The present invention relates generally to catheter control systems for controlling the articulation of visualization and treatment apparatus having imaging and manipulation features for intravascularly accessing regions of the body.
Conventional devices for accessing and visualizing interior regions of a body lumen are known. For example, various catheter devices are typically advanced within a patient's body, e.g., intravascularly, and advanced into a desirable position within the body. Other conventional methods have utilized catheters or probes having position sensors deployed within the body lumen, such as the interior of a cardiac chamber. These types of positional sensors are typically used to determine the movement of a cardiac tissue surface or the electrical activity within the cardiac tissue. When a sufficient number of points have been sampled by the sensors, a “map” of the cardiac tissue may be generated.
Another conventional device utilizes an inflatable balloon which is typically introduced intravascularly in a deflated state and then inflated against the tissue region to be examined. Imaging is typically accomplished by an optical fiber or other apparatus such as electronic chips for viewing the tissue through the membrane(s) of the inflated balloon. Moreover, the balloon must generally be inflated for imaging. Other conventional balloons utilize a cavity or depression formed at a distal end of the inflated balloon. This cavity or depression is pressed against the tissue to be examined and is flushed with a clear fluid to provide a clear pathway through the blood.
However, many of the conventional catheter imaging systems lack the capability to provide therapeutic treatments or are difficult to manipulate in providing effective therapies. For instance, the treatment in a patient's heart for atrial fibrillation is generally made difficult by a number of factors, such as visualization of the target tissue, access to the target tissue, and instrument articulation and management, amongst others.
Conventional catheter techniques and devices, for example such as those described in U.S. Pat. Nos. 5,895,417; 5,941,845; and 6,129,724, used on the epicardial surface of the heart may be difficult in assuring a transmural lesion or complete blockage of electrical signals. In addition, current devices may have difficulty dealing with varying thickness of tissue through which a transmural lesion is desired.
Conventional accompanying imaging devices, such as fluoroscopy, are unable to detect perpendicular electrode orientation, catheter movement during the cardiac cycle, and image catheter position throughout lesion formation. The absence of real-time visualization also poses the risk of incorrect placement and ablation of structures such as sinus node tissue which can lead to fatal consequences.
Moreover, because of the tortuous nature of intravascular access, devices or mechanisms at the distal end of a catheter positioned within the patient's body, e.g., within a chamber of the heart, are typically no longer aligned with the handle. Steering or manipulation of the distal end of the catheter via control or articulation mechanisms on the handle is easily disorienting to the user as manipulation of a control on the handle in a first direction may articulate the catheter distal end in an unexpected direction depending upon the resulting catheter configuration leaving the user to adjust accordingly. However, this results in reduced efficiency and longer procedure times as well as increased risks to the patient. Accordingly, there is a need for improved catheter control systems which facilitate the manipulation and articulation of a catheter.
A tissue imaging and manipulation apparatus that may be utilized for procedures within a body lumen, such as the heart, in which visualization of the surrounding tissue is made difficult, if not impossible, by medium contained within the lumen such as blood, is described below. Generally, such a tissue imaging and manipulation apparatus comprises an optional delivery catheter or sheath through which a deployment catheter and imaging hood may be advanced for placement against or adjacent to the tissue to be imaged.
The deployment catheter may define a fluid delivery lumen therethrough as well as an imaging lumen within which an optical imaging fiber or assembly may be disposed for imaging tissue. When deployed, the imaging hood may be expanded into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field is defined by the imaging hood. The open area is the area within which the tissue region of interest may be imaged. The imaging hood may also define an atraumatic contact lip or edge for placement or abutment against the tissue region of interest. Moreover, the distal end of the deployment catheter or separate manipulatable catheters may be articulated through various controlling mechanisms such as push-pull wires manually or via computer control
The deployment catheter may also be stabilized relative to the tissue surface through various methods. For instance, inflatable stabilizing balloons positioned along a length of the catheter may be utilized, or tissue engagement anchors may be passed through or along the deployment catheter for temporary engagement of the underlying tissue.
In operation, after the imaging hood has been deployed, fluid may be pumped at a positive pressure through the fluid delivery lumen until the fluid fills the open area completely and displaces any blood from within the open area. The fluid may comprise any biocompatible fluid, e.g., saline, water, plasma, FLUORINERT® (FL-40), etc., which is sufficiently transparent to allow for relatively undistorted visualization through the fluid. The fluid may be pumped continuously or intermittently to allow for image capture by an optional processor which may be in communication with the assembly.
In an exemplary variation for imaging tissue surfaces within a heart chamber containing blood, the tissue imaging and treatment system may generally comprise a catheter body having a lumen defined therethrough, a visualization element disposed adjacent the catheter body, the visualization element having a field of view, a transparent fluid source in fluid communication with the lumen, and a barrier or membrane extendable from the catheter body to localize, between the visualization element and the field of view, displacement of blood by transparent fluid that flows from the lumen, and an instrument translatable through the displaced blood for performing any number of treatments upon the tissue surface within the field of view. The imaging hood may be formed into any number of configurations and the imaging assembly may also be utilized with any number of therapeutic tools which may be deployed through the deployment catheter.
More particularly in certain variations, the tissue visualization system may comprise components including the imaging hood, where the hood may further include a membrane having a main aperture and additional optional openings disposed over the distal end of the hood. An introducer sheath or the deployment catheter upon which the imaging hood is disposed may further comprise a steerable segment made of multiple adjacent links which are pivotably connected to one another and which may be articulated within a single plane or multiple planes. The deployment catheter itself may be comprised of a multiple lumen extrusion, such as a four-lumen catheter extrusion, which is reinforced with braided stainless steel fibers to provide structural support. The proximal end of the catheter may be coupled to a handle for manipulation and articulation of the system.
To provide visualization, an imaging element such as a fiberscope or electronic imager such as a solid state camera, e.g., CCD or CMOS, may be mounted, e.g., on a shape memory wire, and positioned within or along the hood interior. A fluid reservoir and/or pump (e.g., syringe, pressurized intravenous bag, etc.) may be fluidly coupled to the proximal end of the catheter to hold the translucent fluid such as saline or contrast medium as well as for providing the pressure to inject the fluid into the imaging hood.
One example of a system configured to enable direct visualization of tissue underlying the hood and optionally treat tissue, e.g., ablation, may include an ablation assembly, hood, and deployment catheter coupled to a handle having a catheter steering and locking assembly integrated along the handle. The catheter steering and locking assembly may include a steering member pivotably coupled to a locking member where the steering member may be coupled to one or more pullwires attached thereto via a retaining member, e.g., set screw, such that manipulation of the steering member articulates the steerable section and hood in a corresponding manner. The steering member may be pivotably coupled to the locking member along a point of rotation and locking mechanism which is attached to a steering plate.
The catheter shaft contains at least one lumen which allows the passage of one or more pullwires that are connected to the steering member at the proximal end of the pullwire while the distal end may be terminated and anchored to the steering mechanisms along the steerable portion of the catheter. A compression coil, e.g., made of stainless steel, with a slightly larger diameter than the pullwire may be positioned about the pullwire within the handle to allow the pullwire to slide freely therethrough.
In use, the steering member may be actuated, e.g., by pulling the member proximally, to articulate the steerable portion and hood in the same direction of articulation. With the steerable portion articulated to the degree desired to position the hood, the locking member may be actuated to maintain a configuration of the steerable portion and hood by preventing or inhibiting movement of the steering member thus freeing the hand or hands of the user. A steering indicator and/or locking indicator may be optionally incorporated along the handle as a reminder to the user.
The handle assembly may also optionally incorporate an optical adjustment assembly which may be used to move the distal lens of a visualization instrument, such as a fiberscope, distally or proximally from the imaged tissue region, hence simulating a zoom-in and/or zoom-out optical effect. Generally, the optical adjustment assembly is able to provide zoom-in and/or zoom-out capabilities by varying the length of the assembly. By rotating an adjustment member, which is coupled to a retaining sleeve within the optical adjustment assembly, a distal shaft portion may be advanced or retracted relative to the guide shaft. The assembly may be accordingly varied in length while distally or proximally advancing the fiberscope based on the varied length of the optical adjustment assembly to control the visualized field of view.
Because manipulation of the hood and steerable portion corresponds with an angle at which the handle is positioned, the handle may also serve as an orientation indicator for the hood and steerable portion once the hood has been introduced into the patient's body. This correspondence between the planes of the handle and the resulting articulation of the hood and steerable portion may be particularly useful for efficiently controlling the hood position within the patient's body. As the catheter is usually repeatedly torqued during a procedure, keeping track of the orientation of the deflection of the hood can be difficult, if not impossible, unless fluoroscopy is used. With the handle, the angle of deflection of the hood can be predicted by the operator without the need of fluoroscopy. This is can be particularly desirable in procedures such as transseptal punctures where an accurate angle of puncture of the septal wall is desirable to avoid complications such as perforation of the aorta.
Another variation of a steering handle assembly may include an assembly having a handle portion and a steering ring which may be manipulated along any number of directions relative to the housing to control the articulation of the hood. Manipulating or pulling along a portion of the steering ring causes the steerable portion and hood to move along a corresponding direction of articulation. Moreover, because of the manner in which the steering ring is positioned to encircle the handle assembly, the operator may grip the handle along any orientation and operate the handle assembly with a single hand.
The handle assembly may generally comprise a ball pivot supported by pivot support enclosed within the housing. The ball pivot may support the steering ring via one or more steering ring support members, e.g., four steering ring support members, which extend radially through corresponding support member openings. Because of the ball pivot shape, the steering ring may be moved about the pivot in any number of directions. The terminal ends of one or more pullwires may be coupled the steering ring via corresponding fasteners, e.g., set screws, securing each of the pullwire termination crimps. These pullwires may extend through the pivot support housing and through a pullwire transition manifold and into a proximal end of a multi-lumen shaft, such as the catheter. The pullwires may continue distally through the catheter where they are coupled to the steerable portion of the catheter. Each of the pullwires may be optionally encased in corresponding compression coils between the transition manifold and catheter.
Although multiple pullwires may be utilized depending upon the number of directions for articulation, four pullwires may be typically utilized. Each of the four pullwires may be terminated symmetrically around a circumference of the steering ring such that a balanced four-way steering of the distal portion may be accomplished, although manipulating the steering ring along various portions of its circumference may yield combinational articulation between the pullwires to result in numerous catheter configurations. Additionally, the handle assembly may further incorporate a spring mechanism as an overdrive prevention mechanism positioned between the transition manifold and ball pivot in order to prevent over-tensioning or breaking of the pullwires if the steering ring is over-deflected in a direction.
The handle assembly and catheter can be consistently deflected in the same direction by which the steering ring is being deflected regardless of the orientation of the handle assembly. For example, the handle assembly may be deflected in a first direction of actuation such that the hood is deflected in a corresponding first direction of articulation. If the handle assembly, catheter, and hood are then rotated along an arbitrary direction of rotation about the longitudinal axis of the assembly, even with the entire assembly rotated, e.g., 180°, actuating the steering ring along the first direction of actuation still results in a corresponding first direction of articulation of the hood which matches the initial direction of articulation despite the rotated assembly.
In yet another variation of the catheter control handle, the control assembly may be configured to articulate at least two independently deflectable portions. As with previous variations, a steering ring may encircle the housing. However, this variation further includes a proximal handle portion extending from the housing with a proximal section control for articulating the proximal steerable section. Moreover, this particular handle assembly may be used to control articulation of the hood and the distal steerable section but also used to further control articulation of the proximal steerable section. A proximal section control located along the proximal handle portion may be actuated, e.g., by rotating the control in a first and/or second direction, to articulate the proximal steerable section within a first plane and the hood may be further articulated by manipulating the steering ring such that distal steerable section moves in a corresponding direction of articulation.
Additionally and/or alternatively, visual indicators positioned directly upon the hood may also be utilized in coordination with corresponding visual indicators positioned upon the handle itself. The hood may have one or more visual indicators marked upon the distal portion of the hood such that the visual image through the hood may show at least a first directional indicator along a first portion of the hood. The handle assembly may thus have one or more directional indicators located directly upon, e.g., the steering ring, which correspond spatially with the indicators positioned upon the hood or hood membrane.
The catheter control systems described herein may additionally integrate any number of features and controls for facilitate procedures. These features and controls may be integrated into any of the variations described herein. One example may include features such as flow rate control, air bubble detection, ablation activation switches, built-in image sensors, etc., may be incorporated into the handle assembly.
A tissue-imaging and manipulation apparatus described herein is able to provide real-time images in vivo of tissue regions within a body lumen such as a heart, which is filled with blood flowing dynamically therethrough and is also able to provide intravascular tools and instruments for performing various procedures upon the imaged tissue regions. Such an apparatus may be utilized for many procedures, e.g., facilitating transseptal access to the left atrium, cannulating the coronary sinus, diagnosis of valve regurgitation/stenosis, valvuloplasty, atrial appendage closure, arrhythmogenic focus ablation, among other procedures.
One variation of a tissue access and imaging apparatus is shown in the detail perspective views of
When the imaging and manipulation assembly 10 is ready to be utilized for imaging tissue, imaging hood 12 may be advanced relative to catheter 14 and deployed from a distal opening of catheter 14, as shown by the arrow. Upon deployment, imaging hood 12 may be unconstrained to expand or open into a deployed imaging configuration, as shown in
Imaging hood 12 may be attached at interface 24 to a deployment catheter 16 which may be translated independently of deployment catheter or sheath 14. Attachment of interface 24 may be accomplished through any number of conventional methods. Deployment catheter 16 may define a fluid delivery lumen 18 as well as an imaging lumen 20 within which an optical imaging fiber or assembly may be disposed for imaging tissue. When deployed, imaging hood 12 may expand into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field 26 is defined by imaging hood 12. The open area 26 is the area within which the tissue region of interest may be imaged. Imaging hood 12 may also define an atraumatic contact lip or edge 22 for placement or abutment against the tissue region of interest. Moreover, the diameter of imaging hood 12 at its maximum fully deployed diameter, e.g., at contact lip or edge 22, is typically greater relative to a diameter of the deployment catheter 16 (although a diameter of contact lip or edge 22 may be made to have a smaller or equal diameter of deployment catheter 16). For instance, the contact edge diameter may range anywhere from 1 to 5 times (or even greater, as practicable) a diameter of deployment catheter 16.
As seen in the example of
Although contact edge 22 need not directly contact the underlying tissue, it is at least preferably brought into close proximity to the tissue such that the flow of clear fluid 28 from open area 26 may be maintained to inhibit significant backflow of blood 30 back into open area 26. Contact edge 22 may also be made of a soft elastomeric material such as certain soft grades of silicone or polyurethane, as typically known, to help contact edge 22 conform to an uneven or rough underlying anatomical tissue surface. Once the blood 30 has been displaced from imaging hood 12, an image may then be viewed of the underlying tissue through the clear fluid 30. This image may then be recorded or available for real-time viewing for performing a therapeutic procedure. The positive flow of fluid 28 may be maintained continuously to provide for clear viewing of the underlying tissue. Alternatively, the fluid 28 may be pumped temporarily or sporadically only until a clear view of the tissue is available to be imaged and recorded, at which point the fluid flow 28 may cease and blood 30 may be allowed to seep or flow back into imaging hood 12. This process may be repeated a number of times at the same tissue region or at multiple tissue regions.
In utilizing the imaging hood 12 in any one of the procedures described herein, the hood 12 may have an open field which is uncovered and clear to provide direct tissue contact between the hood interior and the underlying tissue to effect any number of treatments upon the tissue, as described above. Yet in additional variations, imaging hood 12 may utilize other configurations. An additional variation of the imaging hood 12 is shown in the perspective and end views, respectively, of
Aperture 42 may function generally as a restricting passageway to reduce the rate of fluid out-flow from the hood 12 when the interior of the hood 12 is infused with the clear fluid through which underlying tissue regions may be visualized. Aside from restricting out-flow of clear fluid from within hood 12, aperture 42 may also restrict external surrounding fluids from entering hood 12 too rapidly. The reduction in the rate of fluid out-flow from the hood and blood in-flow into the hood may improve visualization conditions as hood 12 may be more readily filled with transparent fluid rather than being filled by opaque blood which may obstruct direct visualization by the visualization instruments.
Moreover, aperture 42 may be aligned with catheter 16 such that any instruments (e.g., piercing instruments, guidewires, tissue engagers, etc.) that are advanced into the hood interior may directly access the underlying tissue uninhibited or unrestricted for treatment through aperture 42. In other variations wherein aperture 42 may not be aligned with catheter 16, instruments passed through catheter 16 may still access the underlying tissue by simply piercing through membrane 40.
In an additional variation,
Additional details of tissue imaging and manipulation systems and methods which may be utilized with apparatus and methods described herein are further described, for example, in U.S. patent application Ser. No. 11/259,498 filed Oct. 25, 2005 (U.S. Pat. Pub. 2006/0184048 A1), which is incorporated herein by reference in its entirety.
In utilizing the devices and methods above, various procedures may be accomplished. One example of such a procedure is crossing a tissue region such as in a transseptal procedure where a septal wall is pierced and traversed, e.g., crossing from a right atrial chamber to a left atrial chamber in a heart of a subject. Generally, in piercing and traversing a septal wall, the visualization and treatment devices described herein may be utilized for visualizing the tissue region to be pierced as well as monitoring the piercing and access through the tissue. Details of transseptal visualization catheters and methods for transseptal access which may be utilized with the apparatus and methods described herein are described in U.S. patent application Ser. No. 11/763,399 filed Jun. 14, 2007 (U.S. Pat. Pub. 2007/0293724 A1), which is incorporated herein by reference in its entirety. Additionally, details of tissue visualization and manipulation catheter which may be utilized with apparatus and methods described herein are described in U.S. patent application Ser. No. 11/259,498 filed Oct. 25, 2005 (U.S. Pat. Pub. 2006/0184048 A1), which is incorporated herein by reference in its entirety.
Also shown is catheter steering and locking assembly 70 integrated along the handle 52 having a steering member 72 pivotably coupled to a locking member 74. Steering member 72 may be coupled to one or more pullwires 78 attached thereto via retaining member 92, e.g., set screw, such that manipulation of the steering member articulates the steerable section and hood in a corresponding manner. Steering member 72 may be pivotably coupled to locking member 74 along a point of rotation and locking mechanism 76 which is attached to a steering plate 90.
The catheter shaft contains at least one lumen which allows the passage of one or more pullwires that are connected to the steering member 72 at the proximal end of the pullwire while the distal end may be terminated and anchored to the steering mechanisms along the steerable portion 100 of the catheter 16. Details of steering mechanisms and steerable sections of the visualization catheter, which may be utilized with apparatus and methods described herein are described in U.S. patent application Ser. No. 12/108,812 filed Apr. 24, 2008 and Ser. No. 12/117,655 filed May 8, 2008, each of which is incorporated herein by reference in its entirety. The one or more pullwires can be made from metal such as stainless steel or nitinol. A compression coil, e.g., made of stainless steel, with a slightly larger diameter than the pullwire may be positioned about the pullwire within the handle 52 to allow the pullwire to slide freely therethrough. The ends of the compression coil may be glue jointed to the proximal end to the catheter body and the distal end to the side wall of the shaft. Alternatively, the pullwire may be passed through a hypo tube made of stainless steel and be anchored at the distal side wall of the catheter 16.
In use, steering member 72 may be actuated, e.g., by pulling the member proximally, to articulate the steerable portion 100 and hood 12 in the same direction of articulation 102, as shown in the side view of
As previously mentioned, the handle assembly may also optionally incorporate an optical adjustment assembly 84, as shown in the perspective exploded assembly view of
With the shafts assembled, one or more fasteners 158, e.g., set screw, may be used to secure adjustment member 130 to retaining sleeve 150 through fastener opening 156 defined through member 130 and fastener interface 154 defined along retaining sleeve 150. Distally extending distal shaft portion 142 may further define connector interface 148 for coupling to a retaining luer connector 160 while guide shaft 134 may also define a connector interface 138 for coupling to a luer connector 140. In use, the shaft of a visualization instrument such as a fiberscope may be positioned through and secured to the assembly 84 by one or more of the connectors, e.g., luer connector 160. By rotating adjustment member 130, which is coupled to retaining sleeve 150, distal shaft portion 142 may be advanced or retracted relative to guide shaft 134 via the threaded engagement between threaded guide 146 and sleeve opening 152. The assembly 84 may be accordingly varied in length while distally or proximally advancing the fiberscope based on the varied length of the optical adjustment assembly 84 to control the visualized field of view.
Also previously mentioned above, the optical imaging assembly 58 may be optionally positioned through a support shaft 94 and support shaft interface 96 which enters handle 52, as shown in the perspective view of
Because manipulation of the hood 12 and steerable portion corresponds with an angle at which the handle is positioned, handle 52 may also serve as an orientation indicator for the hood 12 and steerable portion once the hood 12 has been introduced into the patient's body. As shown in the side view of
An example of how this feature may be utilized is shown in the illustrations of
As shown in the cross-sectional side views of
Although multiple pullwires may be utilized depending upon the number of directions for articulation, four pullwires may be typically utilized. Each of the four pullwires may be terminated symmetrically around a circumference of steering ring 184 such that a balanced four-way steering of the distal portion may be accomplished, although manipulating the steering ring 184 along various portions of its circumference may yield combinational articulation between the pullwires to result in numerous catheter configurations. Additionally, the handle assembly may further incorporate a spring mechanism 236 as an overdrive prevention mechanism, as shown in
In yet another variation of the catheter control handle,
Moreover, this handle variation as well as any of the other handle variations herein may incorporate any of the features described in each of the variations, as practicable. For instance, this particular variation may also utilize the optical adjustment assembly, locking mechanisms, etc. in combination if so desired.
As previously described for other variations, this particular handle assembly 260 may be used to control articulation of the hood 12 and the distal steerable section 264 but also used to further control articulation of the proximal steerable section 262. As shown in the perspective view of
A guide shaft 322 may be positioned at least partially through proximal handle portion 276 while maintained in position by retaining lip 324. A sliding shaft portion 328 may be positioned slidably within guide shaft 322 while a distal shaft portion 326 may extend distally through housing 272. A pullwire retaining member 318 having a pullwire termination crimp 320 may be positioned along a distal end of distal shaft portion 326 such that as distal shaft portion 326 is translated distally and/or proximally according to the manipulation of section control 278, the pullwire for the proximal steerable section 262 may be accordingly pulled or pushed. The distal shaft portion 326 may further have a threaded guide 330 which is engaged to a threaded inner surface of retaining sleeve 332, which is secured to section control 278. Thus, as control 278 is rotated, retaining sleeve 332 is also rotated thereby urging distal shaft portion 326 and sliding shaft portion 328 to move accordingly via the engagement with threaded guide 330. A further access lumen 334 is illustrated as extending through the handle assembly 260.
As further illustrated in the cross-sectional side view of
The ends of the compression coils 336 may be glue jointed to the proximal end to the catheter body 16 and distally into the transition manifold 316. Alternatively, the pullwires may also be passed through hypodermic tubes and anchored at the distal side wall of the catheter shaft 16 and the transition manifold 316. Moreover, the pullwires may be made from materials such as stainless steel or nitinol and flexible thin wall compression coils, such as stainless steel coils, may be further slid over each pullwire along the catheter shaft 16.
Because of the design of the handle assembly 260 and the accessibility of the steering ring 270 to the user, the user may utilize a single hand to operate the handle assembly 260 to control and manipulate the catheter 16 and hood 12 configuration and position within the patient's body. Moreover, the operator may utilize either their right hand 360, e.g., by gripping handle portion 276, or their left hand 362, e.g., by gripping distal handle portion 274, as shown respectively in
As previously described, because the catheter 16 and hood 12 may be repeatedly torqued and repositioned within the patient's body during a procedure, keeping track of the orientation of the deflection of the hood 12 can be difficult, if not impossible, unless fluoroscopy is used. As the handle assembly 260 provides an indication, as described herein, as to which direction the catheter and hood may be configured based upon the handle orientation, an orientation guide 372 may be imprinted directly upon the handle 274, as shown in detail view 370 of
As similarly described above,
Additionally and/or alternatively, visual indicators positioned directly upon the hood 12 may also be utilized in coordination with corresponding visual indicators positioned upon the handle itself. The hood 12 may have one or more visual indicators marked upon the distal portion of the hood such that the visual image 390 through the hood may show at least a first directional indicator 392′ along a first portion of the hood, as shown in
In use, the directional indicators as viewed through the hood correspond to the direction the hood may move when the steering ring 270 is deflected along the position where the corresponding indicator is located. Thus, deflecting steering ring 270 in direction of actuation 398, e.g., along directional indicator 394, may articulate distal steerable section 264 and hood 12 in a corresponding direction of articulation 400 along the directional indicator 394′ shown on the hood or hood membrane, as shown in
The catheter control systems described herein may additionally integrate any number of features and controls for facilitate procedures. These features and controls may be integrated into any of the variations described herein.
As shown on handle 52, a flow control 410 switch may be incorporated which may optionally have a high-flow position 412, a no-flow position 414, and an optional suction position 416 to control the inflow and/or outflow of the visualization and/or ablation fluid. One or more fluid reservoirs, e.g., a room temperature purging fluid reservoir 422 and/or a chilled purging fluid reservoir 424, may be fluidly coupled to a processing unit 418 which may control various parameters, e.g., valves, inflow, suction, RF ablation energy generation, bubble detection, etc. Processing unit 418 may also incorporate a pump 420, e.g., peristaltic pump, which may pump or urge the fluids from the reservoir through one or more coupling lines into and/or out from handle 52. Processing unit 418 may also be electrically coupled to handle 52 and may also be able to process, display and store several data, including total amount of saline used for the entire procedure, power and duration of ablation, impedance of tissue in contact with hood, rate of flow of saline, temperature of saline, and time of detection of air bubbles during the procedure.
In the event that handle 52 is used to suction or evacuate fluids out from the body, an additional evacuation reservoir 426 may also be fluidly coupled to handle 52. Additionally, one or more hemostasis valves 428 may also be integrated directly upon handle 52. Moreover, an imaging sensor 430 which may also incorporate a light source, e.g., LEDs, and power supply, may additionally be integrated directly into handle 52. A video cable may be connected to the proximal end of the handle 52 and can be directly plugged into any standard video display monitors (such as ones accepting S-Video, DVI, VGA, RCA inputs), rather than utilizing a separate video processing unit.
As processing unit 418 may incorporate processors for detecting various physiological parameters, one or more detection indicators 432, e.g., for bubble detection, and/or ablation actuation switch 434 may be integrated directly upon the handle 52 as an indicator to the operator. If air bubbles are detected in the irrigation channel, the detection indicator 432 may be activated to alert the operator of air bubbles. A soft alarm may also be triggered to further alert the operator. Additionally, with an ablation actuation switch 434 located directly upon handle 52, the operator may be able to instantaneously activate or stop ablation energy from being delivered to the target tissue by depressing switch 434 rather than reaching for a separate ablation generator. Details for tissue ablation under direct visualization and detecting various parameters such as bubble formation are also shown and described in further detail in U.S. patent application Ser. No. 12/118,439 filed May 9, 2008 (U.S. Pat. Pub. 2009/0030412 A1), which is incorporated herein by reference in its entirety.
Another example of an integrated handle is shown illustratively in
The applications of the disclosed invention discussed above are not limited to certain treatments or regions of the body, but may include any number of other applications as well. Modification of the above-described methods and devices for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the arts are intended to be within the scope of this disclosure. Moreover, various combinations of aspects between examples are also contemplated and are considered to be within the scope of this disclosure as well.
This application claims the benefit of priority to U.S. Prov. Pat. App. 61/078,746 filed Jul. 7, 2008, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
623022 | Johnson | Apr 1899 | A |
2305462 | Wolf | Dec 1942 | A |
2453862 | Salisbury | Nov 1948 | A |
3559651 | Moss | Feb 1971 | A |
3874388 | King et al. | Apr 1975 | A |
4175545 | Termanini | Nov 1979 | A |
4326529 | Doss et al. | Apr 1982 | A |
4445892 | Hussein et al. | May 1984 | A |
4470407 | Hussein et al. | Sep 1984 | A |
4517976 | Murakoshi et al. | May 1985 | A |
4569335 | Tsuno | Feb 1986 | A |
4576146 | Kawazoe et al. | Mar 1986 | A |
4615333 | Taguchi | Oct 1986 | A |
4619247 | Inoue et al. | Oct 1986 | A |
4676258 | Inokuchi et al. | Jun 1987 | A |
4681093 | Ono et al. | Jul 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4727418 | Kato et al. | Feb 1988 | A |
4784133 | Mackin | Nov 1988 | A |
4848323 | Marijnissen et al. | Jul 1989 | A |
4911148 | Sosnowski et al. | Mar 1990 | A |
4914521 | Adair | Apr 1990 | A |
4943290 | Rexroth et al. | Jul 1990 | A |
4950285 | Wilk | Aug 1990 | A |
4957484 | Murtfeldt | Sep 1990 | A |
4961738 | Mackin | Oct 1990 | A |
4976710 | Mackin | Dec 1990 | A |
4991578 | Cohen | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
4998916 | Hammerslag et al. | Mar 1991 | A |
4998972 | Chin et al. | Mar 1991 | A |
5047028 | Qian | Sep 1991 | A |
5057106 | Kasevich et al. | Oct 1991 | A |
5090959 | Samson et al. | Feb 1992 | A |
5123428 | Schwarz | Jun 1992 | A |
RE34002 | Adair | Jul 1992 | E |
5156141 | Krebs et al. | Oct 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5281238 | Chin et al. | Jan 1994 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5306234 | Johnson | Apr 1994 | A |
5313943 | Houser et al. | May 1994 | A |
5330496 | Alferness | Jul 1994 | A |
5334159 | Turkel | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5336252 | Cohen | Aug 1994 | A |
5339800 | Wiita et al. | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5353792 | Lubbers et al. | Oct 1994 | A |
5370647 | Graber et al. | Dec 1994 | A |
5373840 | Knighton | Dec 1994 | A |
5375612 | Cottenceau et al. | Dec 1994 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5391182 | Chin | Feb 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5405376 | Mulier et al. | Apr 1995 | A |
5413107 | Oakley et al. | May 1995 | A |
5421338 | Crowley et al. | Jun 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5453785 | Lenhardt et al. | Sep 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5498230 | Adair | Mar 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5515853 | Smith et al. | May 1996 | A |
5527338 | Purdy | Jun 1996 | A |
5549603 | Feiring | Aug 1996 | A |
5558619 | Kami et al. | Sep 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5575756 | Karasawa et al. | Nov 1996 | A |
5575810 | Swanson et al. | Nov 1996 | A |
5584872 | LaFontaine et al. | Dec 1996 | A |
5591119 | Adair | Jan 1997 | A |
5593422 | Muijs Van de Moer et al. | Jan 1997 | A |
5593424 | Northrup, III | Jan 1997 | A |
5672153 | Lax et al. | Sep 1997 | A |
5676693 | LaFontaine | Oct 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5709224 | Behl et al. | Jan 1998 | A |
5713907 | Hogendijk et al. | Feb 1998 | A |
5713946 | Ben-Haim | Feb 1998 | A |
5716321 | Kerin et al. | Feb 1998 | A |
5722403 | McGee et al. | Mar 1998 | A |
5725523 | Mueller | Mar 1998 | A |
5746747 | McKeating | May 1998 | A |
5749846 | Edwards et al. | May 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5754313 | Pelchy et al. | May 1998 | A |
5766137 | Omata | Jun 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5792045 | Adair | Aug 1998 | A |
5797903 | Swanson et al. | Aug 1998 | A |
5823947 | Yoon et al. | Oct 1998 | A |
5827268 | Laufer | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5842973 | Bullard | Dec 1998 | A |
5843118 | Sepetka et al. | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5860974 | Abele | Jan 1999 | A |
5860991 | Klein et al. | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5873815 | Kerin et al. | Feb 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5897487 | Ouchi | Apr 1999 | A |
5897553 | Mulier et al. | Apr 1999 | A |
5902328 | LaFontaine et al. | May 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5908445 | Whayne et al. | Jun 1999 | A |
5925038 | Panescu et al. | Jul 1999 | A |
5928250 | Koike et al. | Jul 1999 | A |
5929901 | Adair et al. | Jul 1999 | A |
5941845 | Tu et al. | Aug 1999 | A |
5944690 | Falwell et al. | Aug 1999 | A |
5964755 | Edwards | Oct 1999 | A |
5968053 | Revelas | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5986693 | Adair et al. | Nov 1999 | A |
5997571 | Farr et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6012457 | Lesh | Jan 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6036685 | Mueller | Mar 2000 | A |
6043839 | Adair et al. | Mar 2000 | A |
6047218 | Whayne et al. | Apr 2000 | A |
6063077 | Schaer | May 2000 | A |
6063081 | Mulier et al. | May 2000 | A |
6068653 | LaFontaine | May 2000 | A |
6071279 | Whayne et al. | Jun 2000 | A |
6071302 | Sinofsky et al. | Jun 2000 | A |
6081740 | Gombrich et al. | Jun 2000 | A |
6086528 | Adair | Jul 2000 | A |
6086534 | Kesten | Jul 2000 | A |
6099498 | Addis | Aug 2000 | A |
6099514 | Sharkey et al. | Aug 2000 | A |
6102905 | Baxter et al. | Aug 2000 | A |
6112123 | Kelleher et al. | Aug 2000 | A |
6115626 | Whayne et al. | Sep 2000 | A |
6123699 | Webster, Jr. | Sep 2000 | A |
6123703 | Tu et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6129724 | Fleischman et al. | Oct 2000 | A |
6139508 | Simpson et al. | Oct 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6156350 | Constantz | Dec 2000 | A |
6159203 | Sinofsky | Dec 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6167297 | Benaron | Dec 2000 | A |
6168591 | Sinofsky | Jan 2001 | B1 |
6168594 | LaFontaine et al. | Jan 2001 | B1 |
6174307 | Daniel et al. | Jan 2001 | B1 |
6178346 | Amundson et al. | Jan 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6211904 | Adair et al. | Apr 2001 | B1 |
6224553 | Nevo | May 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6238393 | Mulier et al. | May 2001 | B1 |
6240312 | Alfano et al. | May 2001 | B1 |
6254598 | Edwards et al. | Jul 2001 | B1 |
6258083 | Daniel et al. | Jul 2001 | B1 |
6263224 | West | Jul 2001 | B1 |
6270492 | Sinofsky | Aug 2001 | B1 |
6275255 | Adair et al. | Aug 2001 | B1 |
6290689 | Delaney et al. | Sep 2001 | B1 |
6306081 | Ishikawa et al. | Oct 2001 | B1 |
6310642 | Adair et al. | Oct 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6315777 | Comben | Nov 2001 | B1 |
6315778 | Gambale et al. | Nov 2001 | B1 |
6322536 | Rosengart et al. | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6358247 | Altman et al. | Mar 2002 | B1 |
6358248 | Mulier et al. | Mar 2002 | B1 |
6375654 | McIntyre | Apr 2002 | B1 |
6379345 | Constantz | Apr 2002 | B1 |
6385476 | Osadchy et al. | May 2002 | B1 |
6387043 | Yoon | May 2002 | B1 |
6387071 | Constantz | May 2002 | B1 |
6394096 | Constantz | May 2002 | B1 |
6396873 | Goldstein et al. | May 2002 | B1 |
6398780 | Farley et al. | Jun 2002 | B1 |
6401719 | Farley et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6416511 | Lesh et al. | Jul 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6423051 | Kaplan et al. | Jul 2002 | B1 |
6423055 | Farr et al. | Jul 2002 | B1 |
6423058 | Edwards et al. | Jul 2002 | B1 |
6428536 | Panescu et al. | Aug 2002 | B2 |
6436118 | Kayan | Aug 2002 | B1 |
6440061 | Wenner et al. | Aug 2002 | B1 |
6440119 | Nakada et al. | Aug 2002 | B1 |
6458151 | Saltiel | Oct 2002 | B1 |
6464697 | Edwards et al. | Oct 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6475223 | Werp et al. | Nov 2002 | B1 |
6478769 | Parker | Nov 2002 | B1 |
6482162 | Moore | Nov 2002 | B1 |
6484727 | Vaska et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6488671 | Constantz et al. | Dec 2002 | B1 |
6494902 | Hoey et al. | Dec 2002 | B2 |
6497705 | Comben | Dec 2002 | B2 |
6500174 | Maguire et al. | Dec 2002 | B1 |
6502576 | Lesh | Jan 2003 | B1 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6517533 | Swaminathan | Feb 2003 | B1 |
6527979 | Constantz et al. | Mar 2003 | B2 |
6532380 | Close et al. | Mar 2003 | B1 |
6533767 | Johansson et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6540733 | Constantz et al. | Apr 2003 | B2 |
6540744 | Hassett et al. | Apr 2003 | B2 |
6544195 | Wilson et al. | Apr 2003 | B2 |
6547780 | Sinofsky | Apr 2003 | B1 |
6558375 | Sinofsky et al. | May 2003 | B1 |
6558382 | Jahns et al. | May 2003 | B2 |
6562020 | Constantz et al. | May 2003 | B1 |
6572609 | Farr et al. | Jun 2003 | B1 |
6579285 | Sinofsky | Jun 2003 | B2 |
6585732 | Mulier et al. | Jul 2003 | B2 |
6587709 | Solf et al. | Jul 2003 | B2 |
6593884 | Gilboa et al. | Jul 2003 | B1 |
6605055 | Sinofsky et al. | Aug 2003 | B1 |
6613062 | Leckrone et al. | Sep 2003 | B1 |
6622732 | Constantz | Sep 2003 | B2 |
6626855 | Weng et al. | Sep 2003 | B1 |
6626900 | Sinofsky et al. | Sep 2003 | B1 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6645202 | Pless et al. | Nov 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6658279 | Swanson et al. | Dec 2003 | B2 |
6659940 | Adler | Dec 2003 | B2 |
6673090 | Root et al. | Jan 2004 | B2 |
6676656 | Sinofsky | Jan 2004 | B2 |
6679836 | Couvillon, Jr. | Jan 2004 | B2 |
6682526 | Jones et al. | Jan 2004 | B1 |
6689128 | Sliwa, Jr. et al. | Feb 2004 | B2 |
6692430 | Adler | Feb 2004 | B2 |
6701581 | Senovich et al. | Mar 2004 | B2 |
6701931 | Sliwa, Jr. et al. | Mar 2004 | B2 |
6702780 | Gilboa et al. | Mar 2004 | B1 |
6704043 | Goldstein et al. | Mar 2004 | B2 |
6706039 | Mulier et al. | Mar 2004 | B2 |
6712798 | Constantz | Mar 2004 | B2 |
6719747 | Constantz et al. | Apr 2004 | B2 |
6719755 | Sliwa, Jr. et al. | Apr 2004 | B2 |
6730063 | Delaney et al. | May 2004 | B2 |
6736810 | Hoey et al. | May 2004 | B2 |
6751492 | Ben-Haim | Jun 2004 | B2 |
6755790 | Stewart et al. | Jun 2004 | B2 |
6755811 | Constantz | Jun 2004 | B1 |
6764487 | Mulier et al. | Jul 2004 | B2 |
6771996 | Bowe et al. | Aug 2004 | B2 |
6773402 | Govari et al. | Aug 2004 | B2 |
6780151 | Grabover et al. | Aug 2004 | B2 |
6805128 | Pless et al. | Oct 2004 | B1 |
6805129 | Pless et al. | Oct 2004 | B1 |
6811562 | Pless | Nov 2004 | B1 |
6833814 | Gilboa et al. | Dec 2004 | B2 |
6840923 | Lapcevic | Jan 2005 | B1 |
6840936 | Sliwa, Jr. et al. | Jan 2005 | B2 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6858005 | Ohline et al. | Feb 2005 | B2 |
6858026 | Sliwa, Jr. et al. | Feb 2005 | B2 |
6863668 | Gillespie et al. | Mar 2005 | B2 |
6866651 | Constantz | Mar 2005 | B2 |
6887237 | McGaffigan | May 2005 | B2 |
6892091 | Ben-Haim et al. | May 2005 | B1 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6899672 | Chin et al. | May 2005 | B2 |
6915154 | Docherty et al. | Jul 2005 | B1 |
6916284 | Moriyama | Jul 2005 | B2 |
6923805 | LaFontaine et al. | Aug 2005 | B1 |
6929010 | Vaska et al. | Aug 2005 | B2 |
6932809 | Sinofsky | Aug 2005 | B2 |
6939348 | Malecki et al. | Sep 2005 | B2 |
6942657 | Sinofsky et al. | Sep 2005 | B2 |
6949095 | Vaska et al. | Sep 2005 | B2 |
6953457 | Farr et al. | Oct 2005 | B2 |
6955173 | Lesh | Oct 2005 | B2 |
6962589 | Mulier et al. | Nov 2005 | B2 |
6971394 | Sliwa, Jr. et al. | Dec 2005 | B2 |
6974464 | Quijano et al. | Dec 2005 | B2 |
6979290 | Mourlas et al. | Dec 2005 | B2 |
6982740 | Adair et al. | Jan 2006 | B2 |
6984232 | Vanney et al. | Jan 2006 | B2 |
6994094 | Schwartz | Feb 2006 | B2 |
7019610 | Creighton, IV et al. | Mar 2006 | B2 |
7025746 | Tal | Apr 2006 | B2 |
7030904 | Adair et al. | Apr 2006 | B2 |
7041098 | Farley et al. | May 2006 | B2 |
7042487 | Nakashima | May 2006 | B2 |
7044135 | Lesh | May 2006 | B2 |
7052493 | Vaska et al. | May 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7118566 | Jahns | Oct 2006 | B2 |
7156845 | Mulier et al. | Jan 2007 | B2 |
7163534 | Brucker et al. | Jan 2007 | B2 |
7166537 | Jacobsen et al. | Jan 2007 | B2 |
7169144 | Hoey et al. | Jan 2007 | B2 |
7186214 | Ness | Mar 2007 | B2 |
7207984 | Farr et al. | Apr 2007 | B2 |
7217268 | Eggers et al. | May 2007 | B2 |
7242832 | Carlin et al. | Jul 2007 | B2 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7261711 | Mulier et al. | Aug 2007 | B2 |
7263397 | Hauck et al. | Aug 2007 | B2 |
7276061 | Schaer et al. | Oct 2007 | B2 |
7309328 | Kaplan et al. | Dec 2007 | B2 |
7416552 | Paul et al. | Aug 2008 | B2 |
7435248 | Taimisto et al. | Oct 2008 | B2 |
7527625 | Knight et al. | May 2009 | B2 |
7534204 | Starksen et al. | May 2009 | B2 |
7569052 | Phan et al. | Aug 2009 | B2 |
7736347 | Kaplan et al. | Jun 2010 | B2 |
7758499 | Adler | Jul 2010 | B2 |
7860555 | Saadat | Dec 2010 | B2 |
7860556 | Saadat | Dec 2010 | B2 |
8131350 | Saadat et al. | Mar 2012 | B2 |
8137333 | Saadat et al. | Mar 2012 | B2 |
8235985 | Saadat et al. | Aug 2012 | B2 |
20010005789 | Root et al. | Jun 2001 | A1 |
20010020126 | Swanson et al. | Sep 2001 | A1 |
20010031912 | Adler | Oct 2001 | A1 |
20010039416 | Moorman et al. | Nov 2001 | A1 |
20010047136 | Domanik et al. | Nov 2001 | A1 |
20010047184 | Connors | Nov 2001 | A1 |
20010052930 | Adair et al. | Dec 2001 | A1 |
20020004644 | Koblish | Jan 2002 | A1 |
20020026145 | Bagaoisan et al. | Feb 2002 | A1 |
20020054852 | Cate | May 2002 | A1 |
20020065455 | Ben-Haim et al. | May 2002 | A1 |
20020068853 | Adler et al. | Jun 2002 | A1 |
20020080248 | Adair et al. | Jun 2002 | A1 |
20020087166 | Brock et al. | Jul 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020091304 | Ogura et al. | Jul 2002 | A1 |
20020138088 | Nash et al. | Sep 2002 | A1 |
20020165598 | Wahr et al. | Nov 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20030009085 | Arai et al. | Jan 2003 | A1 |
20030035156 | Cooper | Feb 2003 | A1 |
20030036698 | Kohler et al. | Feb 2003 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030120142 | Dubuc et al. | Jun 2003 | A1 |
20030130572 | Phan et al. | Jul 2003 | A1 |
20030144657 | Bowe et al. | Jul 2003 | A1 |
20030171741 | Ziebol et al. | Sep 2003 | A1 |
20030181939 | Bonutti | Sep 2003 | A1 |
20030208222 | Zadno-Azizi | Nov 2003 | A1 |
20030212394 | Pearson et al. | Nov 2003 | A1 |
20030216720 | Sinofsky et al. | Nov 2003 | A1 |
20030220574 | Markus et al. | Nov 2003 | A1 |
20030222325 | Jacobsen et al. | Dec 2003 | A1 |
20040006333 | Arnold et al. | Jan 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040054335 | Lesh et al. | Mar 2004 | A1 |
20040054389 | Osypka | Mar 2004 | A1 |
20040082833 | Adler | Apr 2004 | A1 |
20040097788 | Mourlas et al. | May 2004 | A1 |
20040117032 | Roth | Jun 2004 | A1 |
20040133113 | Krishnan | Jul 2004 | A1 |
20040138707 | Greenhalgh | Jul 2004 | A1 |
20040147806 | Adler | Jul 2004 | A1 |
20040147911 | Sinofsky | Jul 2004 | A1 |
20040147912 | Sinofsky | Jul 2004 | A1 |
20040147913 | Sinofsky | Jul 2004 | A1 |
20040158143 | Flaherty et al. | Aug 2004 | A1 |
20040158289 | Girouard et al. | Aug 2004 | A1 |
20040167503 | Sinofsky | Aug 2004 | A1 |
20040181237 | Forde et al. | Sep 2004 | A1 |
20040199052 | Banik et al. | Oct 2004 | A1 |
20040210239 | Nash et al. | Oct 2004 | A1 |
20040215180 | Starkebaum et al. | Oct 2004 | A1 |
20040215183 | Hoey et al. | Oct 2004 | A1 |
20040220471 | Schwartz | Nov 2004 | A1 |
20040230131 | Kassab et al. | Nov 2004 | A1 |
20040248837 | Raz et al. | Dec 2004 | A1 |
20040249367 | Saadat et al. | Dec 2004 | A1 |
20040254523 | Fitzgerald et al. | Dec 2004 | A1 |
20040260182 | Zuluaga et al. | Dec 2004 | A1 |
20050014995 | Amundson et al. | Jan 2005 | A1 |
20050015048 | Chiu et al. | Jan 2005 | A1 |
20050020914 | Amundson et al. | Jan 2005 | A1 |
20050027163 | Chin et al. | Feb 2005 | A1 |
20050038419 | Arnold et al. | Feb 2005 | A9 |
20050059862 | Phan | Mar 2005 | A1 |
20050059954 | Constantz | Mar 2005 | A1 |
20050059965 | Eberl et al. | Mar 2005 | A1 |
20050065504 | Melsky et al. | Mar 2005 | A1 |
20050090818 | Pike, Jr. et al. | Apr 2005 | A1 |
20050096643 | Brucker et al. | May 2005 | A1 |
20050101984 | Chanduszko et al. | May 2005 | A1 |
20050107736 | Landman et al. | May 2005 | A1 |
20050119523 | Starksen et al. | Jun 2005 | A1 |
20050124969 | Fitzgerald et al. | Jun 2005 | A1 |
20050131401 | Malecki et al. | Jun 2005 | A1 |
20050154252 | Sharkey et al. | Jul 2005 | A1 |
20050158899 | Jacobsen et al. | Jul 2005 | A1 |
20050159702 | Sekiguchi et al. | Jul 2005 | A1 |
20050165279 | Adler et al. | Jul 2005 | A1 |
20050165391 | Maguire et al. | Jul 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050182465 | Ness | Aug 2005 | A1 |
20050197530 | Wallace et al. | Sep 2005 | A1 |
20050197623 | Leeflang et al. | Sep 2005 | A1 |
20050215895 | Popp et al. | Sep 2005 | A1 |
20050222557 | Baxter et al. | Oct 2005 | A1 |
20050222558 | Baxter et al. | Oct 2005 | A1 |
20050228452 | Mourlas et al. | Oct 2005 | A1 |
20050234436 | Baxter et al. | Oct 2005 | A1 |
20050234437 | Baxter et al. | Oct 2005 | A1 |
20050267328 | Blumzvig et al. | Dec 2005 | A1 |
20050267452 | Farr et al. | Dec 2005 | A1 |
20060009715 | Khairkhahan et al. | Jan 2006 | A1 |
20060009737 | Whiting et al. | Jan 2006 | A1 |
20060015096 | Hauck et al. | Jan 2006 | A1 |
20060022234 | Adair et al. | Feb 2006 | A1 |
20060025651 | Adler et al. | Feb 2006 | A1 |
20060025787 | Morales et al. | Feb 2006 | A1 |
20060030844 | Knight et al. | Feb 2006 | A1 |
20060069303 | Couvillon et al. | Mar 2006 | A1 |
20060074398 | Whiting et al. | Apr 2006 | A1 |
20060084839 | Mourlas et al. | Apr 2006 | A1 |
20060084945 | Moll et al. | Apr 2006 | A1 |
20060089637 | Werneth et al. | Apr 2006 | A1 |
20060111614 | Saadat et al. | May 2006 | A1 |
20060122587 | Sharareh | Jun 2006 | A1 |
20060146172 | Jacobsen et al. | Jul 2006 | A1 |
20060149331 | Mann et al. | Jul 2006 | A1 |
20060155242 | Constantz | Jul 2006 | A1 |
20060161133 | Laird et al. | Jul 2006 | A1 |
20060167439 | Kalser et al. | Jul 2006 | A1 |
20060183992 | Kawashima | Aug 2006 | A1 |
20060184048 | Saadat | Aug 2006 | A1 |
20060217755 | Eversull et al. | Sep 2006 | A1 |
20060224167 | Weisenburgh et al. | Oct 2006 | A1 |
20060253113 | Arnold et al. | Nov 2006 | A1 |
20060258909 | Saadat et al. | Nov 2006 | A1 |
20060271032 | Chin et al. | Nov 2006 | A1 |
20070005019 | Okishige | Jan 2007 | A1 |
20070015964 | Eversull et al. | Jan 2007 | A1 |
20070016130 | Leeflang et al. | Jan 2007 | A1 |
20070043338 | Moll et al. | Feb 2007 | A1 |
20070043413 | Eversull et al. | Feb 2007 | A1 |
20070049923 | Jahns | Mar 2007 | A1 |
20070055142 | Webler | Mar 2007 | A1 |
20070078451 | Arnold et al. | Apr 2007 | A1 |
20070083187 | Eversull et al. | Apr 2007 | A1 |
20070083217 | Eversull et al. | Apr 2007 | A1 |
20070093808 | Mulier et al. | Apr 2007 | A1 |
20070100241 | Adler | May 2007 | A1 |
20070100324 | Tempel et al. | May 2007 | A1 |
20070106146 | Altmann et al. | May 2007 | A1 |
20070106214 | Gray et al. | May 2007 | A1 |
20070106287 | O'Sullivan | May 2007 | A1 |
20070135826 | Zaver et al. | Jun 2007 | A1 |
20070167801 | Webler et al. | Jul 2007 | A1 |
20070167828 | Saadat | Jul 2007 | A1 |
20070265609 | Thapliyal et al. | Nov 2007 | A1 |
20070265610 | Thapliyal et al. | Nov 2007 | A1 |
20070270686 | Ritter et al. | Nov 2007 | A1 |
20070282371 | Lee et al. | Dec 2007 | A1 |
20070287886 | Saadat | Dec 2007 | A1 |
20070293724 | Saadat et al. | Dec 2007 | A1 |
20080009747 | Saadat et al. | Jan 2008 | A1 |
20080009859 | Auth et al. | Jan 2008 | A1 |
20080015563 | Hoey et al. | Jan 2008 | A1 |
20080015569 | Saadat et al. | Jan 2008 | A1 |
20080027464 | Moll et al. | Jan 2008 | A1 |
20080033241 | Peh et al. | Feb 2008 | A1 |
20080033290 | Saadat et al. | Feb 2008 | A1 |
20080035701 | Racenet et al. | Feb 2008 | A1 |
20080057106 | Erickson et al. | Mar 2008 | A1 |
20080058590 | Saadat et al. | Mar 2008 | A1 |
20080058650 | Saadat et al. | Mar 2008 | A1 |
20080058836 | Moll et al. | Mar 2008 | A1 |
20080097476 | Peh et al. | Apr 2008 | A1 |
20080183081 | Lys et al. | Jul 2008 | A1 |
20080188759 | Saadat et al. | Aug 2008 | A1 |
20080214889 | Saadat et al. | Sep 2008 | A1 |
20080228032 | Starksen et al. | Sep 2008 | A1 |
20080275300 | Rothe et al. | Nov 2008 | A1 |
20080281293 | Peh et al. | Nov 2008 | A1 |
20080287790 | Li | Nov 2008 | A1 |
20080287805 | Li | Nov 2008 | A1 |
20090030276 | Saadat et al. | Jan 2009 | A1 |
20090030412 | Willis et al. | Jan 2009 | A1 |
20090054803 | Saadat et al. | Feb 2009 | A1 |
20090062790 | Malchano et al. | Mar 2009 | A1 |
20090076489 | Welches et al. | Mar 2009 | A1 |
20090076498 | Saadat et al. | Mar 2009 | A1 |
20090082623 | Rothe et al. | Mar 2009 | A1 |
20090125022 | Saadat et al. | May 2009 | A1 |
20090143640 | Saadat et al. | Jun 2009 | A1 |
20090187074 | Saadat et al. | Jul 2009 | A1 |
20090203962 | Miller et al. | Aug 2009 | A1 |
20090221871 | Peh et al. | Sep 2009 | A1 |
20090227999 | Willis et al. | Sep 2009 | A1 |
20090264727 | Markowitz et al. | Oct 2009 | A1 |
20090267773 | Markowitz et al. | Oct 2009 | A1 |
20090275799 | Saadat et al. | Nov 2009 | A1 |
20090275842 | Saadat et al. | Nov 2009 | A1 |
20090299363 | Saadat et al. | Dec 2009 | A1 |
20090326572 | Peh et al. | Dec 2009 | A1 |
20100004506 | Saadat et al. | Jan 2010 | A1 |
20100004633 | Rothe et al. | Jan 2010 | A1 |
20100004661 | Verin et al. | Jan 2010 | A1 |
20100010311 | Miller et al. | Jan 2010 | A1 |
20100094081 | Rothe et al. | Apr 2010 | A1 |
20100130836 | Malchano et al. | May 2010 | A1 |
20110060227 | Saadat | Mar 2011 | A1 |
20110060298 | Saadat | Mar 2011 | A1 |
20110144576 | Rothe et al. | Jun 2011 | A1 |
20120016221 | Saadat et al. | Jan 2012 | A1 |
20120059366 | Drews et al. | Mar 2012 | A1 |
20120150046 | Watson et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
10028155 | Dec 2000 | DE |
0283661 | Sep 1988 | EP |
0301288 | Feb 1999 | EP |
59093413 | May 1984 | JP |
59-181315 | Oct 1984 | JP |
01-221133 | Sep 1989 | JP |
03-284265 | Dec 1991 | JP |
05-103746 | Apr 1993 | JP |
09-051897 | Feb 1997 | JP |
11-299725 | Nov 1999 | JP |
2001-258822 | Sep 2001 | JP |
WO 9221292 | Dec 1992 | WO |
WO 9407413 | Apr 1994 | WO |
WO 9503843 | Feb 1995 | WO |
WO 9818388 | May 1998 | WO |
WO 03039350 | May 2003 | WO |
WO 03053491 | Jul 2003 | WO |
WO 03101287 | Dec 2003 | WO |
WO 2004043272 | May 2004 | WO |
WO 2004080508 | Sep 2004 | WO |
WO 2005070330 | Aug 2005 | WO |
WO 2005077435 | Aug 2005 | WO |
WO 2005081202 | Sep 2005 | WO |
WO 2006017517 | Feb 2006 | WO |
WO 2006024015 | Mar 2006 | WO |
WO 2006083794 | Aug 2006 | WO |
WO 2006091597 | Aug 2006 | WO |
WO 2006126979 | Nov 2006 | WO |
WO 2007067323 | Jun 2007 | WO |
WO 2007079268 | Jul 2007 | WO |
WO 2007133845 | Nov 2007 | WO |
WO 2007134258 | Nov 2007 | WO |
WO 2008015625 | Feb 2008 | WO |
WO 2008021994 | Feb 2008 | WO |
WO 2008021997 | Feb 2008 | WO |
WO 2008021998 | Feb 2008 | WO |
WO 2008024261 | Feb 2008 | WO |
WO 2008079828 | Jul 2008 | WO |
WO 2009112262 | Sep 2009 | WO |
Entry |
---|
Avitall, A Catheter System to Ablate Atrial Fibrillation in a Sterile Pericarditis Dog Model, PACE, vol. 17, p. 774, 1994. |
Avitall, Right-Sided Driven Atrial Fibrillation in a Sterile Pericarditis Dog Model, PACE, vol. 17, p. 774, 1994. |
Avitall, Vagally Mediated Atrial Fibrillation in a Dog Model can be Ablated by Placing Linear Radiofrequency Lesions at the Junction of the Right Atrial Appendage and the Superior Vena Cava, PACE, vol. 18, p. 857, 1995. |
Baker, Nonpharmacologic Approaches to the Treatment of Atrial Fibrillation and Atrial Flutter, J. Cardiovasc. Electrophysiol., vol. 6, pp. 972-978, 1995. |
Bhakta, Principles of Electroanatomic Mapping, Indian Pacing & Electrophysiol J., vol. 8, No. 1, pp. 32-50, 2008. |
Bidoggia, Transseptal Left Heart Catheterization: Usefulness of the Intracavitary Electrocardiogram in the Localization of the Fossa Ovalis, Cathet Cardiovasc Diagn., vol. 24, No. 3, pp. 221-225, 1991. |
Bredikis, Surgery of Tachyarrhythmia: Intracardiac Closed Heart Cryoablation, PACE, vol. 13, pp. 1980-1984, 1990. |
Cox, Cardiac Surgery for Arrhythmias, J. Cardiovasc. Electrophysiol., vol. 15, pp. 250-262, 2004. |
Cox, Five-Year Experience With the Maze Procedure for Atrial Fibrillation, Ann. Thorac. Surg., vol. 56, pp. 814-824, 1993. |
Cox, Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation, J. Thorac. Cardiovasc. Surg., vol. 110, pp. 473-484, 1995. |
Cox, The Status of Surgery for Cardiac Arrhythmias, Circulation, vol. 71, pp. 413-417, 1985. |
Cox, The Surgical Treatment of Atrial Fibrillation, J. Thorac Cardiovasc. Surg., vol. 101, pp. 584-592, 1991. |
Elvan, Replication of the “Maze” Procedure by Radiofrequency Catheter Ablation Reduces the Ability to Induce Atrial Fibrillation, PACE, vol. 17, p. 774, 1994. |
Elvan, Radiofrequency Catheter Ablation (RFCA) of the Atria Effectively Abolishes Pacing Induced Chronic Atrial Fibrillation, PACE, vol. 18, p. 856, 1995. |
Elvan, Radiofrequency Catheter Ablation of the Atria Reduces Inducibility and Duration of Atrial Fibrillation in Dogs, Circulation, vol. 91, pp. 2235-2244, 1995. |
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Saadat et al., extended European Search Report mailed Jul. 1, 2009. |
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Saadat et al., office action mailed Oct. 23, 2009. |
Fieguth, Inhibition of Atrial Fibrillation by Pulmonary Vein Isolation and Auricular Resection—Experimental Study in a Sheep Model, European J. Cardiothorac. Surg., vol. 11, pp. 714-721, 1997. |
Hoey, Intramural Ablation Using Radiofrequency Energy Via Screw-Tip Catheter and Saline Electrode, PACE, vol. 18, p. 487, 1995. |
Huang, Increase in the Lesion Size and Decrease in the Impedance Rise with a Saline Infusion Electrode Catheter for Radiofrequency, Circulation, vol. 80, No. 4, pp. II-324, 1989. |
Moser, Angioscopic Visualization of Pulmonary Emboli, CHEST, vol. 77, No. 2, pp. 198-201, 1980. |
Nakamura, Percutaneous Intracardiac Surgery With Cardioscopic Guidance, SPIE, vol. 1652, pp. 214-216, 1992. |
Pappone, Circumferential Radiofrequency Ablation of Pulmonary Vein Ostia, Circulation, vol. 102, pp. 2619-2628, 2000. |
Sethi, Transseptal Catheterization for the Electrophysiologist: Modification with a “View”, J. Interv. Card. Electrophysiol., vol. 5, pp. 97-99, 2001, Kluwer Academic Publishers, Netherlands. |
Thiagalingam, Cooled Needle Catheter Ablation Creates Deeper and Wider Lesions than Irrigated Tip Catheter Ablation, J. Cardiovasc. Electrophysiol., vol. 16, pp. 1-8, 2005. |
U.S. Appl. No. 11/828,267, filed Jul. 25, 2007 in the name of Saadat et al., Non-final Office Action mailed Jan. 14, 2010. |
U.S. Appl. No. 12/117,655, filed May 8, 2008 in the name of Saadat et al., Non-final Office Action mailed Jun. 8, 2009. |
Willkampf, Radiofrequency Ablation with a Cooled Porous Electrode Catheter, JACC, vol. 11, No. 2, p. 17A, 1988. |
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Saadat et al., Examination Communication mailed May 18, 2010. |
European Patent Application No. 07841754.0 filed Aug. 31, 2007 in the name of Saadat et al., Supplemental European Search Report mailed Jun. 30, 2010. |
European Patent Application No. 08746822.9 filed Apr. 24, 2008 in the name of Rothe et al., European Search Report mailed Mar. 29, 2010. |
European Patent Application No. 08746822.9 filed Apr. 24, 2008 in the name of Rothe et al., Office Action mailed Jul. 13, 2010. |
U.S. Appl. No. 11/259,498, filed Oct. 25, 2005 in the name of Saadat et al., Non-final Office Action mailed Feb. 25, 2010. |
U.S. Appl. No. 11/560,742, filed Nov. 16, 2006, in the name of Saadat, Non-final Office Action mailed Jun. 10, 2010. |
U.S. Appl. No. 11/687,597, filed Mar. 16, 2007 in the name of Saadat et al., Non-final Office Action mailed Jul. 21, 2010. |
U.S. Appl. No. 12/117,655, filed May 8, 2008 in the name of Peh et al., Final Office Action mailed Mar. 1, 2010. |
U.S. Appl. No. 61/286,283, filed Dec. 14, 2009 in the name of Rothe et al. |
U.S. Appl. No. 61/297,462, filed Jan. 22, 2010 in the name of Rothe et al. |
Uchida, Developmental History of Cardioscopes, Coronary Angioscopy, pp. 187-197, 2001, Futura Publishing Co., Armonk, NY. |
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Voyage Medical, Inc., Office Action mailed Nov. 12, 2010. |
U.S. Appl. No. 12/947,198, filed Nov. 16, 2010 in the name of Saadat, non-final Office Action mailed Feb. 18, 2011. |
U.S. Appl. No. 12/947,246, filed Nov. 16, 2006 in the name of Saadat, non-final Office Action mailed Feb. 18, 2011. |
U.S. Appl. No. 11/687,597, filed Mar. 16, 2007 in the name of Saadat, Notice of Allowance mailed Feb. 24, 2011. |
U.S. Appl. No. 11/560,732, filed Mar. 16, 2007 in the name of Saadat, Notice of Allowance mailed Feb. 24, 2011. |
U.S. Appl. No. 11/848,207, filed Aug. 30, 2007 in the name of Saadat et al., non-final Office Action mailed Feb. 25, 2011. |
Japanese Patent Application No. 2007-554156 filed Jan. 30, 2006 in the name of Voyage Medical, Inc., Office Action mailed Feb. 15, 2011. |
European Patent Application No. 07758716.0 filed Mar. 16, 2007 in the name of Voyage Medical, Inc., Supplemental European Search Report mailed Feb. 28, 2011. |
U.S. Appl. No. 11/848,202, filed Aug. 30, 2007 in the name of Saadat et al., non-final Office Action mailed Mar. 11, 2011. |
U.S. Appl. No. 11/763,399, filed Jun. 14, 2007 in the name of Saadat et al., non-final Office Action mailed Apr. 11, 2011. |
U.S. Appl. No. 12/367,019, filed Feb. 6, 2009 in the name of Miller et al., non-final Office Action mailed Apr. 22, 2011. |
U.S. Appl. No. 11/959,158, filed Dec. 18, 2007 in the name of Saadat et al., non-final Office Action mailed Apr. 25, 2011. |
U.S. Appl. No. 11/848,532, filed Aug. 31, 2007 in the name of Saadat et al., non-final Office Action mailed Apr. 26, 2011. |
U.S. Appl. No. 11/828,281, filed Jul. 25, 2007 in the name of Peh et al., non-final Office Action mailed Apr. 27, 2011. |
U.S. Appl. No. 11/961,950, filed Dec. 20, 2007 in the name of Saadat et al., non-final Office Action mailed May 9, 2011. |
U.S. Appl. No. 11/961,995, filed Dec. 20, 2007 in the name of Saadat et al., non-final Office Action mailed May 9, 2011. |
U.S. Appl. No. 11/962,029, filed Dec. 20, 2007 in the name of Saadat et al., non-final Office Action mailed May 9, 2011. |
U.S. Appl. No. 11/828,267, filed Jul. 25, 2007 in the name of Saadat et al., non-final Office Action mailed May 11, 2011. |
Japanese Patent Application No. 2009-500630 filed Mar. 16, 2007 in the name of Voyage Medical, Inc., Office Action mailed Apr. 27, 2011. |
U.S. Appl. No. 11/775,771, filed Jul. 10, 2007 in the name of Saadat et al., final Office Action mailed May 12, 2011. |
U.S. Appl. No. 11/877,386, filed Oct. 23, 2007 in the name of Saadat et al., non-final Office Action mailed May 20, 2011. |
U.S. Appl. No. 11/775,819, filed Jul. 10, 2007 in the name of Saadat et al., non-final Office Action mailed May 20, 2011. |
U.S. Appl. No. 11/775,837, filed Jul. 10, 2007 in the name of Saadat et al., non-final Office Action mailed May 23, 2011. |
U.S. Appl. No. 12/117,655, filed May 8, 2008 in the name of Peh et al., final Office Action mailed Jun. 2, 2011. |
U.S. Appl. No. 12/323,281, filed Nov. 25, 2008 in the name of Saadat et al., non-final Office Action mailed Jun. 7, 2011. |
Japanese Patent Application No. 2007-554156 filed Jan. 30, 2006 in the name of Voyage Medical, Inc., Notice of Allowance mailed Jun. 13, 2011. |
U.S. Appl. No. 11/259,498, filed Oct. 25, 2005 in the name of Saadat, Notice of Allowance mailed Nov. 15, 2010. |
U.S. Appl. No. 11/560,742, filed Nov. 16, 2006 in the name of Saadat, Notice of Allowance mailed Nov. 15, 2010. |
U.S. Appl. No. 11/560,732, filed Nov. 16, 2006 in the name of Saadat, Notice of Allowance mailed Feb. 3, 2011. |
U.S. Appl. No. 12/464,800, filed May 12, 2009 in the name of Peh et al., non-final Office Action mailed Nov. 24, 2010. |
European Patent Application No. 07812146.4 filed Jun. 14, 2007 in the name of Voyage Medical, Inc., European Search Report mailed Nov. 18, 2010. |
European Patent Application No. 07799466.3 filed Jul. 10, 2007 in the name of Voyage Medical, Inc., European Search Report mailed Nov. 18, 2010. |
U.S. Appl. No. 12/117,655, filed May 8, 2008 in the name of Peh et al., non-final Office Action mailed Dec. 16, 2010. |
U.S. Appl. No. 12/026,455, filed Feb. 5, 2008 in the name of Saadat et al., non-final Office Action mailed Dec. 27, 2010. |
U.S. Appl. No. 11/848,429, filed Aug. 31, 2007 in the name of Peh et al., non-final Office Action mailed Nov. 24, 2010. |
U.S. Appl. No. 11/775,771, filed Jul. 10, 2007 in the name of Saadat et al., Non-final Office Action mailed Aug. 27, 2010. |
U.S. Appl. No. 11/828,267, filed Jul. 25, 2007 in the name of Saadat et al., final Office Action mailed Sep. 16, 2010. |
Number | Date | Country | |
---|---|---|---|
20100004633 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
61078746 | Jul 2008 | US |