1998 JP
10290839 Nov 1998 JP
11128237 May 1999 JP
2001-145630 May 2001 JP
2001161683 Jun 2001 JP
2001-514533 Sep 2001 JP
2001-524339 Dec 2001 JP
2001340334 Dec 2001 JP
2002520893 Jul 2002 JP
2002-224069 Aug 2002 JP
2002-529133 Sep 2002 JP
2002-541947 Dec 2002 JP
2003-010138 Jan 2003 JP
2003501127 Jan 2003 JP
2003061752 Mar 2003 JP
2003299654 Oct 2003 JP
2003334191 Nov 2003 JP
2004505748 Feb 2004 JP
2004515298 May 2004 JP
2006508744 Mar 2006 JP
2006-338526 Dec 2006 JP
2007-000226 Jan 2007 JP
2007-068989 Mar 2007 JP
2007-105450 Apr 2007 JP
2007-313122 Dec 2007 JP
4090741 May 2008 JP
2009271123 Nov 2009 JP
5010604 Aug 2012 JP
2012-529929 Nov 2012 JP
2013-518676 May 2013 JP
2013-526959 Jun 2013 JP
2013-526961 Jun 2013 JP
2009101949 Jul 2010 RU
1980002376 Nov 1980 WO
1991012836 Sep 1991 WO
1992003090 Mar 1992 WO
1994003159 Feb 1994 WO
1994004938 Mar 1994 WO
1996005768 Feb 1996 WO
1996007352 Mar 1996 WO
1996041119 Dec 1996 WO
199722395 Jun 1997 WO
1997029683 Aug 1997 WO
1997043989 Nov 1997 WO
9748438 Dec 1997 WO
1998025159 Jun 1998 WO
9829032 Jul 1998 WO
1998035611 Aug 1998 WO
1999016495 Apr 1999 WO
1999027837 Jun 1999 WO
1999049407 Sep 1999 WO
2000019906 Apr 2000 WO
2000027281 May 2000 WO
2000040155 Jul 2000 WO
2000063658 Oct 2000 WO
2000074775 Dec 2000 WO
2001013792 Mar 2001 WO
2001039683 Jun 2001 WO
2001076479 Oct 2001 WO
0207794 Jan 2002 WO
2002015973 Feb 2002 WO
2002019905 Mar 2002 WO
2002025277 Mar 2002 WO
2002085442 Oct 2002 WO
2003061752 Jul 2003 WO
2003077759 Sep 2003 WO
03088833 Oct 2003 WO
2003091495 Nov 2003 WO
2004002303 Jan 2004 WO
2004049970 Jun 2004 WO
2005033524 Apr 2005 WO
2005033574 Apr 2005 WO
2005089851 Sep 2005 WO
2005117690 Dec 2005 WO
2005117733 Dec 2005 WO
2006074509 Jul 2006 WO
2006074510 Jul 2006 WO
2006078677 Jul 2006 WO
2006103661 Oct 2006 WO
2006111056 Oct 2006 WO
2007002541 Jan 2007 WO
2007005976 Jan 2007 WO
2007014447 Feb 2007 WO
2007034196 Mar 2007 WO
2007067324 Jun 2007 WO
2007069168 Jun 2007 WO
2007109123 Sep 2007 WO
2007126536 Nov 2007 WO
2007144894 Dec 2007 WO
2008005480 Jan 2008 WO
2008024596 Feb 2008 WO
2008028253 Mar 2008 WO
2008083111 Jul 2008 WO
2008097767 Aug 2008 WO
2008118992 Oct 2008 WO
2008126074 Oct 2008 WO
2008129326 Oct 2008 WO
2008131017 Oct 2008 WO
2008136008 Nov 2008 WO
2009000439 Dec 2008 WO
2009002514 Dec 2008 WO
2009003138 Dec 2008 WO
2009009064 Jan 2009 WO
2009057774 May 2009 WO
2009063166 May 2009 WO
2009067654 May 2009 WO
2009070616 Jun 2009 WO
2009100158 Aug 2009 WO
2009123819 Oct 2009 WO
2009126340 Oct 2009 WO
2009129475 Oct 2009 WO
2009129477 Oct 2009 WO
2009134605 Nov 2009 WO
2009137262 Nov 2009 WO
2010002313 Jan 2010 WO
2010018500 Feb 2010 WO
2010022370 Feb 2010 WO
2010027349 Mar 2010 WO
2010027471 Mar 2010 WO
2010029906 Mar 2010 WO
2010030820 Mar 2010 WO
2010132857 Nov 2010 WO
2010132985 Nov 2010 WO
2010144922 Dec 2010 WO
2010143196 Dec 2010 WO
2011019760 Feb 2011 WO
2011041450 Apr 2011 WO
2011044421 Apr 2011 WO
2011057289 May 2011 WO
2011064209 Jun 2011 WO
2011084593 Jul 2011 WO
2011097312 Aug 2011 WO
2011128052 Oct 2011 WO
2011150358 Dec 2011 WO
2011150376 Dec 2011 WO
2012021542 Feb 2012 WO
2012024577 Feb 2012 WO
2012039866 Mar 2012 WO
2012040487 Mar 2012 WO
2012058461 May 2012 WO
2012083245 Jun 2012 WO
2012088535 Jun 2012 WO
2012110955 Aug 2012 WO
2012173697 Dec 2012 WO
2013006713 Jan 2013 WO
2013006817 Jan 2013 WO
2013034175 Mar 2013 WO
2014042329 Mar 2014 WO
2014052894 Apr 2014 WO
2014062728 Apr 2014 WO
2014138652 Sep 2014 WO
2014138918 Sep 2014 WO
2015055797 Apr 2015 WO
2015048514 Apr 2015 WO
2015073962 May 2015 WO
2015120256 Aug 2015 WO
2016210325 Dec 2016 WO
2018112252 Jun 2018 WO
2020160315 Aug 2020 WO
Non-Patent Literature Citations (666)
Entry
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Advisory Action dated Mar. 5, 2015.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Advisory Action dated Oct. 4, 2013.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Final Office Action dated Dec. 23, 2014.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Final Office Action dated Jul. 26, 2013.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Final Office Action dated Nov. 4, 2015.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Non-Final Office Action dated Jan. 22, 2013.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Non-Final Office Action dated Jul. 2, 2014.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Non-Final Office Action dated Jun. 1, 2015.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Advisory Action dated Sep. 8, 2014.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Final Office Action dated Aug. 15, 2013.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Final Office Action dated Aug. 21, 2015.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Final Office Action dated Jul. 1, 2014.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Non-Final Office Action dated Feb. 1, 2016.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Non-Final Office Action dated Jan. 29, 2013.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Non-Final Office Action dated Jan. 29, 2014.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Non-Final Office Action dated Mar. 16, 2015.
U.S. Appl. No. 12/878,915, filed Sep. 9, 2010 Final Office Action dated Sep. 26, 2012.
U.S. Appl. No. 12/878,915, filed Sep. 9, 2010 Non-Final Office Action dated Mar. 15, 2012.
U.S. Appl. No. 12/878,915, filed Sep. 9, 2010 Notice of Allowance dated Jan. 8, 2013.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Advisory Action dated Aug. 15, 2014.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Advisory Action dated Jun. 2, 2016.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Final Office Action dated Jan. 15, 2015.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Final Office Action dated Jun. 18, 2014.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Final Office Action dated Mar. 25, 2016.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Non-Final Office Action dated Aug. 31, 2016.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Non-Final Office Action dated Dec. 24, 2013.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Non-Final Office Action dated Sep. 10, 2015.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Non-Final Office Action dated Sep. 25, 2014.
U.S. Appl. No. 12/900,750, filed Oct. 8, 2010 Non-Final Office Action dated Jun. 3, 2013.
U.S. Appl. No. 13/019,939, filed Feb. 2, 2011 Final Office Action dated Apr. 2, 2014.
U.S. Appl. No. 13/019,939, filed Feb. 2, 2011 Non-Final Office Action dated Feb. 9. 2015.
U.S. Appl. No. 13/019,939, filed Feb. 2, 2011 Non-Final Office Action dated Oct. 11, 2011.
U.S. Appl. No. 13/118,033, filed May 27, 2011 Final Office Action dated Apr. 1, 2016.
U.S. Appl. No. 13/118,033, filed May 27, 2011 Non-Final Office Action dated Aug. 1, 2011.
U.S. Appl. No. 13/118,033, filed May 27, 2011 Non-Final Office Action dated Feb. 3, 2015.
U.S. Appl. No. 13/118,033, filed May 27, 2011 Non-Final Office Action dated Jul. 8, 2015.
U.S. Appl. No. 13/118,033, filed May 27, 2011 Non-Final Office Action dated May 22, 2014.
U.S. Appl. No. 13/118,033, filed May 27, 2011 Notice of Allowance dated Sep. 2, 2016.
U.S. Appl. No. 13/118,138, filed May 27, 2011 Final Office Action dated Apr. 1, 2016.
U.S. Appl. No. 13/118,138, filed May 27, 2011 Final Office Action dated Apr. 3, 2013.
U.S. Appl. No. 13/118,138, filed May 27, 2011 Non-Final Office Action dated Jul. 15, 2015.
U.S. Appl. No. 13/118,138, filed May 27, 2011 Non-Final Office Action dated Oct. 3, 2012.
U.S. Appl. No. 13/118,138, filed May 27, 2011 Non-Final Office Action dated Oct. 9, 2014.
U.S. Appl. No. 13/213,622, filed Aug. 19, 2011 Final Office Action dated Feb. 19, 2013.
U.S. Appl. No. 13/213,622, filed Aug. 19, 2011 Non-Final Office Action dated Jul. 31, 2012.
U.S. Appl. No. 13/213,622, filed Aug. 19, 2011 Non-Final Office Action dated May 22, 2014.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Advisory Action dated Aug. 18, 2015.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Advisory Action dated Jul. 22, 2016.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Final Office Action dated Jun. 10, 2015.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Final Office Action dated May 6, 2016.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Non-Final Office Action dated Dec. 1, 2015.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Non-Final Office Action dated Dec. 26, 2014.
U.S. Appl. No. 13/283,395, filed Oct. 27, 2011 Advisory Action dated Jan. 28, 2014.
U.S. Appl. No. 13/283,395, filed Oct. 27, 2011 Final Office Action dated Nov. 14, 2013.
U.S. Appl. No. 13/283,395, filed Oct. 27, 2011 Non-Final Office Action dated Apr. 23, 2013.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Advisory Action dated May 23, 2013.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Final Office Action dated Dec. 19, 2014.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Final Office Action dated Mar. 1, 2013.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Non-Final Office Action dated Dec. 27, 2013.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Non-Final Office Action dated Jul. 9, 2015.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Non-Final Office Action dated Oct. 16, 2012.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Notice of Allowance dated Jul. 26, 2016.
U.S. Appl. No. 13/337,987, filed Dec. 27, 2011 Examiner's Answer dated Jul. 2, 2014.
U.S. Appl. No. 13/337,987, filed Dec. 27, 2011 Final Office Action dated Sep. 19, 2013.
U.S. Appl. No. 13/337,987, filed Dec. 27, 2011 Non-Final Office Action dated Mar. 15, 2013.
U.S. Appl. No. 13/469,932, filed May 11, 2012 Advisory Action dated Jun. 27, 2016.
U.S. Appl. No. 13/469,932, filed May 11, 2012 Non-Final Office Action dated Jan. 3, 2014.
U.S. Appl. No. 13/469,932, filed May 11, 2012 Non-Final Office Action dated Jul. 31, 2014.
U.S. Appl. No. 13/469,932, filed May 11, 2012 Non-Final Office Action dated Sep. 4, 2015.
U.S. Appl. No. 13/469,932, filed May 11, 2012 Notice of Allowance dated Jan. 31, 2017.
U.S. Appl. No. 13/469,932, filed May 11, 2012 Final Office Action dated Apr. 7, 2016.
U.S. Appl. No. 13/665,420, filed Oct. 31, 2012 Final Office Action dated Apr. 8, 2016.
U.S. Appl. No. 13/665,420, filed Oct. 31, 2012 Non-Final Office Action dated Jan. 6, 2014.
U.S. Appl. No. 13/665,420, filed Oct. 31, 2012 Non-Final Office Action dated Jul. 9, 2015.
U.S. Appl. No. 13/665,420, filed Oct. 31, 2012 Non-Final Office Action dated Mar. 15, 2017.
U.S. Appl. No. 13/665,420, filed Oct. 31, 2012 Non-Final Office Action dated Oct. 9, 2014.
U.S. Appl. No. 13/665,420, filed Oct. 31, 2012 Notice of Allowance dated Feb. 7, 2018.
U.S. Appl. No. 13/737,806, filed Jan. 9, 2013 Notice of Allowance dated Oct. 31, 2013.
U.S. Appl. No. 13/858,782, filed Apr. 8, 2013 Notice of Allowance dated Oct. 9, 2014.
U.S. Appl. No. 13/887,166, filed May 3, 2013 Advisory Action dated Aug. 27, 2014.
U.S. Appl. No. 13/887,166, filed May 3, 2013 Appeal Decision dated Aug. 17, 2017.
U.S. Appl. No. 13/887,166, filed May 3, 2013 Examiner's Answer dated Jul. 16, 2015.
U.S. Appl. No. 13/887,166, filed May 3, 2013 Final Office Action dated Jun. 23, 2014.
U.S. Appl. No. 13/887,166, filed May 3, 2013 Non-Final Office Action dated Jan. 7, 2014.
U.S. Appl. No. 13/887,166, filed May 3, 2013 Notice of Allowance dated Nov. 6, 2017.
U.S. Appl. No. 13/890,158, filed May 8, 2013 Advisory Action dated Feb. 13, 2018.
U.S. Appl. No. 13/890,158, filed May 8, 2013 Advisory Action dated Jul. 26, 2016.
U.S. Appl. No. 13/890,158, filed May 8, 2013 Final Office Action dated Nov. 21, 2017.
U.S. Appl. No. 13/890,158, filed May 8, 2013 Non-Final Office Action dated Apr. 7, 2017.
U.S. Appl. No. 13/890,158, filed May 8, 2013 Non-Final Office Action dated Aug. 15, 2014.
U.S. Appl. No. 13/890,158, filed May 8, 2013 Non-Final Office Action dated Jul. 9, 2015.
U.S. Appl. No. 13/969,265, filed Aug. 16, 2013 Non-Final Office Action dated Dec. 19, 2013.
U.S. Appl. No. 13/969,265, filed Aug. 16, 2013 Notice of Allowance dated Jun. 23, 2014.
U.S. Appl. No. 14/040,205, filed Sep. 27, 2013 Advisory Action dated Dec. 15, 2016.
U.S. Appl. No. 14/040,205, filed Sep. 27, 2013 Examiner's Answer dated Jul. 20, 2017.
U.S. Appl. No. 14/040,205, filed Sep. 27, 2013 Final Office Action dated Oct. 19, 2016.
U.S. Appl. No. 14/040,205, filed Sep. 27, 2013 Non-Final Office Action dated Mar. 10, 2016.
U.S. Appl. No. 14/054,700, filed Oct. 15, 2013 Advisory Action dated Dec. 15, 2016.
U.S. Appl. No. 14/054,700, filed Oct. 15, 2013 Examiner's Answer dated Jul. 3, 2017.
U.S. Appl. No. 14/054,700, filed Oct. 15, 2013 Final Office Action dated Oct. 19, 2016.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Advisory Action dated Aug. 4, 2016.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Final Office Action dated Dec. 11, 2017.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Final Office Action dated May 11, 2016.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Non-Final Office Action dated Apr. 7, 2017.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Non-Final Office Action dated Feb. 11, 2015.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Non-Final Office Action dated Jun. 20, 2014.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Non-Final Office Action dated Nov. 5, 2015.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Advisory Action dated Jul. 18, 2016.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Advisory Action dated Mar. 2, 2017.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Final Office Action dated Dec. 19, 2016.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Final Office Action dated Jul. 10, 2017.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Final Office Action dated May 5, 2016.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Non-Final Office Action dated Aug. 24, 2016.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Non-Final Office Action dated Jan. 6, 2016.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Non-Final Office Action dated Mar. 30, 2017.
U.S. Appl. No. 14/270,241, filed May 5, 2014 Non-Final Office Action dated Apr. 23, 2015.
U.S. Appl. No. 14/270,241, filed May 5, 2014 Notice of Allowance dated Oct. 7, 2015.
U.S. Appl. No. 14/309,511, filed Jun. 19, 2014 Non-Final Office Action, dated Sep. 24, 2015.
U.S. Appl. No. 14/309,511, filed Jun. 19, 2014 Notice of Allowance, dated Jul. 26, 2016.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Advisory Action dated Sep. 16, 2015.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Decision on Appeal dated Nov. 17, 2017.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Examiner's Answer dated Jun. 30, 2016.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Final Office Action dated Jul. 1, 2015.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Non-Final Office Action dated Mar. 3, 2015.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Non-Final Office Action dated Sep. 12, 2014.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Notice of Allowance dated Feb. 9, 2018.
U.S. Appl. No. 14/449,061, filed Jul. 31, 2014 Final Office Action dated Nov. 6, 2015.
U.S. Appl. No. 14/449,061, filed Jul. 31, 2014 Non-Final Office Action dated Apr. 27, 2015.
U.S. Appl. No. 14/449,061, filed Jul. 31, 2014 Notice of Allowance dated Apr. 13, 2016.
U.S. Appl. No. 14/498,887, filed Sep. 26, 2014 Advisory Action dated Aug. 22, 2016.
U.S. Appl. No. 14/498,887, filed Sep. 26, 2014 Final Office Action dated Jun. 15, 2016.
U.S. Appl. No. 14/498,887, filed Sep. 26, 2014 Non-Final Office Action dated Feb. 19, 2016.
U.S. Appl. No. 14/506,552, filed Oct. 3, 2014 Non-Final Office Action dated Oct. 1, 2015.
U.S. Appl. No. 14/548,151, filed Nov. 19, 2014 Advisory Action dated Aug. 1, 2017.
U.S. Appl. No. 14/548,151, filed Nov. 19, 2014 Advisory Action dated Jul. 22, 2016.
U.S. Appl. No. 14/548,151, filed Nov. 19, 2014 Final Office Action dated Apr. 19, 2017.
U.S. Appl. No. 14/548,151, filed Nov. 19, 2014 Non-Final Office Action dated Jun. 5, 2015.
U.S. Appl. No. 14/548,151, filed Nov. 19, 2014 Non-Final Office Action dated Sep. 21, 2017.
U.S. Appl. No. 14/548,151, filed Nov. 19, 2014 Non-Final Office Action dated Sep. 28, 2016.
U.S. Appl. No. 14/615,932, filed Feb. 6, 2015 Non-Final Office dated Dec. 29, 2016.
U.S. Appl. No. 14/788,305, filed Jun. 30, 2015 Non-Final Office Action dated Jan. 10, 2018.
U.S. Appl. No. 14/788,305, filed Jun. 30, 2015 Restriction Requirement dated Aug. 25, 2017.
U.S. Appl. No. 14/846,496, filed Sep. 4, 2015 Non-Final Office Action dated Nov. 25, 2016.
U.S. Appl. No. 15/160,958, filed May 20, 2016 Advisory Action dated Jul. 10, 2017.
U.S. Appl. No. 15/160,958, filed May 20, 2016 Final Office Action dated Apr. 21, 2017.
U.S. Appl. No. 15/160,958, filed May 20, 2016 Non-Final Office Action dated Dec. 15, 2016.
U.S. Appl. No. 15/160,958, filed May 20, 2016 Notice of Allowance dated Jul. 26, 2017.
U.S. Appl. No. 15/284,355, filed Oct. 3, 2016 Non-Final Office Action dated Apr. 24, 2017.
U.S. Appl. No. 15/284,355, filed Oct. 3, 2016 Non-Final Office Action dated Nov. 17, 2017.
U.S. Appl. No. 15/365,698, filed Nov. 30, 2016 Non-Final Office Action dated Dec. 14, 2017.
U.S. Appl. No. 15/365,752, filed Nov. 30, 2016 Non-Final Office Action dated Dec. 13, 2017.
U.S. Appl. No. 15/585,051, filed May 2, 2017 Non-Final Office Action dated Jul. 14, 2017.
U.S. Appl. No. 29/428,649, filed Aug. 1, 2012 Notice of Allowance dated Jul. 5, 2013.
Valdivieso, J.R. Perez, et al., Evaluation of a formula for optimal positioning of a central venous catheter inserted yhrough the right internal jugular vein, Rev. Esp. Anestesiol. Reanim. 2003; 50: 77-79.
VasoNova Inc, Vascular navigation system for accurate placement of PICCs, Start-Up Emerging Medical Ventures, pp. 44-45, vol. 14 No. 7, Jul.-Aug. 2009.
Vesely, Thomas M. et al., Central Venous Catheter Tip Position: A Continuing Controversy, J Vasc Intery Radiol 2003; 14:527-534.
VIASYS Health Care Inc. Cortrak © Fact Sheet, 2005.
VIASYS Healthcare MedSystems, Navigator® Benefits, 2008.
VIASYS Healthcare MedSystems, Navigator® Research in Cost Justification, 2008.
VIASYS MedSystems, Cortrak™ Systems Brochure, 2005.
Volcano ComboMap Features and Benefits/Technical Specifications, 2 pages, 2011.
Watters, et al. “Use of Electrocardiogram to Position Right Atrial Catheters During Surgery.” Annals of Surgery, vol. 225, No. 2, pp. 165-171, 1997.
Welch Allyn Cardioperfect® PC-Based Resting ECG, 2003.
Wilson, R. G. et al, Right Atrial Electrocardiography in Placement of Central Venous Catheters, The Lancet, pp. 462-463, Feb. 27, 1988.
Wong, Jeffrey J. et al., Azygos Tip Placement for Hemodialysis Catheters in Patients with Superior Vena Cava Occlusion, Cardiovasc Intervent Radiol (2006) 29:143-146.
Worley, Seth J. “Use of a Real-Time Three-Dimensional Magenetic Navigation System for Radiofrequency Ablation of Accessory Pathways.” PACE, vol. 21 pp. 1636-1643, Aug. 1998.
Yilmazlar A et al, Complications of 1303 Central Venous Cannulations, J R Soc Med, pp. 319-321, vol. 90 No. 6, Jun. 1997 (Abstract only).
Yoon, SZ et al, Usefulness of the Carina as a Radiographic Landmark for Central Venous Catheter Placement in Paediatric Patients, Br J Anaesth, Jul. 2005.
Yoshida, Teruhisa et al, Detection of Concealed Left Sided Accessory Atrioventricular Pathway by P Wave Signal Averaged Electrocardiogram, J Am Coll Cardiol, pp. 55-62, 1999.
Zaaroor, et al. “Novel Magnetic Technology for Intraoperative Intracranial Frameless Navigation: In Vivo and In Vitro Results.” Neurosurgery, vol. 48, No. 5. pp. 1100-1107, May 2001.
Zachariou, Zacharias et al., Intra-atrial ECG recording: a new and safe method for implantation of Broviac catheters in children, Pediatr Surg Int (1994) 9: 457-458.
Zaidi, Naveed A., et al. “Room temperature magnetic order in an organic magnet derived from polyaniline.” 2004, Polymer, vol. 45, pp. 5683-5689.
Chen, Zhongping et al, Optical Doppler Tomography: Imaging in vivo Blood Flow Dynamics Following Pharmacological Intervention and Photodynamic Therapy, 7 pages, vol. 67, Photochemistry and Photobiology, 1998.
Cheng, KI et al, A Novel Approach of Intravenous Electrocardiograph Technique in Correct Position the Long-Term Central Venous Catheter, Kaohsiung J Med Sci, pp. 241-247, vol. 16 No. 5, May 2000 (Abstract only).
Cheung, P., et al., The Effect of a Disposable Probe Cover on Pulse Oximetry, Anaesth Intensive Care 2002; 30: 211-214.
Chu, et al., “Accurate Central Venous Port-A Catheter Placement: Intravenous Electrocardiography and Surface Landmark Techniques Compared by Using Transesophageal Echocardiography.” The International Anesthesia Research Society, vol. 98, pp. 910-914, 2004.
Claasz, Antonia et al, A Study of the Relationship of the Superior Vena Cava to the Bony Landmarks of the Sternum in the Supine Adult: Implications for Magnetic Guidance Systems, Journal, vol. 12 No. 3, JAVA, Jul. 24, 2007.
Clifford, et al. “Assessment of Hepatic Motion Secondary to Respiration for Computer Assisted Interventions.” Computer Aided Surgery, vol. 7, pp. 291-299, 2002.
CN 200880012117.4 filed Apr. 16, 2008 First Office Action dated Dec. 23, 2011.
CN 200880012117.4 filed Apr. 16, 2008 Fourth Office Action dated Sep. 4, 2011.
CN 200880012117.4 filed Apr. 16, 2008 Second Office Action dated Oct. 8, 2012.
CN 200880012117.4 filed Apr. 16, 2008 Third Office Action dated Apr. 27, 2013.
CN 200880125528.4 filed Nov. 25, 2008 First Office Action dated Jun. 5, 2012.
CN 200880125528.4 filed Nov. 25, 2008 Second Office Action dated Mar. 6, 2011.
CN 200880125528.4 filed Nov. 25, 2008 Third Office Action dated Jul. 1, 2013.
CN 200980123021.X filed Dec. 17, 2010 First Office Action dated Nov. 19, 2012.
CN 200980123021.X filed Dec. 17, 2010 Second Office Action dated Aug. 13, 2011.
CN 200980123021.X filed Dec. 17, 2010 Third Office Action dated Apr. 22, 2014.
CN 200980144663.8 filed May 9, 2011 Decision of Re-Examination dated Feb. 21, 2017.
CN 200980144663.8 filed May 9, 2011 Fifth Office Action dated May 26, 2015.
CN 200980144663.8 filed May 9, 2011 First Office Action dated Dec. 5, 2012.
CN 200980144663.8 filed May 9, 2011 Fourth Office Action dated Nov. 15, 2014.
CN 200980144663.8 filed May 9, 2011 Notice of Reexamination dated Aug. 5, 2016.
CN 200980144663.8 filed May 9, 2011 Second Office Action dated Aug. 22, 2013.
CN 200980144663.8 filed May 9, 2011 Third Office Action dated May 4, 2014.
CN 201080035659.0 filed Feb. 10, 2012 First Office Action dated Jan. 26, 2014.
CN 201080035659.0 filed Feb. 10, 2012 Second Office Action dated Oct. 9, 2014.
CN 201080035659.0 filed Feb. 10, 2012 Third Office Action dated Mar. 19, 2015.
CN 201080053838.7 filed May 28, 2012 First Office Action dated Jan. 6, 2014.
CN 201080053838.7 filed May 28, 2012 Fourth Office Action dated Jun. 2, 2015.
CN 201080053838.7 filed May 28, 2012 Second Office Action dated Jun. 17, 2014.
CN 201080053838.7 filed May 28, 2012 Third Office Action dated Dec. 4, 2014.
CN 201180016462.7 filed Sep. 27, 2012 First Office Action dated Mar. 21, 2014.
CN 201180016462.7 filed Sep. 27, 2012 Second Office Action dated Dec. 9, 2014.
CN 201180016462.7 filed Sep. 27, 2012 Third Office Action dated Jun. 10, 2015.
CN 201180037065.8 filed Jan. 28, 2013 First Office Action dated Sep. 28, 2014.
CN 201180037065.8 filed Jan. 28, 2013 Fourth Office Action dated May 5, 2016.
CN 201180037065.8 filed Jan. 28, 2013 Notice of Grant dated Aug. 30, 2016.
CN 201180037065.8 filed Jan. 28, 2013 Second Office Action dated Jun. 2, 2015.
CN 201180037065.8 filed Jan. 28, 2013 Third Office Action dated Nov. 24, 2015.
CN 201180037068.1 filed Jan. 28, 2013 First Office Action dated Apr. 20, 2015.
CN 201180037068.1 filed Jan. 28, 2013 First Office Action dated Sep. 9, 2014.
CN 201180037068.1 filed Jan. 28, 2013 Third Office Action dated Oct. 19, 2015.
CN 201180040151.4 filed Feb. 19, 2013 First Office Action dated Oct. 28, 2014.
CN 201180040151.4 filed Feb. 19, 2013 Office Action dated Dec. 10, 2015.
CN 201180040151.4 filed Feb. 19, 2013 Second Office Action dated Jun., 19, 2015.
CN 201180043512.0 filed Mar. 8, 2013 First Office Action dated Jul. 31, 2014.
CN 201180043512.0 filed Mar. 8, 2013 Second Office Action dated Apr. 14, 2015.
CN 201180052587.5 filed Apr. 28, 2013 First Office Action dated Jan. 26, 2015.
CN 201180052587.5 filed Apr. 28, 2013 Office Action dated Feb. 24, 2016.
CN 201180052587.5 filed Apr. 28, 2013 Second Office Action dated Aug. 19, 2015.
CN 201180068309.9 filed Aug. 22, 2013 First Office Action dated Oct. 16, 2014.
CN 201180068309.9 filed Aug. 22, 2013 Second Office Action dated May 6, 2015.
CN 201180068309.9 filed Aug. 22, 2013 Third Office Action dated Sep. 2, 2015.
CN 201280033189.3 filed Jan. 3, 2014 First Office Action dated Apr. 3, 2014.
CN 201280033189.3 filed Jan. 3, 2014 Second Office Action dated Sep. 14, 2015.
CN 201380051172.5 filed Mar. 30, 2015 Office Action dated May 2, 2017.
CN 201380065663.5 filed Jun. 15, 2015 Office Action dated Mar. 15, 2017.
CN 201380065663.5 filed Jun. 15, 2015 Office Action dated Oct. 10, 2017.
CN 201410009216.4 filed Jan. 8, 2014 Office Action dated Jun. 15, 2016.
CN 201410009216.4 filed Jan. 8, 2014 Second Office Action dated Sep. 25, 2015.
CN 201480010988.8 filed Aug. 27, 2015 Office Action dated Dec. 13, 2017.
CN 201510144728.6 filed Apr. 17, 2015 Office Action dated Aug. 29, 2017.
CN 201510144728.6 filed Apr. 17, 2015 Office Action dated Jan. 23, 2017.
CN 201610127217.8 filed Mar. 7, 2016 Office Action dated Dec. 28, 2017.
CN 201610166569.4 filed Dec. 23, 2010, Office Action dated Nov. 1, 2017.
CO 15110530 filed May 14, 2015 Office Action dated May 8, 2017.
CO 15110530 filed May 14, 2015 Office Action dated Nov. 25, 2016.
Colley, Peter S et al, ECG-Guided Placement of Sorenson CVP Catheters via Arm Veins, Anesthesia and Analgesia, pp. 953-956, vol. 63, 1984.
Collier, PE et al, Cardiac Tamponade from Central Venous Catheters, Am J Surg, pp. 212-214, vol. 176 No. 2, Aug. 1998.
ComboWire® Pressure/Flow Guide Wire Ref 9500 Series, Instructions for Use, Apr. 2011.
Corsten, et al., “Central Placement Catheter Placement Using the ECG-Guided Cavafix-Certodyn SD Catheter.” Journal of Clinical Anesthesiology, vol. 6, Nov./Dec. 1994.
Cucchiara, Roy et al, Time Required and Success Rate of Percantaneous Right Atrial Catherization: Description of a Technique, Canad. Anaesth. Soc. J., pp. 572-573, vol. 27, No. 6, Nov. 1980.
Cullinane, DC et al, The Futility of Chest Roentgenograms Following Routine Central Venous Line Changes, Am J Burg, pp. 283-285, vol. 176 No. 3, Sep. 1998.
Curet, Myriam J. et al., University and Practice-based Physicians' Input on the Content of a Surgical Curriculum, The American Journal of Surgery® vol. 178 Jul. 1999, 78-84.
David, et al., “Is ECG-Guidance a Helpful Method to Correctly Position a Central Venous Catheter During Prehospital Emergency Care?” Acta Anaesthesiologica Scandinavica, vol. 49, pp. 1010-1014, 2005.
Deltec Cath-Finder® Tracking System Operation Manual, 1994.
Egelhof, Petra, Effects of Somatostatin on Portal Blood Flow and Portal Vein Pressure in Patients with Portal Hypertension due to Liver Cirrhosis Invasive Monitoring during TIPSS Procedures, Dissertation submitted to: Technical University of Munich, Faculty of Medicine, May 13, 2002; Date of examination: Feb. 26, 2003.
Engelhardt, W et al, ECG-Controlled Placement of Central Venous Catheters in Patients with Atrial Fibrallation, Anaesthesist, pp. 476-479, vol. 38 No. 9, Sep. 1989 (Abstract only).
EP 08855396.1 filed Jun. 15, 2010 European Search Report dated Jul. 31, 2012.
EP 08855396.1 filed Jun. 15, 2010 Intent to Grant dated Jul. 5, 2013.
EP 09707467.8 supplemental European search report dated Jun. 18, 2013.
EP 09743249.6 filed Oct. 18, 2010 Extended European Search Report dated Jan. 13, 2016.
EP 09743249.6 filed Oct. 18, 2010 Intention to Grant dated Mar. 2, 2017.
EP 09808901.4 filed Aug. 21, 2009 European Search Report dated May 23, 2012.
EP 09808901.4 filed Aug. 21, 2009 Examination Report dated May 10, 2013.
EP 09813632.8 filed Apr. 5, 2011 European Search Report dated Jul. 4, 2012.
EP 09813632.8 filed Apr. 5, 2011 Office Action dated Apr. 30, 2013.
EP 09813632.8 filed Apr. 5, 2011 Summons to Attend Oral Proceedings dated Apr. 16, 2014.
EP 10 808 660.4 filed Feb. 15, 2012 Extended European Search Report dated Mar. 4, 2014.
EP 10786978.6 filed Dec. 19, 2011 Extended European Search Report dated Mar. 7, 2014.
EP 10786978.6 filed Dec. 19, 2011 Office Action dated Aug. 11, 2017.
EP 10821193.9 filed Mar. 27, 2012 Partial European Search Report dated Oct. 9, 2015.
EP 11 818 828.3 filed Mar. 18, 2013 Extended European Search Report dated Dec. 10, 2014.
EP 11740309.7 filed Aug. 23, 2012 Extended European Search Report dated Aug. 3, 2015.
EP 11787515.3 filed Dec. 12, 2012 partial European search report dated Jun. 23, 2015.
EP 11787515.3 filed Dec. 12, 2012 partial European search report dated Oct. 27, 2015.
EP 11787527.8 filed Dec. 19, 2012 Extended European Search Report dated Oct. 9, 2015.
EP 11787527.8 filed Dec. 19, 2012 partial European search report dated May 26, 2015.
EP 11827551.0 filed Feb. 7, 2013 Extended European Search Report dated Sep. 19, 2017.
EP 11837113.7 filed May 28, 2013 Extended European Search Report dated Apr. 24, 2014.
EP 11850625.2 filed Jul. 22, 2013 Extended European Search Report dated Jun. 21, 2017.
EP 12177438.4 filed Jul. 23, 2012 Communication dated Jan. 13, 2014.
EP 12177438.4 filed Jul. 23, 2012 European Search Report dated Dec. 4, 2012.
EP 12177438.4 filed Jul. 23, 2012 European Search Report dated Jun. 7, 2015.
EP 12177438.4 filed Jul. 23, 2012 Examination Report dated Dec. 5, 2014.
EP 12177438.4 filed Jul. 23, 2012 extended European Search Report dated Mar. 25, 2013.
EP 12807886.2 filed Jan. 15, 2014 Extended European Search Report dated Feb. 6, 2015.
EP 13194818.4 filed Nov. 28, 2013 extended European search report dated Feb. 28, 2014.
EP 13840356.3 filed Apr. 27, 2015 Extended European Search Report dated Mar. 22, 2017.
EP 13840356.3 filed Apr. 27, 2015 Partial European Search Report dated Oct. 19, 2016.
EP 13846380.7 filed May 15, 2015 Extended European Search Report dated Sep. 30, 2016.
EP 13846380.7 filed May 15, 2015 Partial European Search Report dated Sep. 30, 2016.
EP 14151268.1 filed Jan. 15, 2014 European Search Report dated Feb. 21, 2014.
EP 14197137.4 filed Dec. 10, 2014 Extended European Search Report dated Nov. 4, 2015.
EP 14197137.4 filed Dec. 10, 2014 Office Action dated, Sep. 20, 2017.
EP 14197137.4 filed Dec. 10, 2014, Partial European Search Report dated May 29, 2015.
EP 14761249.3 Filed Sep. 3, 2015 Extended European Search Report dated Sep. 19, 2016.
EP 14761249.3 Filed Sep. 3, 2015 Office Action dated Sep. 28, 2017.
EP 15179061.5 filed Jul. 30, 2015 Extended European Search Report dated Jan. 14, 2016.
EP 15179061.5 filed Jul. 30, 2015 Partial European Search Report dated Jan. 17, 2018.
EP 15746326.6 filed Jul. 1, 2016 Extended European Search Report dated Jun. 9, 2017.
EP 17157118.5 filed Feb. 21, 2017 Extended European Search Report dated Jun. 8, 2017.
EP 17186624.7 filed Aug. 17, 2017 Partial European Search Report dated Jan. 17, 2018.
EP14197136.6 filed Dec. 10, 2014 Extended European Search Report dated May 26, 2015.
Fearon, William F et al, Evaluating Intermediate Coronary Lesions in the Cardiac Catheterization Laboratory, vol. 4, No. 1, 7 pages, Reviews in Cardiovascular Medicine, 2003.
Felleiter P et al, Use of Electrocardiographic Placement Control of Central Venous Catheters in Austria, Acta Med Austriaca, pp. 109-113, vol. 26 No. 3, 1999 (Abstract only)
Forauer, AR et al, Change in Peripherally Inserted Central Catheter Tip Location with Abduction and Adduction of the Upper Extremity, J Vasc Interv Radiol, pp. 1315-1318, vol. 11 No. 10, Nov.-Dec. 2000.
Frassinelli, P et al, Utility of Chest Radiographs after Guidewire Exchanges of Central Venous Catheters, Crit Care Med, pp. 611-615, vol. 26 No. 3, Mar. 1998.
Frazin L et al, A Doppler Guided Retrograde Catheterization System, Cathet. Cardiovasc Diagn, pp. 41-50, May 1992.
French, PJ et al, Sensors for Catheter Applications, Sensors Update, vol. 13 Issue 1 pp. 107-153, Dec. 2003.
GB Application 0800474.9 filed Aug. 24, 2006 Office Action dated Aug. 9, 2010.
GB Application 0800474.9 filed Aug. 24, 2006 Office Action dated Mar. 17, 2010.
Gebauer, B et al, Ultrasound and Fluoroscopy-guided Implantation of Peripherally Inserted Central Venous Catheters (PICCs), ROFO, pp. 386-391, vol. 176 No. 3, Mar. 2004 (Abstract only).
Gebhard, et al., “The accuracy of Electrocardiogram-Controlled Central Line Placement.” The International Anesthesia Research Society, vol. 104, No. 1 Jan. 2007.
Gjendemsjo, Anders, et al., Energy and Power, The Connexions Project, Version 1.2, Feb. 20, 2004.
Gladwin, MT et al, Cannulation of the Internal Jugular Vein: is postpocedural chest radiography always necessary?, Crit Care Med, 33 pages, Oct. 2000.
Gonzales, et al. “Peripherally Inserted Central Catheter Placement in Swine Using Magnet Detection.” Journal of Intravenous Nursing, vol. 22, No. 3, May/Jun. 1999.
Greenall, M.J. et al, Cardiac Tamponade and Central Venous Catheters, British Medical Journal, pp. 595-597, Jun. 14, 1975.
Guillory, “Basic Principles of Technologies for Catheter Localization.” C.R. Bard internal paper, Oct. 20, 2004.
Guth, AA, Routine Chest X-rays after Insertion of Implantable Long-Term Venous Catheters: Necessary or Not?, Am Surg, pp. 26-29, vol. 67 No. 1, Jan. 2001 (Abstract only).
Hill, Bradley et al, Abstract of article discussing Vasallova VPS as guide for placement of PICCs. 2009.
Hill, Bradley, Identifying the Caval-Atrial Junction Using Smart-Catheter Technology presentation, 22nd Annual Scientific Meeting of the AVA in Savannah, Georgia, Sep. 13, 2008.
Hoffman, Thomas et al, Simultaneous Measurement of Pulmonary Venous Flow by Intravascular Catheter Doppler Velocimetry and Transesophageal Doppler Echocardiography: Relation to Left Atrial Pressure and Left Atrial and Left Ventricular Function, pp. 239-249, J Am Coll Cardiol, Jul. 1995.
Hoffmann, et al. “New Procedure in Transesophageal Echocardiography: Multiplane Transesophageal Echocardiography and Transesophageal Stress Echocardiography.” Herz, vol. 18, No. 5, pp. 269-277, Oct. 1993.
Iacopino, Domenico Gerardo et al, Intraoperative Microvascular Doppler Monitoring of Blood Flow within a Spinal Dural Arteriovenous Fistula: A Precious Surgical Tool, vol. 10, 5 pages, Neurosurg. Focus, Feb. 2001.
Jeon, Yunseok et al., “Transesophageal Echocardiographic Evaluation of ECG-guided Central Venous Catheter Placement,” Canadian Journal of Anesthesia, vol. 53, No. 10, 1 Oct. 2006, pp. 978-983.
Joosting, Jean-Pierre, “Dual-interface RFID-compatible EEPROM enables remote access to electronic device parameters,” EE Times, Mar. 8, 2010.
JP 2008-528151 filed Aug. 24, 2006 Notice of Grant dated May 6, 2012.
JP 2010-504220 filed Sep. 3, 2009 Final Office Action dated Apr. 18, 2013.
JP 2010-504220 filed Sep. 3, 2009 Office Action dated Apr. 1, 2014.
JP 2010-504220 filed Sep. 3, 2009 Office Action dated Apr. 18, 2013.
JP 2010-504220 filed Sep. 3, 2009 Office Action dated May 21, 2012.
JP 2010-535117 filed May 26, 2011 First Office Action dated Aug. 5, 2013.
JP 2012-515222 filed Dec. 9, 2011 Office Action dated Feb. 23, 2015.
JP 2012-515222 filed Dec. 9, 2011 Office Action dated Mar. 24, 2014.
JP 2012-552060 filed Aug. 1, 2012 Office Action dated Nov. 12, 2014.
JP 2012-552060 filed Aug. 1, 2012 Second Office Action dated Nov. 6, 2015.
JP 2013-512046 filed Nov. 26, 2012 First Office Action dated Mar. 23, 2015.
JP 2013-512046 filed Nov. 26, 2012 Office Action dated Dec. 8, 2015.
JP 2013-512046 filed Nov. 26, 2012 Office Action dated May 16, 2016.
JP 2013-512051 filed Nov. 26, 2012 First Office Action dated Mar. 23, 2015.
JP 2013-524999 filed Jan. 22, 2013 First Office Action dated Jun. 1, 2015.
JP 2013-530322 filed Mar. 18, 2013, Office Action dated Mar. 2, 2017.
JP 2013-530322 filed Mar. 18, 2013, Office Action dated Nov. 6, 2017.
JP 2014-519081 filed Dec. 27, 2013 First Office Action dated Apr. 26, 2016.
JP 2015-534770 filed Mar. 26, 2015 Office Action dated Jun. 12, 2017.
JP2013-530322 filed Mar. 18, 2013, Office Action dated May 2, 2016.
JP2013-530322 filed Mar. 18, 2013, First Office Action dated Jul. 31, 2015.
Kim, Ko et al, Positioning Internal Jugular Venous Catheters using the Right Third Intercostal Space in Children, Acta Anaesthesiol Scand, pp. 1284-1286, vol. 47 No. 10, Nov. 2003.
Kjelstrup T et al, Positioning of Central Venous Catheters using ECG, Tidssk Nor Laegeforen, pp. 599-601, vol. 111 No. 5, Feb. 1999 (Abstract only).
Kofler, Julia, et al., Epinephrine application via an endotracheal airway and via the Combitube in esophageal position, Critical Care Medicine: May 2000, vol. 28: Issue 5, pp. 1445-1449.
Konings, MK, et al., Development of an intravascular impedance catheter for detection of fatty lesions in arteries, IEEE Trans Med Imaging Aug. 1997; 16(4):439-46.
Kowalski, CM et al, Migration of Central Venous Catheters: Implications for Initial Catheter Tip Positioning, J Vasc Intery Radiol, pp. 443-447, vol. 8 No. 3, May-Jun. 1997.
KR 10-2012-7000866 filed Jan. 11, 2012 First Office Action dated Jun. 16, 2016.
KR 10-2012-7000866 filed Jan. 11, 2012 Second Office Action dated Nov. 3, 2016.
KR 10-2013-7006933 filed Mar. 19, 2013 Office Action dated Aug. 7, 2017.
Leowenthal, MR et al, The Peripherally Inserted Central Catheter (PICC): A Prospective Study of its Natural History after Fossa Insertion, Anaesth Intensive Care, pp. 21-24; vol. 30 No. 1, Feb. 2002.
Lepage Ronan et al. ECG Segmentation and P-wave Feature Extraction: Application to Patients Prone to Atrial Fibrillation, IEEE/EMBS Proceedings, 23rd Annual Conference, Istanbul, Turkey, Oct. 25-28, 2001.
Liu , Ji-Bin et al, Catheter-Based Intralumincal Sonography, J Ultrasound Med, pp. 145-160, vol. 23, 2004.
Lucey, B et al, Routine Chest Radiographs after Central Line Insertion: Mandatory Postprocedural Evaluation or Unnecessary Waste of Resources?, Cardiovasc Intervent Radiol, pp. 381-384, vol. 22 No. 5, Sep.-Oct. 1999.
Lum, Phillip, A New Formula-Based Measurement Guide for Optimal Positioning of Central Venous Catheters, JAVA, vol. 9, No. 2, pp. 80-85, 2004.
Lynch, RE et al, A Procedure for Placing Pediatric Femoral Venous Catheter Tips near the Right Atrium, Pediatr Emerg Care, pp. 130-132, vol. 18 No. 2, Apr. 2002.
Madan, et al. “Right Atrial Electrocardiography: A Technique for the Placement of Central Venous Catheters for Chemotherapy or Intravenous Nutrition.” British Journal of Surgery, vol. B1, pp. 1604-1605, 1994.
Madias, John E, Intracardiac (Superior Vena Cava/Right Atrial) ECGs using Saline Solution as the Conductive Medium for the Proper Positioning of the Shiley Hemodialysis Catheter: Is it Not Time to Forego the Postinsertion Chest Radiograph?, pp. 2363-2367, CHEST, 2003.
Markovich, Mary B., Central Venous Catheter Tip Placement: Determination of Posterior Malposition—A Case Study, JAVA, vol. 11, No. 2, pp. 85-89, 2006.
Martin, Roy W, An Ultrasoundic Catheter for Intravascular Measurement of Blood Flow: Technical Details, IEEE Transactions on Sonics and Ultrasonics, vol. SU-27, No. 6, pp. 277-286, Nov. 1980.
McDonnall, “Intra-Atrial Electrocardiography (ECG) for Catheter Placement.” Literature review prepared for Bard Access Systems, Oct. 2007.
McGee et al., “Accurate Placement of Central Venous Catheters: A Prospective, Randomize, Multicenter Trail.” Critical Care Medicine, vol. 21 No. 8, Aug. 1993.
MedGraphics, CardioPerfect® Resting/Stress ECG System, 3 pages, 2001.
Michenfelder, John et al, Air Embolism During Neurosurgery—An Evaluation of Right-Atrial Catheters for Diagnosis and Treatment, JAMA, pp. 1353-1358, vol. 208, No. 8, May 26, 1969.
Michenfelder, John et al, Air Embolism During Neurosurgery. A New Method of Treatment, Anesthesia and Analgesia. Current Researches, pp. 390-395, vol. 45, No. 4, Jul.-Aug. 1966.
Microbird™ Miniaturized DC Magnetic Sensors for Intra-body Navigation and Localization, Specifications, 2005.
Micronix CathRite™ Cardiac Access Device Brochure. Jun. 2004.
Micronix Pty Ltd “CathRite” Guiding Styled Core Manufacturing, Jun. 15, 2006.
Moureau, Nancy L. et al., “Electrocardiogram (EKG) Guided Peripherally Inserted Central Catheter Placement and Tip Position: Results of a Trial to Replace Radiological Confirmation,” Journal of the Association for Vascular Access, pp. 8-14, vol. 15, No. 1, 2010.
Murthy, Vrudhula et al, Analysis of Power Spectral Densities of Electrocardiograms, Mathematical Biosciences, pp. 41-51, vol. 12 No. 1-2, Oct. 1971.
MX/a/2012/013672 filed Nov. 23, 2012 First Office Action dated Aug. 10, 2015.
MX/a/2012/013858 filed Nov. 28, 2012 First Office Action dated Sep. 26, 2014.
MX/a/2012/013858 filed Nov. 28, 2012 Second Office Action dated Jun. 10, 2015.
MX/a/2013/001317 filed Jan. 31, 2013 First Office Action dated Nov. 26, 2015.
MX/a/2015/004864 filed Apr. 16, 2015 Office Action dated Dec. 18, 2017.
Nadroo, AM et al, Changes in Upper Extremity Position Cause Migration of Peripherally Inserted Central Catheters in Neonates, Pediatrics, pp. 131-136, vol. 110, Jul. 2002.
Nakatani K et al, Accurate Placement of Central Venous Catheters—ECG-guided method vs Patient Height Method, MASUI, pp. 34-38, vol. 51 No. 1, Jan. 2002.
Nazarian, GK et al, Changes in Tunneled Catheter Tip Position when a patient is Upright, J Vasc Interv Radiol, pp. 437-441, vol. 8 No. 3, May-Jun. 1997.
Neurometer® CPT, Clinical Applications. Neurotron , Inc. website: www.neurotron.com/CLINAPS.html, last accessed Oct. 23, 2006.
Neurometer® CPT, Frequently Asked Questions. Neurotron , Inc. website: www.neurotron.com/CPTFAQ/html, last accessed Oct. 23, 2006.
Neurometer® CPT, Products Page. Neurotron , Inc. website: www.neurotron.com/products.html, last accessed Oct. 23, 2006.
Neurometer® Electrodiagnostic Neuroselective Sensory Nerve Evaluation: Charts, Tables, Documents & Downloads. Neurotron , Inc. website: www.neurotron.com/downloads.html, last accessed Oct. 23, 2006.
Odd, De et al, Does Radio-opaque Contrast Improve Radiographic localisation of Percutaneous Central Venous Lines?, Arch Dis Child Fetal Neonatal Ed, pp. 41-43, vol. 89 No. 1, Jan. 2004.
Palesty, JA et al, Routine Chest Radiographs Following Central Venous Recatherization over a Wire are not Justified, Am J Surg, pp. 618-621, vol. 176 No. 6, Dec. 1998.
Paliotti, Roberta P. et al, Intravascular Doppler Technique for Monitoring Renal Venous Blood Flow in Man, J Nephrol, pp. 57-62, 2003.
Parker, K.H. et al, Cardiovascular Fluid Dynamics, Department of Bioengineering, National Heart and Lung Institute, Imperial College of Science, Technology and Medicine, Cardiovascular Haemodynamics, pp. 1-28, Sep. 26, 2005.
Pawlik, et al., “Central Venous Catheter Placement: Comparison of the Intravascular Guidewire and the Fluid Column Electrocardiograms.” European Journal of Anaesthesiology, vol. 41, pp. 594-599, 2004.
PCT/US13/62409 filed Sep. 27, 2013 International Search Report and Written Opinion dated Feb. 24, 2014.
PCT/US2006/033079 filed Aug. 24, 2006 International Preliminary Report on Patentability dated Feb. 26, 2008.
PCT/US2006/033079 filed Aug. 24, 2006 Search Report dated Dec. 19, 2006.
PCT/US2006/033079 filed Aug. 24, 2006 Written Opinion dated Dec. 19, 2006.
PCT/US2008/060502 filed Apr. 16, 2008 International Search Report and Written Opinion dated Oct. 16, 2008.
PCT/US2008/084751 filed Nov. 25, 2008 International Preliminary Report on Patentability dated Jun. 1, 2010.
PCT/US2008/084751 filed Nov. 25, 2008 Search Report dated May 20, 2009.
PCT/US2008/084751 filed Nov. 25, 2008 Written Opinion dated May 20, 2009.
PCT/US2009/033116 filed Feb. 4, 2009 International Preliminary Report on Patentability dated Aug. 10, 2010.
PCT/US2009/033116 filed Feb. 4, 2009 Search Report dated Mar. 13, 2009.
PCT/US2009/033116 filed Feb. 4, 2009 Written Opinion dated Mar. 13, 2009.
PCT/US2009/041051 filed Apr. 17, 2009 International Preliminary Report on Patentability dated Apr. 8, 2014.
PCT/US2009/041051 filed Apr. 17, 2009 Search Report dated Jul. 28, 2009.
PCT/US2009/041051 filed Apr. 17, 2009 Written Opinion dated Jul. 28, 2009.
PCT/US2009/054687 filed Aug. 21, 2009 International Preliminary Report on Patentability dated Feb. 22, 2011.
PCT/US2009/054687 filed Aug. 21, 2009 Search Report dated Oct. 6, 2009.
PCT/US2009/054687 filed Aug. 21, 2009 Written Opinion dated Oct. 6, 2009.
PCT/US2009/056567 filed Sep. 10, 2009 International Preliminary Report on Patentability dated Mar. 15, 2011.
PCT/US2009/056567 filed Sep. 10, 2009 Search Report dated Nov. 6, 2009.
PCT/US2009/056567 filed Sep. 10, 2009 Written Opinion dated Nov. 6, 2009.
PCT/US2010/038555 filed Jun. 14, 2010 Search Report dated Oct. 5, 2010.
PCT/US2010/038555 filed Jun. 14, 2010 Written Opinion dated Oct. 5, 2010.
PCT/US2010/045084 filed Aug. 10, 2010 International Preliminary Report on Patentability dated Feb. 23, 2012.
PCT/US2010/045084 filed Aug. 10, 2010 Search Report dated Apr. 14, 2011.
PCT/US2010/045084 filed Aug. 10, 2010 Written Opinion dated Apr. 14, 2011.
PCT/US2010/050773 filed Sep. 29, 2010 Search Report dated Jan. 24, 2011.
PCT/US2010/050773 filed Sep. 29, 2010 Written Opinion dated Jan. 24, 2011.
PCT/US2010/051917 filed Oct. 8, 2010 Search Report dated Nov. 29, 2010.
PCT/US2010/051917 filed Oct. 8, 2010 Written Opinion dated Nov. 29, 2010.
PCT/US2011/023497 filed Feb. 2, 2011 Search Report dated Jun. 6, 2011.
PCT/US2011/023497 filed Feb. 2, 2011 Written Opinion dated Jun. 6, 2011.
PCT/US2011/038391 filed May 27, 2011 International Preliminary Report on Patentability and Written Opinion dated Dec. 4, 2012.
PCT/US2011/038391 filed May 27, 2011 International Search Report dated Sep. 21, 2011.
PCT/US2011/038415 filed May 27, 2011 International Preliminary Report on Patentability dated Dec. 13, 2012.
PCT/US2011/038415 filed May 27, 2011 International Search Report dated Sep. 28, 2011.
PCT/US2011/038415 filed May 27, 2011 Written Opinion dated Sep. 28, 2011.
PCT/US2011/047127 filed Aug. 9, 2011 International Preliminary Report on Patentability dated Apr. 18, 2013.
PCT/US2011/047127 filed Aug. 9, 2011 International Search Report dated Feb. 29, 2012.
PCT/US2011/047127 filed Aug. 9, 2011 Written Opinion dated Feb. 29, 2012.
PCT/US2011/048403 filed Aug. 19, 2011 International Preliminary Report on Patentability dated Jul. 30, 2013.
PCT/US2011/048403 filed Aug. 19, 2011 International Search Report dated Dec. 15, 2011.
PCT/US2011/048403 filed Aug. 19, 2011 Written Opinion dated Dec. 15, 2011.
PCT/US2011/052793 filed Sep. 22, 2011 International Preliminary Report on Patentability dated Apr. 4, 2013.
PCT/US2011/052793 filed Sep. 22, 2011 International Search Report dated Jan. 6, 2012.
PCT/US2011/052793 filed Sep. 22, 2011 Written Opinion dated Jan. 6, 2012.
PCT/US2011/058138 filed Oct. 27, 2011 International Preliminary Report on Patentability dated May 10, 2013.
PCT/US2011/058138 filed Oct. 27, 2011 International Search Report dated Feb. 7, 2012.
PCT/US2011/058138 filed Oct. 27, 2011 Written Opinion dated Feb. 7, 2012.
PCT/US2011/067268 filed Dec. 23, 2011 International Preliminary Report on Patentability dated Jul. 4, 2013.
PCT/US2011/067268 filed Dec. 23, 2011 International Search Report and Written Opinion dated Apr. 27, 2012.
PCT/US2012/045814 filed Jul. 6, 2012 International Search Report and Written Opinion dated Oct. 1, 2012.
PCT/US2013/065121 filed Oct. 15, 2013 International Search Report and Written Opinion dated Jan. 16, 2014.
PCT/US2014/022019 filed Mar. 7, 2014 International Search Report and Written Opinion dated Jun. 11, 2014.
PCT/US2015/014795 filed Feb. 6, 2015 International Search Report and Written Opinion dated May 14, 2015.
PCT/US2016/039356 filed Jun. 24, 2016 International Search Report and Written Opinion dated Sep. 16, 2016.
Pennington, C.R., Right Atrial Thrombus: a Complication of Total Parenteral Nutrition, British Medical Journal, pp. 446-447, vol. 295, Aug. 15, 1987.
Petersen, J et al, Silicone Venous Access Devices Positioned with their Tip High in the Superior Vena Cava are More Likely to Malfunction, Am J Surg, pp. 38-41, vol. 178 No. 1, Jul. 1999.
Pittiruti, et al, “The intracavitary ECG method for positioning the tip of central venous catheters: results of an Italian multicenter study,” J Vasc Access, pp. 1-9, Nov. 21, 2011.
Pittiruti, et al, Intracavitary EKG Monitoring: A reliable method for controlling tip position during and after PICC Insertion presentation in Catholic University, Rome, Italy in 2008.
Pittiruti, et al. “The EKG Method for Positioning the Tip of PICCs: Results from Two Preliminary Studies.” JAVA, vol. 13, No. 4, pp. 179-185, 2008.
Pittiruti, et al. “The electrocardiographic method for positioning the tip of central venous catheters” JAVA, pp. 1-12, Feb. 12, 2011.
Polos, PG et al, Tips for Monitoring the Position of a Central Venous Catheter—How Placement can go awry—even when the anatomy is normal, J Crit Illn, pp. 660-674, vol. 8 No. 6, Jun. 1993 (Abstract only).
Pop, Gheorghe A. et al., Catheter-based impedance measurements in the right atrium for continuously monitoring hematocrit and estimating blood viscosity changes; an in vivo feasibility study in swine, Biosensors and Bioelectronics 19 (2004) 1685-1693.
Popp, M. B. et al., Accuracy of implanted port placement with the use of the electromagnetic CathTrack® catheter locator system, The Journal of Vascular Access 2005; 6: 9-12.
Randolph AG et al, Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature, Critcal Care Medicine, pp. 2053-2058, vol. 24, Dec. 1996.
Reece, A et al, Posititioning Long Lines: Contrast Versus Plain Radiography, Arch Dis Child Fetal Neonatal Ed, pp. 129-130, vol. 84 No. 2, Mar. 2001.
Reynolds, N et al, Assessment of Distal Tip Position of Long Term Central Venous Feeding Catheters using Transesophageal Echocardiology, JPEN J Parenter Enteral Nutr, pp. 39-41, vol. 25 No. 1, Jan.-Feb. 2001.
RU 2011150917 filed Dec. 15, 2011 First Office Action dated Apr. 24, 2014.
RU 2011150917 filed Dec. 15, 2011 Second Office Action dated Aug. 28, 2014.
RU 2013158008 filed Dec. 26, 2013 First Office Action dated May 27, 2016.
RU 2015111669 filed Apr. 1, 2015 Office Action dated Jan. 25, 2018.
RU 2015111669 filed Apr. 1, 2015 Office Action dated Sep. 5, 2017.
Ruschulte, Heiner et al, Prevention of Central Venous Catheter related infections with chlorhex idine gluconate impregnated wound dressings: A randomized controlled trial, presented as an abstract at the Annual meeting of the European Society of Anaesthesiologists (ESA) in Madrid, Spain in Jun. 2006, 12 pages, Annals of Hematology, Jul. 14, 2008.
Rutherford, J. S. et al., Depth of Central Venous Catheterization: An Audit of Practice in a Cardiac Surgical Unit, Anaesth Intens Care 1994; 22: 267-271.
Sacolick, et al. “Electromagnetically Tracked Placement of a Peripherally Inserted Central Catheter.” SPIE Medical Imaging, 2004 Proceedings.
Salem, et al. “A New Peripherally Implanted Subcutaneous Permanent Central Venous Access Device for Patients Requiring Chemotherapy.” Journal of Clinical Oncology, vol. 11, No. 11, pp. 2181-2185, Nov. 1993.
Savary, D et al, Intra-atrial Monitoring to Add Insertion of a Central Venous Line in Pre-Hospital Emergency Care Journal Europeen des Urgences, pp. 75-78, vol. 17 No. 2, 2004.
Schafer et al. “Incorrect placement of a vena cava catheter and its prevention by intra-atrial ECG.” Anaesthesist. Jan. 1988;37(1):49-51.
Schummer, et al. “Central Venous Catheters—The inability of ‘intra-atrial ECG’ to prove adequate positioning.” British Journal of Anaesthesia, vol. 93, No. 2, pp. 193-198, 2004.
Schummer, W et al, ECG-guided Central Venous Catheter Positioning: Does it detect the Pericardial Reflection rather than the Right Atrium?, Eur J Anaesthesiol, pp. 600-605, vol. 21 No. 8, Aug. 2004 (Abstract only).
Schummer, W et al, Intra-Atrial ECG is not a Reliable Method for Positioning Left Internal Jugular Vein Catheters, Br J Anaesth, pp. 481-486, vol. 91 No. 4, Oct. 2003.
Schummer, W, Central Venous Catheter—the Inability of “Intra-Atrial ECG” to prove Adequate Positioning, Br J Anaesth, pp. 193-198, vol. 93 No. 2, Aug. 2004.
Schuster, M. et al., The carina as a landmark in central venous catheter placement, British Journal of Anaesthesia 85 (2): 192-4 (2000).
Siela, Debra, Using Chest Radiography in the Intensive Care Unit, Crit Care Nurse Aug. 1, 2002 vol. 22 No. 4, pp. 18-27.
Simon, et al., “Central Venous Catheter Placement in Children: Evaluation of Electrocardiography Using J-Wire.” Paediatric Anaesthesia vol. 9, pp. 501-504, 1999.
Smith, Brigham, et al., Intravenous electrocardiographic guidance for placement of peripherally inserted central catheters, Journal of Electrocardiology 43 (2010) 274-278.
Stark, DD et al, Radiographic Assessment of Venous Catheter Position in Children: Value of the Lateral View, Pediatric Radiology, pp. 76-80, vol. 14 No. 2, 1984.
Starkhammar et al. “Cath-Finder Catheter Tracking System: A New Device for Positioning of Central Venous Catheters. Early Experience from Implantation of Brachial portal Systems.” Acta Anaesthesiol Scandinavia, vol. 34, No. 4 pp. 296-300, May 1990.
Starkhammer, H et al, Central Venous Catheter Placement using Electromagnetic Position Sensing: A Clinical Evaluation, Biomed. Instrum Technol, vol. 30 No. 2, pp. 164-170; Mar.-Apr. 1996.
Starr, David S et al, EKG Guided Placement of Subclavian CVP Catheters Using J-Wire, pp. 673-676, Ann. Surg, Dec. 1986.
Stas, M et al, Peroperative Intravasal Electrographic Control of Catheter Tip Position in Access Ports Placed by Venous Cut-Down Technique, EJSO, pp. 316-320, vol. 27, 2001.
Stereotaxis Magetic Navigation System with Navigant™ User Interface, 2005 Brochure.
Stereotaxis, Expanding the Possibilites of Interventional Medicine: Remote Navigation and Automation, pp. 1-8, Apr. 2011.
Tepa® Health Innovation PC based ECG System Introduction and Technical Specifications, EKG Master USB, 2 pages, Nov. 2003.
The FloWire Doppler Guide Wire located <http://www.volcanocorp.com/products/flowire-doppler-guide-wire.php>, 2011.
Traxal Technologies, Tracking Technology website overview: www.traxal.com/rd/rd_classroom_trackingtechnology.htm, last accessed Dec. 1, 2006.
UAB Health Systems, Arrhythmias, retrieved from http://www.health,uab.edu/14564/ on Nov. 15, 2007, 12 pages.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Advisory Action dated Jun. 22, 2009.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Appeal Board Decision dated Sep. 17, 2012.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Final Office Action dated Apr. 8, 2010.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Final Office Action dated Jan. 30, 2009.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Final Office Action dated Oct. 28, 2011.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Non-Final Office Action dated Mar. 28, 2013.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Non-Final Office Action dated Sep. 25, 2009.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Notice of Allowance dated Dec. 3, 2012.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Notice of Allowance dated Mar. 14, 2014.
U.S. Appl. No. 11/552,094, filed Oct. 23, 2006 Notice of Allowability dated Apr. 2, 2010.
U.S. Appl. No. 11/552,094, filed Oct. 23, 2006 Non-Final Office Action dated Apr. 27, 2009.
U.S. Appl. No. 11/552,094, filed Oct. 23, 2006 Notice of Allowance dated May 20, 2010.
U.S. Appl. No. 12/104,253, filed Apr. 16, 2008 Final Office Action dated Jul. 27, 2011.
U.S. Appl. No. 12/104,253, filed Apr. 16, 2008 Non-Final Office Action dated Nov. 29, 2010.
U.S. Appl. No. 12/323,273, filed Nov. 25, 2008 Non-Final Office Action dated Jun. 8, 2012.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Final Office Action dated Feb. 23, 2012.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Notice of Allowance dated Oct. 5, 2012.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Notice of Panel Decision dated Aug. 1, 2012.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Non-Final Office Action dated Jul. 20, 2011.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Advisory Action dated Nov. 26, 2013.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Decision on Appeal dated Nov. 7, 2016.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Examiner's Answer dated Oct. 7, 2014.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Final Office Action dated Aug. 2, 2013.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Final Office Action dated Jan. 31, 2014.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Non-Final Office Action dated Dec. 3, 2012.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Notice of Allowance dated Dec. 13, 2016.
U.S. Appl. No. 12/427,244, filed Apr. 21, 2009 Non-Final Office Action dated Jan. 19, 2012.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Final Office Action dated Apr. 10, 2017.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Final Office Action dated Mar. 7, 2013.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Aug. 1, 2012.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Dec. 13, 2013.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Feb. 16, 2016.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Nov. 7, 2014.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Sep. 11, 2015.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Sep. 26, 2016.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Notice of Panel Decision dated Jul. 14, 2017.
U.S. Appl. No. 12/557,401, filed Sep. 10, 2009 Non-Final Office Action dated Apr. 24, 2012.
U.S. Appl. No. 12/557,401, filed Sep. 10, 2009 Non-Final Office Action dated Jan. 6, 2014.
U.S. Appl. No. 12/575,456, filed Oct. 7, 2009 Non-Final Office Action dated Oct. 5, 2012.
U.S. Appl. No. 12/715,556, filed Mar. 2, 2010 Final Office Action dated Oct. 2, 2013.
U.S. Appl. No. 12/715,556, filed Mar. 2, 2010 Non-Final Office Action dated Sep. 13, 2012.
“Ascension to Launch New 3D Guidance™ Tracker at TCT 2006.” Press Releases from Ascension website: www.ascension-tech.com/news/press_101106.php, last accessed Dec. 1, 2006.
Acuson—The Value of Vision, AcuNav Diagnostic Ultrasound Catheter, 2000.
Advertising flyer for GAVECELT—the Italian Group for Long Term Venous Access Devices, for program on International Meeting on PICC's, Midline Catheters and Long Term Venous Access Devices in Catholic University, Rome, Italy on Dec. 3, 4, 5, 2008.
Alexander, GD et al, The Role of Nitrous Oxide in Postoperative Nausea and Vomiting, Collection of Abstracts Presented at the International Anesthesia Research Society by various speakers, 58th Congress, Mar. 12-14, 1984, Anesthesia and Analgesia, pp. 175-284, vol. 63, 1984.
Allan, P.L. et al, Role of Ultrsound in the Assessment of Chronic Venous Insufficiency, Ultrasound Quarterly, vol. 17, No. 1, pp. 3-10, 2001.
Andropoulos, et al. “A Controlled Study of the Transesophageal Echocardiography to Guide Central Venous Catheter Placement in Congetital Heart Surgery Patients.” The International Anesthesia Research Society, vol. 89, pp. 65-70, 1999.
Anonymous author, Correct Catheter Placement with a low-impact, reliable and economical method, <http://www.cvc-partner.com/index.cfm?103A955CC6844BF58ACFE3C9C1471959>, last accessed Dec. 22, 2011.
Arai, J et al, Detection of Peripherally Inserted Central Catheter Occlusion by in-line Pressure Monitoring, Paediatr Anaesth, pp. 621-624, vol. 12 No. 7, Sep. 2002.
Arrow International, Inc., The Arrow-Johans RAECG Adapter-Making Proper Central Venous Catheter Placement More Reliable (Modle No. EG-04900), Technical Report 1987, USA.
Aslamy, et al. “MRI of Central Venous Anatomy: Implications for Central Venous Catheter Insertion.” American College of Chest Physicians, Jun. 8, 2009.
AU 2006283022 filed Aug. 24, 2006 Office Action dated Dec. 22, 2010.
AU 2008329807 exam requested Aug. 13, 2012 Examination Report No. 1 dated Feb. 15, 2013.
AU 2008329807 exam requested Aug. 13, 2012 Notice of Acceptance dated Feb. 14, 2014.
AU 2010300677 filed Mar. 12, 2012 First Examination Report dated Mar. 9, 2014.
AU 2011289513 filed Jan. 21, 2013 Examiner's Report dated Jul. 5, 2013.
AU 2012202293 filed Apr. 19, 2012 Examination Report No. 1 dated Apr. 24, 2013.
AU 2012278809 filed Nov. 12, 2013 Notice of Acceptance dated Sep. 13, 2016.
AU 2013201648 filed Mar. 19, 2013 Examiner's Report dated Mar. 5, 2014.
AU 2013201648 filed Mar. 19, 2013 Examiner's Report dated Oct. 14, 2013.
AU 2013202824 filed Apr. 6, 2013 First Examiner's Report dated Mar. 10, 2014.
AU 2013204243 filed Apr. 12, 2013 Examiner's Report dated Jun. 5, 2013.
Aurora@ System Technical Specifications, Oct. 2003.
B. Braun Website, “The Optimal Position of the Central Venous Catheter.” http://www.cvcpartner.com/index.cfm18F1BDEA1310466194960A39F4E90968 (2009).
B. Braun, Certofix Central Venous Catheter for Placement Using the Seldinger Technique with Simultaneous ECG Lead Option, Feb. 2010.
Bailey, SH et al, Is Immediate Chest Radiograph Necessary after Central Venous Catheter Placement in a Surgical Intensive Care Unit?, Am J Surg, pp. 517-522, vol. 180 No. 6, Dec. 2000.
Bankier, Alexander A., Azygos Arch Cannulation by Central Venous Catheters: Radiographic Detection of Malposition and Subsequent Complications, Journal of Thoracic Imaging 12:64-69 (1997).
Barber, JM et al, A Nurse led Peripherally Inserted Central Catheter Line Insertion Service is Effective with Radiological Support, Clin Radiol, pp. 352-354, vol. 57 No. 5, May 2002.
Bard Access Systems, Sherlock Tip Location System, 5 pages, 2006.
Bard Access Systems, Site Rite Vascular Acess Ultrasound System, 4 pages, 2005.
Benchimol, Alberto at al, Right Atrium and Superior Vena Cava Flow Velocity in Man Measured with the Doppler-Catheter Flowmeter-Telemetry System, The Amer Journal of Medicine, pp. 303-309, vol. 48, Mar. 1970.
Benzadon, M. N. et al: “Comparison of the Amplitude of the P-Wave from Intracardiac Electrocardiogram Obtained by Means of a Central Venous Catheter Filled With Saline Solution to That Obtained Via Esophageal Electrocardiogram”, American Journal of Cardiology, Canners Publishing Co., Newton, MA, US, vol. 98, No. 7, Oct. 1, 2006 (Oct. 1, 2006), pp. 978-981.
BioAdvance Lumen Vu, Greenhouse Fund Feb. 2004 Recipient, www.bioadvance.com <http://www.bioadvance.com>, 2005.
Borgobello, Bridget, App allows users to view electrocardiograms on smartphones dated Oct. 15, 2010; printed from http://www.gizmag.com/app-to-view-electrocardiograms-on-smartphones/16664/ on Feb. 4, 2011.
Buehrle, Douglas, PICC Placement in Humans using Electromagnetic Detection, <http://www.corpakmedsystems.com/supplement_material/supplementpages/navigator/navarticle.html>, 2008.
C.R. Bard, CathTrack™ Catheter Location System at www.bardaccess.com <http://www.bardaccess.com>, last accessed Apr. 28, 2011.
C.R. Bard, Inc., Bard Electrophysiology Product Catalogue, Bard Catheters, pp. 74-75 (2002), USA.
CA 2,619,909 filed Aug. 24, 2006 Examiner's Report dated Oct. 26, 2012.
CA 2,721,715 filed Apr. 17, 2009 Examiner's Report dated Aug. 18, 2015.
CA 2,721,715 filed Apr. 17, 2009 Examiner's Report dated Oct. 25, 2016.
CA 2800810 filed Nov. 26, 2012 Office Action dated Mar. 30, 2017.
Cadman, A et al, To Clot or Not to Clot? That is the question in Central Venous Catheters, Clinical Radiology, pp. 349-355, vol. 59 No. 4, Apr. 2004.
Calvert, N et al, The Effectiveness and Cost-effectiveness of Ultrasound Locating Devices for Central Venous Access: A Systematic Review and Economic Evaluation, Health Technology Assessment, vol. 7, No. 12, 2003.
Cardella, John F. et al., Interventinal Radiologic Placement of Peripherally Inserted Central Catheters, Journal of Vascular and Interventional Radiology 1993; 4:653-660.
Carlon, R et al, Secondary Migration of a Central Venous Catheter—A Case Report, Minerva Anestesiol, pp. 927-931, vol. 69 No. 12, Dec. 2003.
Caruso, LJ et al, A Better Landmark for Positioning a Central Venous Catheter, J Clinical Monitoring and Computing, pp. 331-334, vol. 17 No. 6, Aug. 2002.
Cavatorta, et al., “Central Venous Catheter Placement in Hemodialysis: Evaluation of Electrocardiography Using a Guidewire.” The Journal of Vascular Access, vol. 2, pp. 45-50, 2001.
Chalkiadis, GA et al, Depth of Central Venous Catheter Insertion in Adults: An Audit and Assessment of a Technique to Improve Tip Position, Anaesth Intensive Care, pp. 61-66, vol. 26 No. 1, Feb. 1998.
Chamsi-Pasha, Hassan et al, Cardiac Complications of Total Parenteral Nutrition: The Role of Two-Dimensional Echocardiography in Diagnosis, Annals of the Royal College of Surgeons of England, pp. 120-123, vol. 71, 1989.
Chang, Thomas C. et al., Are Routine Ch Ladiographs Necessary After Image-Guided Placement of Internal Jugular Central Venous Access Devices?, AJR Feb. 1998;170:335-337.
Chaturvedi et al., “Catheter Malplacement During Central Venous Cannulation Through Arm Veins in Pediatric Patients.” Journal of Neurosurgical Anesthesiology, vol. 15, No. 3 pp. 170-175, Jan. 2003.
AZoMaterials. Nickel-Based Super Alloy Inconel 625—Properties and Applications by United Performance Alloys. Oct. 27, 2015. Last accessed Mar. 23, 2018. <URL:https://web.archive.org/web/20151027202821/https://www.azom.com/artic1e.aspx?ArticleID=4461>.
CA 2800810 filed Nov. 26, 2012 Office Action dated Mar. 13, 2018.
CA 2800813 filed Nov. 26, 2012 Office Action dated Mar. 5, 2018.
CN 201380051172.5 filed Mar. 30, 2015 Office Action dated Jan. 16, 2018.
EP 14197137.4 filed Dec. 10, 2014 Office Action dated Apr. 5, 2018.
EP 17186624.7 filed Aug. 17, 2017 Extended European Search Report dated Jan. 17, 2018.
JP 2013-530322 filed Mar. 18, 2013, Office Action dated Jul. 6, 2018.
JP 2015-534770 filed Mar. 26, 2015 Office Action dated Feb. 21, 2018.
KR 10-2014-7002789 filed Feb. 3, 2014 Office Action dated Jun. 21, 2018.
MX/a/2015/004864 filed Apr. 16, 2015 Office Action dated Apr. 24, 2018.
NOT Resource Center. Magnetic Permeability. Oct. 18, 2014. Last accessed Mar. 23, 2018. <URL:https://web.archive.org/web/20141018213902/https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/Permeability.htm>.
PCT/US2017/066503 filed Dec. 14, 2017 International Search Report and Written Opinion dated Feb. 20, 2018.
RU 2015111669 filed Apr. 1, 2015 Office Action dated May 18, 2018.
U.S. Appl. No. 13/890,158, filed May 8, 2013 Notice of Allowance dated May 30, 2018.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Examiner's Answer dated Apr. 19, 2018.
U.S. Appl. No. 15/192,561, filed Jun. 24, 2016 Non-Final Office Action dated Apr. 6, 2018.
U.S. Appl. No. 15/284,355, filed Oct. 3, 2016 Final Office Action dated May 24, 2018.
U.S. Appl. No. 15/365,698, filed Nov. 30, 2016 Final Office Action dated Jul. 12, 2018.
U.S. Appl. No. 15/365,734, filed Nov. 30, 2016 Non-Final Office Action dated Feb. 23, 2018.
U.S. Appl. No. 15/365,734, filed Nov. 30, 2016 Notice of Allowance dated Jun. 4, 2018.
U.S. Appl. No. 15/365,752, filed Nov. 30, 2016 Final Office Action dated Jul. 12, 2018.
U.S. Appl. No. 15/365,872, filed Nov. 30, 2016 Restriction Requirement dated Apr. 5, 2018.
U.S. Appl. No. 15/585,051, filed May 2, 2017 Final Office Action dated Feb. 28, 2018.
U.S. Appl. No. 15/585,051, filed May 2, 2017 Final Office Action dated Mar. 15, 2018.
CN 201610127217.8 filed Mar. 7, 2016 Office Action dated Nov. 19, 2018.
EP 14197137.4 filed Dec. 10, 2014, Office Action dated Nov. 21, 2018.
EP14197136.6 filed Dec. 10, 2014 Office Action dated Nov. 21, 2018.
U.S. Appl. No. 14/788,305, filed Jun. 30, 2015 Notice of Allowance dated Nov. 15, 2018.
U.S. Appl. No. 15/192,561, filed Jun. 24, 2016 Final Office Action dated Nov. 1, 2018.
U.S. Appl. No. 15/365,752, filed Nov. 30, 2016 Notice of Allowance dated Nov. 6, 2018.
U.S. Appl. No. 15/365,872, filed Nov. 30, 2016 Notice of Allowance dated Dec. 21, 2018.
EP 11850625.2 filed Jul. 22, 2013 Office Action dated Feb. 25, 2019.
EP 15746326.6 filed Jul. 1, 2016 Office Action dated Jan. 29, 2019.
KR 10-2014-7002789 filed Feb. 3, 2014 Office Action dated Feb. 22, 2019.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Board Decision dated Apr. 12, 2019.
U.S. Appl. No. 14/996,247, filed Jan. 15, 2016 Restriction Requirement dated Mar. 22, 2019.
U.S. Appl. No. 15/284,355, filed Oct. 3, 2016 Notice of Allowance dated Feb. 21, 2019.
CN 201380051172.5 filed Mar. 30, 2015 Office Action dated Jul. 30, 2018.
CN 201580007645.0 filed Aug. 8, 2016 Office Action dated Sep. 12, 2018.
CN 201610127217.8 filed Mar. 7, 2016 Office Action dated Jun. 11, 2018.
EP 10786978.6 filed Dec. 19, 2011 Office Action dated Jan. 16, 2019.
RU 2015110633 filed Mar. 26, 2015 Office Action dated Oct. 25, 2018.
U.S. Appl. No. 14/040,205, filed Sep. 27, 2013 Board Decision dated May 1, 2019.
U.S. Appl. No. 14/040,205, filed Sep. 27, 2013 Notice of Allowance dated Aug. 21, 2019.
U.S. Appl. No. 14/054,700, filed Oct. 15, 2013 Board Decision dated May 1, 2019.
U.S. Appl. No. 14/054,700, filed Oct. 15, 2013 Notice of Allowance dated Jun. 6, 2019.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Board Decision dated Jul. 23, 2019.
U.S. Appl. No. 14/788,305, filed Jun. 30, 2015 Final Office Action dated Jul. 27, 2018.
U.S. Appl. No. 14/996,247, filed Jan. 15, 2016 Non-Final Office Action dated Jul. 18, 2019.
U.S. Appl. No. 15/365,698, filed Nov. 30, 2016 Non-Final Office Action dated Apr. 18, 2019.
U.S. Appl. No. 15/418,475, filed Jan. 27, 2017 Restriction Requirement dated Jul. 23, 2019.
U.S. Appl. No. 15/585,051, filed May 2, 2017 Examiner's Answer dated May 2, 2019.
U.S. Appl. No. 15/816,932, filed Nov. 17, 2017 Non-Final Office Action dated Aug. 22, 2019.
PCT/US2019/055716 filed Oct. 10, 2019 International Search Report and Written Opinion dated Feb. 4, 2020.
U.S. Appl. No. 14/996,247, filed Jan. 15, 2016 Advisory Action dated Feb. 20, 2020.
U.S. Appl. No. 14/996,247, filed Jan. 15, 2016 Final Office Action dated Dec. 11, 2019.
EP 20154593.6 filed Jan. 30, 2020 Extended European Search Report dated Jun. 2, 2020.
U.S. Appl. No. 15/585,051, filed May 2, 2017 Notice of Allowance dated Jul. 31, 2020.
U.S. Appl. No. 15/816,932, filed Nov. 17, 2017 Advisory Action dated Jun. 18, 2020.
U.S. Appl. No. 15/836,741, filed Jan. 8, 2017 Non-Final Office Action dated Jun. 12, 2020.
U.S. Appl. No. 16/017,695, filed Jun. 25, 2018 Non-Final Office Action dated Jul. 20, 2020.
U.S. Appl. No. 14/996,247, filed Jan. 15, 2016 Non-Final Office Action dated Sep. 1, 2020.
U.S. Appl. No. 15/418,475, filed Jan. 27, 2017 Non-Final Office Action dated Sep. 1, 2020.
U.S. Appl. No. 15/625,842, filed Jun. 16, 2017 Final Office Action dated Nov. 5, 2020.
U.S. Appl. No. 15/816,932, filed Nov. 17, 2017 Corrected Notice of Allowance dated Nov. 16, 2020.
U.S. Appl. No. 15/836,741, filed Jan. 8, 2017 Notice of Allowance dated Sep. 10, 2020.
U.S. Appl. No. 16/457,606, filed Jun. 28, 2017 Non-Final Office Action dated Sep. 15, 2020.
EP 11827551.0 filed Feb. 7, 2013 Office Action dated Mar. 13, 2020.
EP 17157118.5 filed Feb. 8, 2018 Communication under Rule 71(3) dated May 7, 2020.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Board Decision dated Nov. 26, 2019.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Final Office Action dated Mar. 9, 2020.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Non-Final Office Action dated Nov. 27, 2019.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Notice of Allowance dated May 8, 2020.
U.S. Appl. No. 15/365,698, filed Nov. 30, 2016 Notice of Allowance dated Nov. 4, 2019.
U.S. Appl. No. 15/418,475, filed Jan. 27, 2017 Advisory Action dated May 28, 2020.
U.S. Appl. No. 15/418,475, filed Jan. 27, 2017 Final Office Action dated Apr. 2, 2020.
U.S. Appl. No. 15/418,475, filed Jan. 27, 2017 Non-Final Office Action dated Oct. 18, 2019.
U.S. Appl. No. 15/585,051, filed May 2, 2017 Board Decision dated Apr. 21, 2020.
U.S. Appl. No. 15/625,842, filed Jun. 16, 2017 Non-Final Office Action dated Mar. 18, 2020.
U.S. Appl. No. 15/816,932, filed Nov. 17, 2017 Final Office Action dated Feb. 28, 2020.
U.S. Appl. No. 15/836,741, filed Jan. 8, 2017 Restriction Requirement dated Mar. 3, 2020.
CN 201480010988.8 filed Aug. 27, 2015 Office Action dated Aug. 17, 2018.
Enrique Company-Bosch, “ECG Front-End Design is Simplified with MicroConverter.” Analog Dialogue 37-11, (dated Nov. 2003).
EP 11850625.2 filed Jul. 22, 2013 Office Action dated Sep. 24, 2018.
Hamza, N. et al. “Interference reduction in ECG signal acquisition: Ground electrode removal.” 2013 International Conference on Computer Medical Applications (ICCMA), Jan. 2013.
Honeywell, “1, 2 and 3 Axis Magnetic Sensors HMC1051/HMC1052L/HMC1053” dated Jan. 2010.
Thakor, N. V., et al. “Ground-Free ECG Recording with Two Electrodes.” IEEE Transactions on Biomedical Engineering, vol. BME-27, No. 12, Dec. 1980.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Examiner's Answer dated Oct. 15, 2018.
U.S. Appl. No. 14/788,305, filed Jun. 30, 2015 Advisory Action dated Oct. 19, 2018.
U.S. Appl. No. 15/266,977, filed Sep. 15, 2016 Non-Final Office Action dated Oct. 30, 2018.
U.S. Appl. No. 15/284,355, filed Oct. 3, 2016 Advisory Action dated Aug. 13, 2018.
U.S. Appl. No. 15/365,872, filed Nov. 30, 2016 Non-Final Office Action dated Aug. 27, 2018.
U.S. Appl. No. 15/842,685, filed Dec. 14, 2017 Non-Final Office Action dated Jan. 7, 2021.
U.S. Appl. No. 16/457,606, filed Jun. 28, 2017 Notice of Allowance dated Mar. 17, 2021.
Related Publications (1)
Number Date Country
20180169389 A1 Jun 2018 US
Provisional Applications (2)
Number Date Country
61095451 Sep 2008 US
61091233 Aug 2008 US
Divisions (1)
Number Date Country
Parent 12545762 Aug 2009 US
Child 15900623 US